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Abstract—With its wide range of applicability, gender classi-
fication is an important task in face image analysis and it has
drawn a great interest from the pattern recognition community.
In this paper, we aim to deal with this problem using Local Binary
Pattern Histogram Sequences as feature vectors in general.
Differently from what has been done in similar studies, the
algorithm parameters used in cropping and feature extraction
steps are selected after an extensive grid search using BANCA
and MOBIO databases. The final system which is evaluated
on FERET, MORPH-II and LFW with gender balanced and
imbalanced training sets is shown to achieve commensurate and
better results compared to other state-of-the-art performances
on those databases. The system is additionally tested for cross-
database training in order to assess its accuracy in real world
conditions. For LFW and MORPH-II, BeFIT protocols are used.

I. INTRODUCTION

While human faces carry enough information to allow
gender perception, as we experiment successfully on a daily
basis, automated gender classification based on face images is
still an open research problem which addresses a diverse range
of applications. For instance, it could serve as a pre-processing
stage in a face recognition system to prune a large biometric
database in order to reduce the search load. In marketing, it can
help collecting demographic statistics or adapting the content
of an advertisement in in real-time according to the audience.
In human-robot interaction, it can enable robots to adopt a
suitable behavior depending on the user’s gender.

The gender classification tasks in pattern recognition, is a
binary task and consists of labelling images of human faces as
“male” or “female”. This task can be challenging because the
face images are subject to a wide range of variations in terms
of image quality, pose, illumination and expression differences
and presence of occlusions such as make-up or facial hair.
Moreover, it is also influenced by age and ethnicity [10].
Hence, gender recognition algorithms may suffer from data
dependency with a risk of poor generalization. Face databases,
in that sense, are of crucial importance. In [8], a benchmarking
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and evaluation protocol for gender classification is proposed
in the context of BeFIT benchmarks. In this study we follow
these protocols in order to evaluate the proposed system.
Additionally, considering that fair comparison of methods and
reproducibility of the results benefit to both the readers and
the authors, the source code for these tests is made available.

Our contribution in this paper is two folds. Firstly, a large
number of parameters for cropping face images and extracting
Local Binary Pattern Histogram Sequences (LBPHS) are tested
to find the most suitable configuration for gender classification.
To this end, an in-depth analysis is carried out on BANCA [3]
and MOBIO [14] databases. Secondly, the optimized system
is tested with within- and cross- database experiments using
MORPH-II [19], LFW [11] and FERET [18] databases.

The rest of the paper is organized as follows: In Section
II details on the related work is given. In Section III, the
proposed method is presented. Experimental results for within-
and cross- database evaluation are provided in Section IV.
Finally, in Section V the paper is concluded with remarks on
the obtained results and the future work.

II. RELATED WORK

For the sake of simplicity, the related work on gender
classification is examined with respect to 3 main sub-tasks:
feature extraction, feature selection and classification. The
feature extraction step turns images into feature vectors and the
feature selection step reduces their dimensionality. Finally, the
classifier determines a boundary in the reduced feature space
so that the images are labelled as one of the two classes.

A. Feature extraction

The simplest feature to use in image analysis is raw pixel
intensities. In this method, the size of the cropped face has a
direct impact on the resulting feature vector’s dimensionality,
so the use of intensity as a feature is usually observed on
small images. To our knowledge, Golomb et al. [9] published
the first study on gender classification which uses face images
of 30×30 pixels as features and a Neural Network (NN) as a
classifier. They obtained 91.9% accuracy compared to 88.4%
accuracy achieved by humans. Later, Moghaddam et al. [15]
were able to reach 96.0% of accuracy on even smaller images
of 21×12 pixels, using a Support Vector Machine (SVM).



Intensity values might be the most appropriate features,
in case gender recognition is required on very low resolution
images. However, several comparative studies [13], [28], [6]
prove that even better features exist such as Gabor, LBP or
their combination.

The use of Gabor features in image processing has been
introduced by Daugman [7] and the effectiveness of such low
level features has been proved for many pattern recognition
tasks such as iris, fingerprint or face recognition [21].

In 1996, Wiskott et al. [26] proposed to apply Gabor
features for gender classification and reported 90.2% accuracy
on FERET. More recently in [10], a variant of Gabor features
is used (Biological Inspired Features (BIF) [20]) and 98.3%
accuracy is achieved on MORPH-II using 60×60 images.

LBP codes are texture descriptors introduced in [16] and
further improved in [17] by Ojala et al.. LBP operator converts
the intensity value of a pixel into a binary code based on the
difference of intensities with respect to its neighbors. Further-
more, these binary codes can be grouped in a histogram that
compactly describes the image content. In order to keep spatial
information, the image can also be divided into sub-regions
and the LBP histogram of each region can be concatenated,
resulting in a LBPHS vector. This method has been widely
used for gender classification [23], [22], [28].

In [22], the eyebrows, the eyes, and the region between the
nose and the mouth are claimed to be the most discriminative
parts of the face for gender classification using LBP features.
The best results reported so far with LBP features are [28]
with 95.60% using FERET, CAS-PEAL and BCMI databases
(controlled) and [22] with 94.81% on LFW (uncontrolled).

Interestingly, the combination of Gabor and LBP by ex-
tracting LBPHS from Gabor images leads to very discrimi-
native features as demonstrated in [28], [27]. In [28] Gabor-
based, LBP-based, and LGBP-based algorithms are compared
on the FERET, CAS-PEAL and BCMI databases, and 92.17%,
95.60% and 99.84% overall accuracies are obtained for each
feature type, respectively, which proves the supremacy of
LGBP features in gender classification with controlled images.

B. Feature selection methods

Once the features are extracted, the next step is to reduce
the dimensionality of the feature vector by selecting the more
discriminating features and/or by projecting the features into
a lower dimensionality space, which is expected to achieve
better performance in terms of accuracy.

Some examples of feature selection methods applied in pre-
vious gender classification studies are Independent Component
Analysis (ICA) on intensity values in [12], Canonical Com-
ponent Analysis (CCA) on BIF in [10], Linear Discriminant
Analysis (LDA) in [28], [27] and AdaBoost in [22], [13].

C. Classification

The selection of adapted features for the task of gender
classification has a significant influence on the final perfor-
mance of the system, and so has the choice of the classifier.
In the literature, several classification methods have been
tested for gender such as NN [9], Discriminative analysis

of the Canonical Correlation (DCC) [4], CCA [10], Partial
Least Squares (PLS) [10], AdaBoost [23] or Support Vector
Machines (SVM) [22].

In particular, SVM have been proved to outperform most
of the other classifiers. It is a supervised learning algorithm
introduced by Cortes and Vapnik [5] in 1995. Given a labelled
training set of data, it aims at finding a linear hyperplane that
best separates them in the feature space. In case of a non-linear
problem, then the SVM algorithm maps the data in a higher
dimensional space and finds a linear separator in that space.
A “kernel function” has to be chosen a priori, thus leading to
different kinds of classifiers depending on the chosen kernel.

Moghaddam and Yang [15] were the first to use an SVM
classifier for gender classification. They reported 96.6% of
accuracy on the FERET database, on 21×12 face images.
Since Moghaddam, SVMs gained in popularity and numerous
types of features and SVMs have been tested for gender
classification [22], [28].

III. PROPOSED APPROACH

In general, the problem of gender classification from face
images can be broken down into four stages: detection (local-
ization) of the face, pre-processing of the facial region, feature
extraction and classification (Figure 1).

The first step which aims to detect/locate a face in an
image is left out of scope of this study. In all experiments,
manually annotated eye positions are utilized. As for the pre-
processing step, only cropping and geometric normalization
is considered. It means that faces are rotated and aligned in
the images using the manually annotated eye positions. In this
way, eyes are brought to the same location in each face image
and the faces are brought to the same scale in upright position.
This approach is widely employed in face studies and in [13]
the authors prove the positive impact of face normalization on
gender classification by conducting experiments on the FERET
database.

On the other hand, to the best of our knowledge, there
are no studies that extensively compare different cropping
parameters such as image size, resolution and aspect ratio. In
the previous studies, these are most commonly chosen a priori
at the beginning of the experiments and no justification is
presented [10], [28]. In this work, we aim to find the optimum
configuration for cropping and geometric normalization for
gender classification.

In the third step, discriminative and representative features
are selected and extracted from the face images. As mentioned
in Section II, LBP is a powerful local texture descriptor which
has been widely employed in face image analysis, including
gender classification studies [1], [22]. Following this trend, in
our study, we analyze the effectiveness of LBPHS and their
variations as feature vectors to be classified into genders.

Similar to pre-processing, extraction of LBPHS is also
based on a handful of parameters, such as types of LBP, radius,
number of sampling points and number of blocks that the
images are segmented into. In most of the existing work that
utilize LBPHS for gender classification, these parameters are
again set without any justification [1], [28]. On the other hand,
there are also several studies for which LBPHS are extracted
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Fig. 1. The gender classification system is illustrated after broken down into
its components. The optimized parameters from each step are given in red
boxes.

using different configurations and most discriminative bins are
selected via a boosting algorithm [22], [23].

Regular LBP assigns a code to each image pixel by com-
paring its intensity with those of its neighbors. The distance of
the neighboring pixels to the center and the number of points
sampled from this circle are controlled by the LBP radius (R)
and the number of sampling points (P ), respectively (Figure
2). Modified LBP operates exactly the same except that the
comparison is done to the average intensity of neighboring
points instead of the center pixel [25].

An LBP code is called uniform when it contains at most
two bitwise transitions and non-uniform otherwise. In [17],
Ojala et al. show that non-uniform patterns do not occur often
enough to yield to reliable statistics. Furthermore in [22], the
validity of uniform patterns is verified for gender classification.
By adopting Adaboost to learn discriminative LBPHS bins, a
strong classifier is built with LBP8,2 operator which performs
similarly to that of uniform LBP8,2. Thus, in our experiments,
we only consider uniform patterns and use a single label for all
non-uniform ones. This results in N different labels (histogram
bins), formulated by N = P × (P − 1) + 2 where P denotes
the number of sampling points.

Once the LBP images are generated by replacing each pixel
with its LBP code, the feature vectors can be computed in two
different ways. In the first option, a single histogram is created
using all pixels in the image. This results in a feature vector of
length equal to the number of bins (N ). In the second option,
the image is divided into blocks and the final feature vector
is formed by concatenation of histograms from each of the
blocks. In this case, the length of the feature vector becomes
N ×M2 where M is the number of blocks in each axis, since
same number of blocks are used in x and y directions. In order
to simplify the process, the first option is regarded as a special
case of the second option in which M is equal to 1.

In this study, we seek for the best configurations for
cropping and LBP parameters together. Towards this end, we
utilize two different databases and conduct a grid search for 6
parameters in total (Figure 1). They are listed as the following,
for cropping and geometrical normalization:

• Inter-occular distance (IOD): [10, 20, 30]
• width-to-IOD ratio: [1.5, 2, 2.5, 3, 3.5]

Fig. 2. Different LBP radiuses, R and number of sampling points, P
(LBPP,R)

• height-to-width ratio: [ 12 , 1
1.5 , 1, 1.5, 2]

and for feature extraction:
• LBP type: [regular, modified]
• Number of sampling points and LBP radius (P ,R):

[(8,1), (8,2), (16,2)]
• Number of blocks in each axis (M ): [1, 2, 4, 6, 8, 10,

12, 14, 16, 18, 20]

All parameters listed above and their corresponding options
result in more than 4000 valid configurations with compatible
values. Each of these configurations are tested on two different
databases and ranked according to their performances in terms
of average correct rate (please refer to Section IV-B). The
optimum set of parameters is selected as the one with the best
overall rank.

Regarding the fourth and the last step of a gender classi-
fication system, a classifier is to be selected. In [24], SVM is
compared to three different classifiers (a Bayes classifier, a NN
classifier and a classifier based on LDA) and proved to give the
best performance. Similarly in [15], Moghaddam et al. show
that SVM is superior to various classifiers, such as nearest
neighbor, Fisher linear discriminant and radial basis function
(RBF) networks. In the same study, the authors additionally
prove that SVM with RBF kernel works better than polynomial
kernels of different degrees. In view of these results, SVM with
RBF kernel is chosen to be utilized for our gender classification
system.

IV. EXPERIMENTS

Three sets of experiments (E1, E2 and E3)) are conducted:
• E1: In order to find optimal cropping and LBP param-

eters, firstly, a grid search is performed.
• E2: The findings of the first set of experiments are

applied to build and test the final system using each
database separately.

• E3: The final system is tested by cross-database exper-
iments (training with one and evaluating with another)

All of the experiments are implemented using the free
signal-processing and machine learning toolbox Bob1 [2]. The
source code for these experiments is available as one of its
satellite packages2 to foster replicable research.

A. Databases and protocols

The first set of experiments, E1, that aim to find ideal
algorithm parameters are conducted on the images extracted
from the video corpus of BANCA [3] and MOBIO [14]

1http://www.idiap.ch/software/bob/
2Code available at: http://pypi.python.org/pypi/estimate.gender



TABLE I. NUMBER OF MALE AND FEMALE SUBJECTS AND IMAGES IN
EACH DATABASE FOR TRAINING AND EVALUATION SETS

Training Evaluation
Database Male Sub./Img. Female Sub./Img. Male Sub./Img. Female Sub./Img.
BANCA 28/1710 28/1710 13/1560 13/1560
MOBIO 61/2660 31/1210 38/1093 20/575
FERET 152/152 152/152 60/60 47/47
LFW (avg) 3410/8205 1189/2382 853/2051 297/595
MORPH-II (avg) 9199/37317 1733/6790 2323/9329 437/1698

databases. BANCA database includes 82 subjects with equal
number of males and females. We utilized the Grand Test
(G) protocol which includes all available scenarios (controlled,
degraded and adverse) and amounts to 3420 images for training
and 3120 images for evaluation. On the other hand, in the
MOBIO database, there are 150 subjects of which 99 is male
and 51 is female. In order to decrease the database size, every
fourth image is utilized in the experiments, resulting in 3870
and 1667 images for training and evaluation, respectively, with
similar gender distribution to that of the whole database.

Regarding to the E2 experiments, most of the existing work
on gender classification do not use a standardized evaluation
procedure which makes it very difficult to compare different
methodologies. However recently, an evaluation protocol was
proposed by Gehrig et al. [8] as one of the BeFIT (Benchmark-
ing Facial Image Analysis Technologies) benchmarks which
deals with two different scenarios: under controlled laboratory
conditions and under uncontrolled real life conditions.

For benchmarking gender classification algorithms under
controlled conditions, MORPH-II [19] database is proposed.
This database consists of 55134 face images of 12012 male
and 1605 female subjects. On the other hand, for uncontrolled
scenario, the Labeled Faces in the Wild (LFW) [11] database is
recommended which is composed of 13233 face images from
4263 male and 1486 female subjects.

For both of these databases, 5-fold cross-validation pro-
cedures are prepared and made available on BeFIT website3.
In order to avoid learning the identity of the subjects in the
training set instead of their genders, all images of a subject are
ensured to appear in only one fold at each iteration. Moreover,
the distribution of age, gender and ethnicity in the folds are
kept similar to the distribution in the whole database.

Although FERET is one of the most commonly used
databases for gender classification studies, it is not included
in the BeFIT protocols due to its small size. Nevertheless, we
include it in our experiments for the sake of comparability to
previous works. To this end, a small partition of the FERET
database (411 images) is utilized according to the evaluation
protocol that was created and used by Mäkinen et al. in [13]4.
Unlike MORPH-II and LFW, FERET protocol includes almost
equal number of females and males for training and evaluation.

The details of gender distribution in training and evaluation
sets of all 5 databases used in our experiments are given
in Table I. In each of the 5 folds in MORPH-II and LFW
databases and in the single fold of the FERET database, the
classifiers are trained using the features extracted from training
images and the success rates are measured and reported on the
evaluation images for within-database experiments.

3http://fipa.cs.kit.edu/431.php
4http://www.sis.uta.fi/ em55910/datasets/

Finally, for the last set of experiments, E3, the training and
evaluation steps are done on different databases in order to
measure the generalizability of the classifiers. The same folds
are used for comparability. For instance, the evaluation set of
the FERET database is used to separately test the 5 classifiers
trained by 5 training folds of LFW database and the result is
averaged. The same is done for 5 evaluation sets from 5 folds
of MORPH-II, resulting in 25 performance metrics, which are
also averaged.

Additionally, in order to observe the effect of gender distri-
butions in the training sets on the classification performances,
E2 and E3 experiments for LFW and MORPH-II are repeated
after the excess male samples are removed from each training
step. In other words, the training sets of all folds are made
gender-balanced for these experiments which are symbolized
as LFW-B and MORPH-II-B.

B. Evaluation Metrics

In BeFIT benchmark, three different evaluation metrics are
given: accuracy (ACC), average correct rate (ACR) and area
under receiver-operator characteristic (ROC) curve (AUC).

ACC is defined by:

ACC =
TP+ TN

P+N
(1)

where TP is the number of correctly classified positive (male)
samples, TN is the number of correctly classified as negative
(female) samples and P and N are total numbers of positive
and negative samples. The main disadvantage of this metric is
that for imbalanced databases and/or classifiers with different
accuracies for male and female images, it can be highly
misleading. To have a clearer understanding, true positive and
true negative rates (TPR and TNR) can also be calculated:

TPR =
TP

P
, TNR =

TN

N
(2)

ACR is the average of TPR and TNR which is more reliable
than ACC in cases of database imbalance.

Finally, AUC measures the area under the ROC curve and
reaches its maximum value of 1 if the system works perfectly.
The main drawback of this metric is that it does not rely
on a decision threshold, which hinders the generalizability
measurements. For this reason, in our study, we will report the
experimental results only using TPR, TNR, ACC and ACR.

C. Experimental results

The results of the experiments to find the optimal algorithm
parameters and then to evaluate the final system within- and
cross-database are given in the following subsections:

1) Optimal parameters: Once the E1 experiments are run
and ACR values are calculated for all possible combinations of
various cropping and LBPHS extraction parameters, the best
configuration is found as the one in the top rank for both
BANCA and MOBIO databases.

The results show that the highest rank for both databases
is obtained when faces are cropped to size 105×70 with IOD
of 30, modified LBP codes are computed using 8 sampling
points on a circle of radius 2 and the final features are
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Fig. 3. TPR, TNR, ACC and ACR values for within-database experiments; a) for all databases and cross-database experiments for b) FERET, c) LFW and d)
MORPHO-II with and without gender-balanced (B) training sets.

TABLE II. TPR, TNR, ACC AND ACR VALUES FOR E2
EXPERIMENTS. ADDITIONALLY, SOME PREVIOUSLY REPORTED RESULTS
ARE GIVEN FOR COMPARISON OF WHICH THE ONES THAT UTILIZE THE

SAME PROTOCOL ARE MARKED WITH AN ASTERISK (*)

TPR TNR ACC ACR
FERET 88.33% 93.62% 90.65% 90.98%
LFW 98.24% 79.31% 93.98% 88.78%
LFW-B 91.71% 90.66% 91.48% 91.19%
MORPH-II 99.03% 90.37% 97.69% 94.70%
MORPH-II-B 97.46% 96.68% 96.84% 97.07%
FERET* (LBP+SVM [1] - our imp.) 93.33% 85.11% 89.72% 88.22%
FERET* (LBP+SVM [1]) - - 93.46% -
FERET* (LBP+SVM [13]) - - 82.06% -
FERET* (Raw+SVM [13]) - - 86.54% -
LFW (MLBP+Adaboost+SVM [22]) 95.98% 91.98% 94.4% 93.98%
LFW* (LBP+SVM [6]) 97.01% 82.97% 93.83% 89.99%
LFW* (Gabor+SVM [6]) 97.47% 82.16% 94.01% 89.82%
MORPH-II (BIF+KCCA [10]) - - 98.45% -

constructed by concatenating histograms extracted from 12×12
non-overlapping blocks. With these parameters, 90.77% ac-
curacy is obtained for BANCA, whereas it is 93.35% for
MOBIO.

2) Within-database experiments: The results for the E2
experiments that are based on the findings of E1 are given in
Figure 3-a. For FERET, an ACR of 90.98% is achieved with
the proposed method. The average ACR of 5 folds is found to
be 88.78% for LFW and 94.70% for MORPH-II. On the other
hand, after the gender distributions are balanced in the training
sets, ACR for LFW increases to 91.19% and for MORPH-II
to 97.07%. More detailed results are given in Table II.

3) Cross-database experiments: The results for the E3
experiments that are based on the findings of E1 are given in
Figure 3-b,c,d. According to these results, the performances
tend to drop when another database is used to train the
classifiers. The result on the LFW is observed to be the most
effected one when training sets of MORPH-II are used after
gender distributions are adjusted (ACR of 59.73%).

The results reveal that most successful classifier in cross-
database evaluations is the one trained with gender-balanced
training sets of LFW. In fact, among all E3 experiments, the
least effected result is obtained on FERET with this classifier,
for which the ACR value is computed as 87.91%.

In general, utilization of the remarkably small FERET
database for training, leads to a substantial deterioration on
LFW and MORPH-II performances, with 74.02% and 74.98%
ACR, respectively. In Table III, the results for the cross-
database experiments are presented in further detail.

TABLE III. TPR, TNR, ACC AND ACR VALUES FOR E3
EXPERIMENTS. EVALUATION DATABASES ARE IN THE PARENTHESES.

TPR TNR ACC ACR
FERET (LFW) 57.99% 90.06% 65.20% 74.02%
FERET (MORPH-II) 69.30% 80.66% 71.05% 74.98%
LFW (FERET) 100.0% 53.19% 79.44% 76.60%
LFW (MORPH-II) 96.18% 45.82% 88.43% 71.00%
LFW-B (FERET) 96.67% 79.15% 88.97% 87.91%
LFW-B (MORPH-II) 87.71% 63.21% 82.81% 75.46%
MORPH-II (FERET) 97.33% 46.81% 75.14% 72.07%
MORPH-II (LFW) 74.90% 82.61% 76.64% 78.76%
MORPH-II-B (FERET) 72.67% 86.38% 78.69% 79.52%
MORPH-II-B (LFW) 21.22% 98.25% 38.55% 59.73%

D. Discussions

Due to the shape of the face, the aspect ratio (width:height)
of the cropped image is most commonly taken as less than
or equal to 1 in the literature. When we look at the selected
cropping parameters that give the best results, we see that
they are very different from the ones proposed in the previous
studies because the width is larger than the height.

The final system that is based on the findings of the grid
search for optimal algorithm parameters leads to comparable
results to the state-of-the-art. For FERET, the best perfor-
mances are reported by [1], however, our implementation of the
same method leads to 89.72% ACC and 88.22% ACR which
is marginally lower than the obtained results. For LFW, the
ACC obtained in [22] is found to be the highest. On the other
hand, the protocol used in that study is not the same as ours. In
fact, most of the face images that are difficult to establish the
ground truth or not near-frontal are omitted which simplifies
the gender classification challenge and boosts the performance.
The second best result on the same database is reported as
94.01% ACC in [6]. This is higher than the ACC achieved by
the proposed method but when ACR values are compared, it
is revealed that this is just a false appearance due to the strong
gender imbalance in the evaluation set. In fact, the proposed
method reaches a better result in terms of ACR. Finally, to
the best of our knowledge, there are no gender classification
studies yet which utilize MOPRH-II with the BeFIT protocol.
In the only study that we could find with MORPH-II [10], the
experiments are conducted in 3 folds and hence their results
are not fully comparable to ours.

The gender-balanced tests on LFW and MORPH-II reveal
that the gender distribution in the training sets has a huge
impact on the performances. Since the number of male samples
are much higher than females in both databases, the classifiers
are trained to have a tendency to label a test image as male.



This is noticed clearly in the TNR values in Table II. When the
training sets are balanced, TNRs increase remarkably, while
TPRs decrease slightly. These experiments also help to realize
the difference in ACC and ACR metrics. The true impact of
the distribution uniformization can be observed in the ACR
values, whereas it reflects negatively on the ACC due to the
similar gender imbalance towards males in the evaluation sets.

Lastly, with the cross-database experiments, it has been
shown that generalizability of the trained systems is a critical
issue. The performances have worsen significantly compared to
the within-database tests and TPR and TNR have become ex-
tremely imbalanced. ACR of the classifier trained with FERET
roughly drops to 74% with LFW and MORPH-II evaluation
sets. Similar decline in performances is also observed for
classifiers trained with LFW and MORPH-II. Systems trained
with gender-balanced training sets of LFW have the best
generalization, since they bear the minimum loss.

V. CONCLUSION

Automated gender classification from face images is still
an active topic today, especially in the case of uncontrolled
real-world conditions. In this paper, we aim to contribute to
the current state of research in this domain in two ways; firstly
by analyzing the influence of cropping and LBPHS extraction
parameters on the performances and selecting the optimal
configuration and secondly by evaluating the final system using
the public BeFIT protocol; using balanced and imbalanced
training sets in within- and cross- database experiments.

The results show that the proposed system achieves a
higher ACR than the best performance reported so far on the
uncontrolled LFW database. It also gives comparable results
on controlled FERET and MOPRH-II databases.

During our research, we encountered two main problems
in comparing our results with the previous studies: misleading
characteristic of the most commonly used ACC metric for
imbalanced evaluation sets and unreproducible experimental
results. For instance, the results reported in [22] could not be
reproduced or comparable experiments cannot be conducted
since the utilized protocol is not available. To alleviate these
issues, both ACC and ACR metrics are utilized in our paper
and the code to generate the reported results is made available.

For future work, our aim is to construct gender classifi-
cation systems with better generalization properties. Cross-
database experiments show that this is an issue still waiting
to be handled for real-world applications.
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Castro. Single-and cross-database benchmarks for gender classification
under unconstrained settings. In IEEE Int. Conf. on Computer Vision
Workshops, pages 2152–2159, 2011.

[7] J. G. Daugman et al. Uncertainty relation for resolution in space,
spatial frequency, and orientation optimized by two-dimensional visual
cortical filters. Optical Society of America, Journal, A: Optics and
Image Science, 2(7):1160–1169, 1985.

[8] T. Gehrig, M. Steiner, and H. Ekenel. Draft: Evaluation guidelines for
gender classification and age estimation, 2011.

[9] B. A. Golomb, D. T. Lawrence, and T. J. Sejnowski. Sexnet: A neural
network identifies sex from human faces. In Conf. on Advances in
Neural Information Processing Systems 3, NIPS-3, pages 572–577.
Morgan Kaufmann Publishers Inc., 1990.

[10] G. Guo and G. Mu. Joint estimation of age, gender and ethnicity: CCA
vs. PLS. In IEEE Int. Conf. and Workshops on Automatic Face and
Gesture Recognition, pages 1–6, 2013.

[11] G. B. Huang, M. Mattar, T. Berg, E. Learned-Miller, et al. Labeled faces
in the wild: A database forstudying face recognition in unconstrained
environments. In Workshop on Faces in’Real-Life’Images: Detection,
Alignment, and Recognition, 2008.

[12] A. Jain, J. Huang, and S. Fang. Gender identification using frontal facial
images. In IEEE Int. Conf. on Multimedia and Expo, pages 4–pp, 2005.

[13] E. Makinen and R. Raisamo. Evaluation of gender classification
methods with automatically detected and aligned faces. IEEE Trans.
Pattern Analysis and Machine Intelligence, 30(3):541–547, 2008.

[14] S. Marcel, C. M. Cool, C. Atanasoaei, F. Tarsetti, J. Pesán, P. Matejka,
J. Cernocky, M. Helistekangas, and M. Turtinen. MOBIO: Mobile
biometric face and speaker authentication. In IEEE Conf. on Computer
Vision and Pattern Recognition, San Francisco, CA, USA, 2010.

[15] B. Moghaddam and M.-H. Yang. Learning gender with support faces.
Trans. Pattern Analysis and Machine Intelligence, 24(5):707–711, 2002.

[16] T. Ojala, M. Pietikainen, and D. Harwood. A comparative study of
texture measures with classification based on featured distributions.
Pattern recognition, 29(1):51–59, 1996.

[17] T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolution gray-scale
and rotation invariant texture classification with local binary patterns.
Trans. Pattern Analysis and Machine Intelligence, 24(7):971–987, 2002.

[18] P. J. Phillips, H. Moon, S. A. Rizvi, and P. J. Rauss. The feret
evaluation methodology for face-recognition algorithms. IEEE Trans.
Pattern Analysis and Machine Intelligence, 22(10):1090–1104, 2000.

[19] K. Ricanek and T. Tesafaye. Morph: A longitudinal image database
of normal adult age-progression. In Int. Conf. on Automatic Face and
Gesture Recognition, pages 341–345, 2006.

[20] M. Riesenhuber and T. Poggio. Hierarchical models of object recogni-
tion in cortex. Nature neuroscience, 2(11):1019–1025, 1999.
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recognition and gender determination. In Int. Workshop on Automatic
Face and Gesture Recognition, pages 92–97, 1995.

[27] T. Zhang and B.-L. Lu. Selecting optimal orientations of gabor wavelet
filters for facial image analysis. In Image and Signal Processing, pages
218–227. Springer, 2010.

[28] J. Zheng and B.-L. Lu. A support vector machine classifier with
automatic confidence and its application to gender classification. Neu-
rocomputing, 74(11):1926 – 1935, 2011.


