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1. Introduction
Chronic myeloid leukemia (CML) is a hematological 
cancer characterized by the overproduction of mature or 
immature myeloid cells in the peripheral blood, spleen, and 
bone marrow. These cells are Philadelphia chromosome 
(Ph)-positive in more than 90% of CML patients. The 
Philadelphia chromosome results from a balanced 
reciprocal translocation between the Abelson gene (Abl1) 
on the long arm of chromosome 9 and the breakpoint 
cluster region gene (Bcr) on the long arm of chromosome 
22, t(9;22)(q34;q11). This balanced translocation results in 
the Bcr-abl1 fusion gene, a constitutively active chimeric 
tyrosine kinase (Al-Achkar et al., 2012; Calderón-Cabrera 
et al., 2013; Press et al., 2013). Different sizes of the Bcr-
abl fusion protein are synthesized in different leukemias. A 
Bcr-abl protein of 210 kDa is observed in more than 90% 
of CML and 30%–35% of acute lymphocytic leukemia 
(ALL) patients. Bcr-abl proteins of 190 and 230 kDa 
are detected in ALL and chronic neutrophilic leukemia 
patients, respectively (Chan at al., 1987; Deininger et al., 
2000; Kantarjian at al., 2006; Quintás-Cardama and Cortes, 
2009). Bcr-abl tyrosine kinase activity causes malignant 
cell transformation. The Bcr-abl oncoprotein affects some 
downstream signaling pathways resulting in uncontrolled 

cell proliferation, decreased cell apoptosis, adhesion, and 
differentiation. All these changes form the phenotypic 
features of CML (Jagani et al., 2008). There are 3 phases 
in CML, known as the chronic, accelerated, and blast 
crisis phases. The transition from chronic to accelerated 
phase and to blast crisis phase results from secondary 
chromosomal aberrations such as trisomy 8, trisomy 19, 
an extra Ph chromosome, and isochromosome 17q (p53 
gene on 17p is lost) (Al-Achkar et al., 2012; Jabbour and 
Lipton, 2013).

In the United States, the annual incidence of CML is 
estimated at 1.0 to 1.3 per 100,000 or approximately 4800 to 
5200 new cases annually. The estimated prevalence of CML 
in the United States was approximately 25,000 to 30,000. 
Therapy with imatinib has changed the demographics of 
CML. The annual mortality was approximately 10% for the 
first 2 years and 20% to 25% in the following years (Huang 
et al., 2012).

Until radiotherapy was discovered in the 19th century, 
arsenic was used for the treatment of CML. In the 1960s, 
busulfan and hydroxyurea were used, while allogenic 
stem cell transplantation has been used since the 1980s. 
In the 1980s, patients not suitable for transplantation were 
treated with interferon alpha, resulting in a survival rate 
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of approximately 35% (Frazer et al., 2007). Understanding 
the molecular mechanisms of CML resulted in the 
development of tyrosine kinase inhibitors (TKIs) (Hamad 
et al., 2013; Baccarani et al., 2014). Treatment with 
TKIs increased survival rates, decreased side effects, 
and improved life quality. As a result, the difficulties 
encountered with previous therapeutic approaches have 
been overcome (Nasr and Bazarbachi, 2012; Hamad et al., 
2013). The 2-phenylaminopyrimidines were first reported 
as potent protein tyrosine kinase inhibitors with selectivity 
for the Abl and platelet-derived growth factor receptor 
(PDGF-R) tyrosine kinases (Buchdunger et al., 1995, 
1996).

The first developed TKI was imatinib mesylate (Glivec 
or Gleevec or STI571), which targets Bcr-abl protein. In 
CML cells, the kinase domain of Bcr-abl is phosphorylated 
at tyrosine residues and activated by ATP binding. Imatinib 
mesylate mimics ATP and inhibits its binding to the 
tyrosine kinase domain of Bcr-abl (Fausel, 2007). Different 
studies demonstrated that patients with accelerated or 
blast crisis phases can show resistance to imatinib (Gorre 
et al., 2001; Sawyers et al., 2002).

In order to solve this problem, second-generation TKIs 
were developed such as dasatinib (BMS-354825, Sprycel), 
nilotinib (AMN 107, Tasigna), and bosutinib (SKI-606). 
These agents showed better performance for the treatment 
of CML as compared to imatinib (Hamad et al., 2013). 
Nilotinib also binds to the ATP binding site of Bcr-abl and 
inhibits the signaling cascade essential for the proliferation 
of cells. The structure of nilotinib compared to imatinib is 
more compatible in terms of the ATP binding pocket site 
(Frazer et al., 2007). Unlike other TKIs, dasatinib binds to 
both the active and inactive conformations of the Abl kinase 
domain and targets some other kinases such as the Src 
family, c-Kit, PDGF-R, and ephrin-A receptor. Dasatinib 
is a prominent agent for imatinib-resistant CML patients 
(An et al., 2010). Furthermore, the newly developed 
second-generation drug bosutinib is used to treat solid 
tumors by blocking Src-family kinase and Bcr-abl activity. 
Unlike dasatinib, bosutinib does not target c-Kit and 
PDGF-R, but rather causes phosphorylation of cellular 
proteins and inhibits proliferation of CML cells (Weisberg 
et al., 2007; Cortes et al., 2012). Lastly, ponatinib is a third-
generation drug specific for tyrosine kinase activity, which 
particularly binds to Bcr-abl. In contrast to other drugs, 
this treatment is efficacious against T315I-mutated CML 
patients (~20% of imatinib-resistant patients). 

Aurora kinases, which have a significant role in 
mitosis, are overexpressed in cancer cells. Inhibition of 
these kinases causes the mitotic catastrophe of leukemia 
cells. Danusertib could be a substantial agent for new 
therapies by inhibiting all aurora and Bcr-abl tyrosine 
kinases (including T315I mutation) (Jabbour et al., 2013).

2. Drug resistance
Drug resistance is known as insensitivity of cancer cells 
and tissues to anticancer agents. When a cell shows a drug-
resistance phenotype, it may also demonstrate resistance 
to chemically and structurally different anticancer 
agents. While clinical outcomes indicated the success 
of tyrosine kinase inhibitors, development of resistance 
in CML patients was reported as the major problem in 
treatment of CML. There are different Bcr-abl dependent 
and independent mechanisms contributing to multidrug 
resistance in cancer. These mechanisms include mutations 
in the TKI binding domain of Bcr-abl, overexpression 
of Bcr-abl, ATP binding cassette (ABC) transporters, 
aberrant ceramide metabolism, inhibition of apoptosis, 
and changes in expression levels of certain microRNAs.
2.1. Bcr-abl mutations
Point mutations in the Bcr-abl kinase domain decrease 
and/or inhibit the interaction of TKI and the oncogenic 
Bcr-abl protein depending on the location of the mutation 
(Figure 1). Alterations in critical contact points due to 
amino acid substitutions increase the failure of agent 
binding to the target site. In addition, drug treatment 
can induce mutations leading to the development of 
drug resistance and, thus, drug efficacy decreases during 
treatment of CML. Point mutations are found more 
frequently in advanced phase CML as compared to the 
chronic phase of the disease. Mutations in the genome 
can lead to dysfunction (An et al., 2010). It was shown 
that 4 regions are essential for high frequency binding of 
imatinib (P-loop, SH-3, SH-2, and A-loop). The P-loop is 
responsible for phosphate binding and mutations in this 
site were frequently observed in 43% of patients who were 
generally in the acute and blast crisis phases. The P-loop 
mutations Y253F and E255K increase the probability of 
transformation depending on Bcr-abl kinase activity. The 
most common mutation observed in imatinib-resistant 
CML patients (T315I) has isoleucine instead of threonine 
at the 315th amino acid in the Bcr-abl protein (Comert et 
al., 2013; Figure 1). In our in vitro studies, we determined 
that neither resistance to imatinib in K562 and Meg-
01 cells nor resistance to nilotinib in K562 cells resulted 
from mutations in the TKI binding site of the Bcr-abl 
oncoprotein (Baran et al., 2007a, 2007b; Camgoz et al., 
2013).
2.2. Overexpression of Bcr-abl
Overexpression of the Bcr-abl oncogene is another 
mechanism of imatinib resistance. Bcr-abl transformed 
murine hematopoietic cells and Bcr-abl positive human 
cells were used to show amplification in the Abl gene 
(An et al., 2010; Comert et al., 2013). In our studies, we 
determined significant overexpression of Bcr-abl mRNA 
and protein in imatinib-resistant K562 and Meg-01 cells 
(Baran et al., 2007a, 2007b). On the other hand, a more 



ÜNLÜ et al. / Turk J Biol

808

recent study revealed that there was also an important 
increase in mRNA levels of Bcr-abl in nilotinib-resistant 
K562 cells (Camgoz et al., 2013). More interestingly, our 
group showed that there were also significant increases in 
protein stability of Bcr-abl in imatinib resistant cells (Salas 
et al., 2011).
2.3. ABC transporters
ABC transporters in the cell membrane are another 
important mechanism of Bcr-abl independent drug 
resistance (Eechoute et al., 2011). ABC transporters, 
encoded by 49 genes, are a highly conserved 
transmembrane protein family and import/export the 
substrate by hydrolyzing ATP. Amino acids, sugars, 
inorganic compounds, and hydrophobic substances 
are imported/exported into or out of the cells by these 
transporters. In addition, ABC transporters provide drug 
efflux across organelles and the cell membrane (Vasiliou et 
al., 2009). ABC transporters have 7 subfamilies, including 
ABC-A, ABC-B, ABC-C, ABC-D, ABC-E, ABC-F, and 
ABC-G. The ABC-B subfamily consists of 11 genes. The 
first and best characterized ABC transporter is ABCB1 
[known as the multidrug resistance (MDR1) transporter] 
and it has a role in the multidrug resistance mechanism 
(Juliano and Ling, 1976). It was reported that expression 
levels of MDR1 are increased in imatinib-resistant K562 
cells (Peng et al., 2012). Single nucleotide polymorphism 
(SNP) analysis in the MDR1 gene could be effective to 
predict imatinib efficacy in the treatment of CML patients. 
A recent study demonstrated that genetic variations in 
the MDR1 gene affect the drug transportation process. 
The relationship between MDR1 polymorphism and 
leukemia risk was determined according to alleles T and 

G at the SNP. The heterozygous genotype (GT) is related 
to drug resistance of imatinib. However, it was determined 
that recessive TT genotyped patients have developed a 
mechanism against resistance to imatinib (Elghannam et 
al., 2014). Changes in the expression levels of the MDR1 
gene resulting in increased P-glycoprotein (P-gp), the 
product of the MDR1 gene, are linked to resistance in 
chemotherapy (Widmer et al., 2003). It was demonstrated 
that treatment of doxorubicin-resistant K562 cells with 
1 µM imatinib in combination with the p-glycoprotein 
inhibitor verapamil significantly suppressed cell growth 
(Mahon et al., 2003). In addition, the ABCA subfamily 
genes (ABCA2, ABCA3, ABCA6) also have a role in the 
drug resistance mechanism (Dean et al., 2001; Vasiliou 
et al., 2009). It was found that expression of the ABCA3 
transporter gene and drug resistance are correlated. After 
the expression level of the ABCA3 gene was decreased with 
specific small interfering RNA (siRNA), imatinib activity 
was increased in K562 and LAMA 84 CML cells (Chapuy 
et al., 2009). 
2.4. Organic cation transporters (hOCT1)
Human organic cation transporter (hOCT1) controls 
the uptake of substances through the cell membrane. 
Imatinib is one of the substrates of hOCT1 and is affected 
by expression levels of this transmembrane protein. 
Decreasing hOCT1 levels cause a low intracellular 
concentration of imatinib in the cytoplasm, and therefore 
the therapeutic activity of the drug is weakened in the 
cell (Wang et al., 2008). As a second-line treatment agent, 
nilotinib is administered to imatinib-resistant patients 
with CML. Molecular analyses revealed that transport 
of nilotinib is not related to hOCT1 or MDR1 (Davies 

Figure 1. Distribution of the mutations with respect to the main regions of the Bcr-abl kinase domain.
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et al., 2009). The high efficacy of nilotinib in MDR1-
overexpressed patients directs the treatment line in the case 
of resistance to imatinib (Agrawal et al., 2013). Another 
second-generation TKI, dasatinib, is also effective in terms 
of cytogenetic and hematological responses in imatinib-
resistant patients. A recent study showed that inhibition of 
pump activities does not change the inner concentration 
of dasatinib despite the fact that it is a substrate of MDR1 
and ABCG2 transporters (Hiwase et al., 2013).
2.5. Aberrant ceramide metabolism
Sphingolipids are bioactive metabolites that have 
essential roles in cellular functions such as cell cycle 
regulation, proliferation, metabolism, and drug resistance. 
Sphingolipid metabolism contains ceramide, sphingosine, 
glycosylceramide (GC), ceramide-1-phosphate (C1P), 
sphingomyelin (SM), and sphingosine-1-phosphate (S1P) 
(Hannun and Obeid, 2008).

The backbone of sphingosine metabolism is ceramide. 
Metabolism and generation of ceramide determines 
the fate of a cell. Conversion of SM to ceramide by 
sphingomyelinase is generally regulated by stress 
conditions (Gilbert et al., 2006; Figure 2).

Stimulation of ceramide production is mediated by 
Fas/CD95 triggered cell death (Lin et al., 2000). Moreover, 
sphingosine is synthesized from ceramide by ceramidase 

enzymes while the reverse reaction occurs via ceramide 
synthase. Ceramide is the central molecule of sphingolipid 
metabolism mediating programmed cell death (Figure 3). 
DNA fragmentation analysis as an indicator of apoptosis 
indicates the potency of this sphingolipid derivative on 
leukemia cells. This analysis allows determination of 
ceramide-related double-stranded DNA degradation 
by separation of apoptotic DNA fragments using gel 
electrophoresis (Jarvis et al., 1996). Moreover, application 
of external ceramides in combination with imatinib (Baran 
et al., 2007a), nilotinib (Camgoz et al., 2011), or dasatinib 
(Gencer et al., 2011) resulted in synergistic apoptotic 
effects of sensitive and drug-resistant CML cells.

In sphingolipid-mediated signaling, whereas ceramide 
directly recruits and activates protein kinase-C (PKC), 
sphingosine has the potential to inhibit PKC, so low levels 
of sphingosine might be responsible for noninhibition 
of PKC (Shirahama et al., 1997). S1P, the product of the 
sphingosine kinase (SK) enzyme, is another derivative 
that is responsible for differentiation, proliferation, and 
antiapoptotic regulation (Figure 2). S1P has the reverse 
activity of ceramide by preventing cell death triggered by 
extrinsic factors. The ceramide/S1P rheostat is a tightly 
regulated process with regard to its antagonist effect. 
Activation of the oncogenic enzyme SK and increased 

Figure 2. De novo synthases and metabolism of ceramide in sphingomyelin pathway. SMS: Sphingomyelin 
synthase, S1P: sphingosine-1-phosphate, S1PP: sphingosine-1-phosphate phosphatase, SK: sphingosine 
kinase, GCS: glucosylceramide synthase, CRC: cerebrosidase, CS: ceramide synthase, CERK: ceramide 
kinase, LPPs: lipid phosphate phosphatases, C1P: ceramide 1 phosphate.
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concentrations of S1P reduce proapoptotic ceramide levels 
in the cell (Figure 3). On the other hand, an increasing 
level of ceramide diminishes cell survival by inducing 
proapoptotic molecules (Bonhoure et al., 2008). It was 
shown that inhibition of SK1 by siRNA or application of a 
SK1 inhibitor enhanced cell death and increased ceramide 
levels in imatinib resistant CML cells (Baran et al., 
2007a, Salas et al., 2011). S1P accumulation prevents the 
degradation of Bcr-abl1 protein and inhibits programmed 
cell death; therefore, the resistance mechanism is triggered 
against imatinib (Ekiz and Baran, 2010). 

Transfer of a glycose molecule to ceramide by 
glycosylceramide synthase (GCS) generates GC, an 
important metabolite of bioactive sphingolipids (Figure 
2). High GCS activity is a significant factor in cancer 
progression and, more importantly, in drug resistance. 
This resistance becomes more advanced with the 
conversion of proapoptotic ceramide to antiapoptotic 
GC (Huang et al., 2011). It was demonstrated that T315 
mutant CML cells became more sensitive after treatment 
with the GCS inhibitor. Inactivated glycogen synthase 
kinase-3 (GSK-3) in Bcr-abl signaling is reactivated by the 
GCS inhibitor and initiates apoptotic pathways. Therefore, 
the therapeutic potential of GCS inhibitor could be a novel 
strategy for drug-resistant patients (Liu et al., 2010). We 
also demonstrated that mRNA and protein levels of GCS 
are increased in imatinib- and nilotinib-resistant K562 
cells (Baran et al., 2011). On the other hand, inhibition of 
GCS by application of GCS inhibitor resulted in increased 
sensitivity of drug-resistant cells to imatinib (Baran et 
al., 2011), nilotinib (Camgoz et al., 2011), and dasatinib 
(Gencer et al., 2011) in sensitive and drug-resistant cells.

2.6. Inhibition of apoptosis
Progression of CML through blast crisis is related to drug 
resistance that emerges by the inhibition of apoptosis. 
This resistance mechanism is accompanied by different 
genes or proteins that have a role in apoptotic signaling 
pathways. On the other hand, several polypeptides are 
selectively degraded by proteases. The precursor proteases, 
caspases, direct the apoptotic process in the cell. The Bcl-
2 antiapoptotic protein family contributes to the intrinsic 
pathway while the inhibitor of apoptosis (IAP) protein 
family has a role in regulation of downstream apoptotic 
processes. Survival mechanisms of CML cells require 
the coordination of proteins to modulate apoptosis 
(Rumjanek et al., 2013). The Tp53 tumor suppressor gene 
encodes the p53 protein and has several functions such as 
cell cycle regulation, DNA repair, programmed cell death, 
and genomic stability, making p53 one of the essential 
molecules in the cell (Naccarati et al., 2012). It was shown 
that CML progression is related to p53 mutation. CML 
patients whose exon 8 region of the Tp53 gene is mutated 
have higher accelerated phase and blast crisis values. In 
addition, the molecular response is decreased during 
treatment with imatinib, thus increasing the influence of 
the mutation on CML (Mir et al., 2013). Stabilization of 
p53 also triggers apoptosis in CML. 

Mitochondria-dependent cell death is mediated by 
the Bcl-2 protein family. The intrinsic apoptotic pathway 
is triggered by antiapoptotic Bcl-2 and proapoptotic Bax, 
Bim, and Bid-like proteins, which regulate cytochrome-c 
release. Overexpression of Bcl-2 encourages aggressive 
tumor progression. In an in vitro study it was indicated 
that K562 cells treated with imatinib have higher levels of 

Figure 3. The balance between sphingolipids determines the cell fate mechanism (cell 
survival or cell death).
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Bim. In addition, agents designed against Bcl-xl and Bcl-2 
antiapoptotic proteins are a novel therapeutic option for 
the treatment of leukemias (Cirinnà et al., 2000; Kuribara 
et al., 2004). Extrinsic pathway-dependent apoptosis is 
mediated by death receptors. For instance, Fas receptors 
include a highly protected DISC domain inducing apoptosis 
through activation of caspase cascade. CD95L-stimulated 
tumor development supports the idea that apoptosis and 
tumor growth might use different pathways (McGahon et 
al., 1995; Traer et al., 2012; Rumjanek et al., 2013). IAP is 
associated with the inhibition of programmed cell death. 
IAP and XIAP (another inhibitor protein) are highly 
expressed in CML cells and have a strong association with 
Pgp/ABCB1 (Conte et al., 2005; Silva et al., 2013). Signal 
transducer and activator of transcription (STAT) proteins 
are cytoplasmic transcription factors that coordinate the 
cell proliferation activated by Janus kinase. In leukemia 
cells, STAT proteins are activated and enhance the survival 
and growth of cells. Therefore, the STAT signaling pathway 
is highly potent in therapeutic applications. In our study, 
we demonstrated that inhibition of STAT5A through the 
use of siRNA increased the apoptotic effects of imatinib 
in both sensitive and drug-resistant CML cells (Baran et 
al., 2010).
2.7. microRNAs
MicroRNAs (miRNA) are small noncoding RNAs 
that play important roles in the transcriptional and 
posttranscriptional regulation of gene expression. miRNAs 
match the target mRNAs and inhibit their translation. 
miRNAs affect many physiological and pathological 
processes such as apoptosis, cell proliferation, cell division, 
tumorigenesis, and development. Abnormal expression 
of miRNAs was observed in hematological malignancies 
including chronic myeloid leukemia, chronic lymphocytic 
leukemia, multiple myelomas, and B-cell lymphomas. 
Some miRNAs act as tumor suppressors and others may 

be oncogenic. miRNA levels in the cell are very important 
for developing new treatments (Undi et al., 2013). 
Different types of miRNAs are also involved in drug-
induced apoptosis and drug resistance in CML (Table). 
For instance, miR-17-19 is downregulated in imatinib-
treated CML cells. miR-21 causes the inhibition of cell 
migration, cell proliferation, and division, and it also 
induces apoptosis. Methylated miR-203 in acute myeloid 
leukemia (AML), CML, ALL, and chronic lymphoblastic 
leukemia leads to inhibition of Bcr-abl expression. miR-
451 is important for erythroid homeostasis (Table). ABL1 
and Bcr-abl1 are inhibited by miR-29b, and cell growth 
and colony formation are also inhibited (Venturini et al., 
2007; Hu et al., 2010; Chim et al., 2011; Çelik et al., 2013).

3. Chronic myeloid leukemia stem cells
There are 2 basic models concerning the origins of cancer. 
The clonal origin suggests that tumors can be initiated by 
any cells in a population. The other model indicates that 
only certain cells in the population [defined as cancer stem 
cells (CSC)] can initiate tumor occurrence. Evidence for 
CSCs was first presented in leukemias and myelomas. It 
was reported that a part of purified leukemic stem cells 
separated from hematopoietic stem cells can give rise 
to new tumorigenic tissue (Park et al., 1971). The first 
characterization of leukemic stem cells was reported by 
Bonnet and Dick in AML. When CD34+/CD38– cells 
were isolated from AML patients and injected into NOD/
SCID mice, initiation of AML and leukemic blasting in 
mice was observed (Bonnet and Dick, 1997). 

Major problems encountered during the treatment 
process are tumor relapses and drug resistance, 
which are thought to originate from CSCs. CSCs are 
mainly responsible for tumor initiation, maintenance, 
angiogenesis, metastasis, drug resistance, and recurrence 

Table. The roles of miRNAs in chronic myeloid leukemia.
 

ncRNA(s) ncRNA class Target Clinical relevance Citation

miR-7, -23a, -26a, -29a, -29c ,-30b, -30c, -100, -126, -134, 
-141, -183, -196b, -199a, -224, -362, -422b, -520a, -191 miRNA N/A Predictive response 

to therapy
San José-Enériz 
et al. 2009

miR-31 downregulation miRNA E2F2 Predictive response 
to therapy Rokah et al., 2012

miR-564 downregulation miRNA E2F3, Akt2 Predictive response 
to therapy Rokah et al., 2012

miR-155 downregulation miRNA E2F2, cyclin D1, 
K-ras, PIK3R1, SOS1

Predictive response 
to therapy Rokah et al., 2012

ncRNA: noncoding RNA, N/A: not available.
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of disease. It was also documented that CD34+ leukemia 
stem cells are insensitive to imatinib and dasatinib, and 
therefore these applications would be ineffective unless 
directly targeting leukemic stem cells to induce apoptosis 
(Graham et al., 2002; Hu et al., 2006).

Furthermore, the existence of CSCs is reported in 
other solid tumors. Breast cancer is the first solid tumor 
in which CSCs with the CD44+/CD24– surface marker 
was identified (Al-Hajj et al., 2003). Many CSCs have been 
identified and characterized for brain tumors, lung cancer, 
colon cancer, pancreas cancer, and prostate cancer so far 
(Singh et al., 2003; Kim et al., 2005; Ricci-Vitiani et al., 
2007; Li et al., 2009; Goldstein et al., 2010). 

Signaling pathways such as BMI-1, Notch, and 
Hedgehog have important roles in stemness and also 
regulate the activities of CSCs. After developing mice 
deficient in β-catenin in the hematopoietic cells, HSC 
and CSCs were isolated. Results showed a lack of the 
capacity for self-renewal, indicating the requirement of 
Wnt signaling in CSC maintenance (Zhao et al., 2007). 
The Hedgehog signaling pathway is as important as the 
Wnt signaling pathway in terms of stem cell regulation 
and embryonic formation. Suppression of Smoothened 
(Smo) decreased the triggering of CML stem cells in 
human (Zhao et al., 2009). In addition, it was shown that 
there is crosstalk among Sonic Hedgehog, Hox, and Notch 
signaling to induce the potential of CSCs (Sengupta et al., 
2007). 

Since potential drugs target cancer cells instead of 
CSCs, drug resistance remains the major problem during 
treatment. In order to prevent the production of new 
cancer cells by cancer stem cells and to overcome reversal 
of resistance, recent studies have focused on targeting 
CSCs. It was agreed that imatinib and other TKIs could 
not be effective on cancer stem cells due to disease relapse 
in the long-term (Corbin et al., 2011; Perl and Carroll, 
2011). Distinguishing cancer stem cells from normal stem 
cells is another crucial point for the success of treatment. 
It is possible to eliminate normal stem cells by targeting 
the B-lymphoid kinase gene (Blk), which acts as a tumor 
suppressor in leukemic stem cells. However, this gene 
does not show any activity in normal hematopoietic stem 
cells. Decreased levels of Blk resulted in high potency 
of leukemic stem cells, while high levels of Blk caused 
inhibition of CSCs. Suppression of Blk by targeting its 
upstream regulator Pax5 or downstream effector p27 
could be a possible target for elimination of CSCs (Zhang 
et al., 2012). Jak2/STAT5 is another potential target for 
CSCs and is related to drug resistance and CSC activity 
in leukemia cells (Jørgensen and Holyoake, 2007; Samanta 
et al., 2011). Compared to normal stem cells, SIRT1 
(NAD+ dependent deacetylase), an inactivator of p53, is 
overexpressed in leukemic stem cells. It was reported that 

SIRT1 knockdown combined with imatinib triggered p53 
activation and apoptosis synergistically in CML stem cells 
(Li et al., 2012). It was also shown that imatinib treatment 
increased the survival rate in SIRT1 gene knockout mice. 
Therefore, SIRT1 could be a novel target for reversal of 
drug resistance in CML (Yuan et al., 2012).

4. Reversal of resistance
Drug resistance is the major problem of the clinical 
process, causing disease reoccurrence and tumor relapse. 
In recent years, there have been increasing studies to 
overcome the problem of drug resistance. Researchers have 
focused on the reversal of resistance and many techniques 
have been developed. There are various methods such 
as signaling pathway targeting, direct protein targeting, 
nanotechnology, or knockdown/knockout techniques.	 
TKIs and their effects on MDR were shown as potential 
agents for reversal of drug resistance. The combination 
of imatinib and 5-bromotetrandrine has a significant 
reversal effect on the K562/A02 cell line by decreasing 
the MDR1 gene and downregulating P-gp expression 
while increasing apoptosis (Chen et al., 2010). It was also 
indicated that nilotinib reverses resistance by blocking 
ABCB1 and ABCG2 transporters (Tiwari et al., 2009). On 
the other hand, salinomycin was found to be an effective 
agent to overcome ABC transporter-mediated drug 
resistance and apoptosis resistance in leukemic stem cells 
(Fuchs et al., 2010; Riccioni et al., 2010). In vivo studies 
have also demonstrated that imatinib combined with 
vincristine significantly suppresses tumor initiation in 
multidrug-resistant CML cells in a human-nude mouse 
xenograft model (Gao et al., 2006). In another study, 
imatinib was a highly effective agent for P-glycoprotein-
mediated resistance, whereas, in imatinib-resistant cell 
lines, cepharanthine was reported as able to overcome the 
resistance of K562/MDR cells (Mukai et al., 2003). 

The Hedgehog signaling pathway prominent during 
cell proliferation was affected by suppression of the 
B4GALT1, gene which resulted in overcoming multidrug 
resistance in human K562 adriamycin-resistant cells 
(Zhou et al., 2012). The phosphatidylinositol-3-kinase/
protein kinase B (PI3-K/Akt) signaling pathway is one 
of the important signaling pathways for cell survival. In 
human leukemia cells, LY294002, an inhibitor of PI3-K, 
reverses P-glycoprotein-mediated resistance (Zhang et al., 
2009). Human K562 leukemic cells are resistant to tumor 
necrosis factor-related apoptosis-inducing ligand (TRAIL) 
mediated apoptosis. It was shown that it is possible to 
reverse resistance by knocking down the DNA-PKCs/Akt 
pathway activated by TRAIL-induced apoptosis (Kim et 
al., 2009).

Nanotechnology has become an important tool for 
cancer treatment and reversal of resistance. Many studies 
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in this area have used nanoparticles. For example, as a system 
for targeted drug delivery, magnetic nanoparticles were 
used with wogonin and Fe3O4 for the reversal of MDR by 
downregulating MDR1 in K562 cells (Cheng et al., 2012). It 
was also indicated that the combination of daunorubicin and 
5-bromotetrandrine or imatinib and 5-bromotetrandrine 
loaded onto iron oxide nanoparticles could overcome MDR 
(Chen et al., 2010; Cheng et al., 2011). Furthermore, magnetic 
nanoparticles with daunorubicin increased apoptosis and 
reversed MDR in K562-n/VCR cell vaccinated nude mice in 
in vivo studies (Chen et al., 2009). Targeting CSC-specific 
miRNAs with curcumin or epigallocatechin-3-gallate was 
reported as a potential technique for reversal of resistance 
(Wang et al., 2010).

5. Conclusion and future perspectives
Leukemia is a heavily investigated type of cancer for the 
development of new therapy strategies to cure the disease 
or increase patient quality of life. Although patients may 
respond to chemotherapy in the short term, after treatment, 
relapse can be observed. Rather than the development of 
new agents, it is better to focus on drug resistance and its 
mechanisms. A better understanding of the mechanisms 
of drug resistance could open new research areas and take 
us one step forward in cancer treatment. 
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