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Abstract— In recent years, controller formulations using
robust integral of sign of error (RISE) type feedback have
been successfully applied to a variety of nonlinear dynamical
systems. The drawback of these type of controllers however,
are (i) the need of prior knowledge of the upper bounds of the
system uncertainties and (ii) the absence of a proper gain tuning
methodology. To tackle the aforementioned weaknesses, in our
previous work [1] we have presented a RISE formulation with
a time-varying compensation gain to cope for the need of upper
bound of the uncertain system. In this study, we have extended
our previous design to obtain a fully self tuning RISE feedback
formulation. Lyapunov based arguments are applied to prove
overall system stability and extensive numerical simulation
studies are presented to illustrate the performance of the
proposed method.

I. INTRODUCTION

When dealing with unstructured nonlinear systems with
uncertain dynamical parameters, use of robust controller
formulations are among the most preferred methods. How-
ever, due to the use of the signum function in their design
most robust controllers are discontinuous, like the variable
structure and the sliding mode controllers. Also with most
robust controller designs, convergence of the error signal to
an ultimate bound can be guaranteed, and over–shrinking this
ultimate bound causes chattering, which is undesirable. To
our best knowledge, the first continuous and asymptotically
stable robust controller was presented in [2] and [3]. In [2],
motivated by the work of [4], authors designed a continuous
robust controller for a class of nonlinear systems. In this
methodology the integral of the sign of the error was utilized
instead of the sign of error used in standard sliding mode
controllers. This method was then referred as RISE (short
for Robust Integral of Sign of Error) feedback [5] and have
been successfully applied to a variety of nonlinear dynamical
systems including autonomous flight control [6], underwater
vehicle control [7], control of special classes of multiple
input multiple output (MIMO) nonlinear systems [8], [9], and
even time delay compensation [10]. Similar to that of most
robust–type controllers, the RISE feedback makes use of a
constant high gain to compensate the overall uncertainties in
the continuously differentiable system dynamics. To adjust
this high controller gain, the knowledge of the upper bounds
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of the overall system uncertainties is required. Specifically,
the knowledge of the upper bounds of vectors (functions of
the desired system trajectories) containing system uncertain-
ties are necessary in classical RISE feedback formulations
where the uncertainty compensation gain is constant. In
cases where this information is not available simply applying
extra high gains to compensate for the system uncertainties
is not a preferred approach. Researchers applied adaptive
[5] and neural network (NN) based [11], [12] feedforward
compensation techniques in conjunction with RISE feedback
in order to decrease the heavy control effort enforced to the
system by this high gain.

Recently, in [13], Jagannathan et. al proposed a controller
formulation that utilized RISE feedback having an adaptive
uncertainty compensation gain fused with NN feedforward
term. However, this formulation didn’t guarantee that the
proposed time–varying adaptive gain would remain bounded
under the closed-loop operation due to lack of proof of
L1 boundedness of the error term. In [1], the need of
prior knowledge of upper–bounds of the vector containing
the desired system dynamics plus uncertainties (and their
derivatives) for the control gain selection was removed via
the use of an adaptive compensation gain formulation. The
use of an adaptive compensation gain reduces the heavy
control effort and therefore eliminates the need of extra
feedforward compensation methods. The analysis given in
[1] also provided the L1 boundedness of the error term
utilized in the design of the time–varying gain. In this work,
we have extended the result in [1] to obtain a fully self
tuning RISE feedback formulation. On top of a time–varying
uncertainty compensation gain the proposed methodology
also provides a time–varying feedback gain which eases
the overall tuning process for RISE feedback type robust
controllers. According to the authors’ best knowledge, this
work is the first attempt to design a self tuning process for
RISE controllers.

The rest of the paper is organized in the following manner:
The error system development and controller design are
presented in Section II. The stability analysis and the main
result are given in Section III. Simulation studies performed
on two different systems are presented in Section IV, and
concluding remarks are given in Section V.

II. ERROR SYSTEM DEVELOPMENT

In this section1, for the compactness of the presentation the
following single input single output (SISO) nonlinear system

1As the proposed work aims to extend the results in [2], the notation in
[2] is borrowed for a better comparison with the results in this paper.
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is considered [2]
mx(n) + f = u (1)

where x(i) (t) ∈ R i = 0, ..., n are the system states,
m
(
x, ẋ, · · · , x(n−1)

)
, f
(
x, ẋ, · · · , x(n−1)

)
∈ R are uncer-

tain nonlinear functions, and u (t) ∈ R is the control input.
The standard assumption that the uncertain function m (·)
being positive (i.e., m (·) > 0) is utilized in the subsequent
development. Therefore, following bounds are assumed

m ≤ m (x) ≤ m
(
|x| , |ẋ| , · · · ,

∣∣∣x(n−1)∣∣∣) (2)

where m ∈ R is a positive constant and m (·) is some posi-
tive non–decreasing function of its arguments. The uncertain
functions m (·) and f (·) are assumed to be continuously
differentiable up to their second order time derivatives. It is
highlighted that while the development in this paper is for
the SISO system model in (1), extension to MIMO systems
is straightforward2.

To quantify the tracking control objective, the output
tracking error, denoted by e1 (t) ∈ R, is defined as

e1 , xr − x (3)

where xr (t) ∈ R represents the reference trajectory which
is assumed to be bounded with bounded continuous time
derivatives (i.e., x(i)r (t) ∈ L∞ for i = 0, · · · , (n+ 2)). The
main control objective is to ensure that the output tracking
error in (3) converge asymptotically to zero, that is |e1 (t)| →
0 as t → ∞ by designing a continuous robust control law
under full–state feedback (i.e., x(i), i = 0, · · · , (n − 1) are
measurable).

To facilitate the control design, auxiliary error signals,
denoted by ei (t) ∈ R, i = 2, · · · , n, are defined in the
following manner

e2 , ė1 + e1 (4)
...

en , ėn−1 + en−1 + en−2. (5)

It is noted that a general expression for ei (t) i = 2, · · · , n
in terms of e1 (t) and its time derivatives can be obtained as

ei =

i−1∑
j=0

ai,je
(j)
1 (6)

where ai,j ∈ R are known positive constant coefficients with
an,(n−1) = 1. To ease the presentation of the subsequent
stability analysis, another auxiliary error, denoted by r (t) ∈
R, is defined to have the following form

r , ėn + αen (7)

where α ∈ R is a positive constant gain. It is noted that, the
definition of r (t) has ėn (t) which requires unmeasurable
x(n) (t) then it is clear that r (t) is not measurable and thus
cannot be utilized in the control design.

2A numerical simulation study is conducted to demonstrate performance
of application to a second order MIMO system.

After multiplying both sides of the time derivative of (7)
with m (·), substituting the second time derivative of (6) for
i = n, and the time derivative of (1), the following open–
loop dynamics for r (t) can be obtained

mṙ = −1

2
ṁr − en − u̇+N (8)

where N
(
x, · · · , x(n), e1, · · · , en, r, x(n+1)

r

)
∈ R is an

auxiliary function defined as

N , m

x(n+1)
r +

n−2∑
j=0

an,je
(j+2)
1 + αėn


+ ṁ

(
1

2
r + x(n)

)
+ ḟ + en. (9)

The above auxiliary function is partitioned as sum of two
auxiliary signals which are denoted by Nr

(
xr, · · · , x(n)r

)
,

Ñ
(
x, · · · , x(n), e1, · · · , en, r, x(n+1)

r

)
∈ R and are defined

as

Nr , N |
x=xr,··· ,x(n)=x

(n)
r

(10)

Ñ , N −Nr. (11)

It should be noted that since both Nr (t) and Ṅr (t) are
functions of the desired trajectory and its time derivatives,
they are bounded functions of time (i.e., Nr (t), Ṅr (t) ∈
L∞).

Remark 1: Since the auxiliary signal N (·) defined in (9)
is continuously differentiable, Mean Value Theorem [14] can
be utilized to show that Ñ (·) can be upper bounded as∣∣∣Ñ (·)

∣∣∣ ≤ ρ (‖z‖) ‖z‖ (12)

where ‖·‖ denotes the standard Euclidean norm, ρ : R≥0 →
R≥0 is some globally invertible, non–decreasing function of
its argument and z (t) ∈ R(n+1) is the combined error signal
defined as

z , [e1, · · · , en, r]T . (13)
Based on the subsequent stability analysis, the following

continuous robust controller is proposed

u (t) = k (t) en (t)− k (t0) en (t0)

+ α

∫ t

t0

k (σ) en (σ) dσ

+

∫ t

t0

β̂ (σ) sgn (en (σ)) dσ (14)

where k (t) ∈ R is a time–varying control gain which is
updated according to

k (t) = kc +
1

2
e2n (t) + α

∫ t

t0

e2n (σ) dσ (15)

where kc ∈ R is the positive constant part of k (t), β̂ (t) ∈
R is a subsequently designed time–varying (uncertainty
compensation) control gain, α was introduced in (7) and
sgn (·) is the standard signum function. The constant term
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k (t0) en (t0) is added to the controller to ensure u (t0) = 0.
The time–varying control gain β̂ (t) is decomposed as

β̂ (t) = β̂1 (t) + β2 (16)

where β̂1 (t) ∈ R is its time–varying part and β2 ∈ R is its
positive constant part (i.e., β2 > 0). The time–varying part
of the control gain is designed as

β̂1 =


en (t)− |en (t0)|+ α

∫ t
t0
|en (σ)| dσ if en > 0

− |en (t0)|+ α
∫ t
t0
|en (σ)| dσ if en = 0

−en (t)− |en (t0)|+ α
∫ t
t0
|en (σ)| dσ if en < 0

(17)
and taking its time derivative results in

˙̂
β1 =

 ėn (t) + αensgn (en) if en > 0
αensgn (en) if en = 0
−ėn (t) + αensgn (en) if en < 0.

(18)

Alternatively, in a more compact form, the time–varying gain
β̂1 (t) in (17) can be rewritten as

β̂1 (t) = |en (t)| − |en (t0)|+ α

∫ t

t0

|en (σ)| dσ (19)

from which its time derivative is obtained as

˙̂
β1 = ėnsgn (en) + α |en|

= rsgn (en) (20)

where the definition of r (t) in (7) was utilized. Notice from
(19) that β̂1 (t0) = 0. The definitions (19) and (20) will be
preferred in the subsequent stability analysis.

Remark 2: At this point, we would like to compare our
controller in (14) with the controller in [2]. To do that, recall
the controller formulation in [2]

u (t) = k

[
en (t)− en (t0) + α

∫ t

t0

en (σ) dσ

]
+ β

∫ t

t0

sgn (en (σ)) dσ (21)

where k and β are constant control gains. It is clear that,
the only difference between these two controllers is that the
controller gains in our design are time-varying where they
were constant in [2]. While this is the only difference in
the control design, the stability analysis in [2] requires the
constant control gain β to be greater than the sum of the
upper bound of the uncertain function Nr with the upper
bound of its time derivative scaled by 1

α . However, in our
controller design, a time-varying control gain, namely β̂ (t)
is utilized instead. Similarly, the control gain k was required
to be chosen large enough when compared to the initial
conditions of the system. However, in our controller design,
a time-varying control gain, namely k (t) is utilized instead.

At this stage, to substitute into (8), the time derivative of
the control input in (14) is calculated

u̇ = k̇en + kr +
(
β̂1 + β2

)
sgn(en) (22)

where (7) and (16) were utilized, and thus the closed–loop
error system for r (t) is obtained as

mṙ = −1

2
ṁr−en−kr−k̇en−

(
β̂1 + β2

)
sgn(en)+Nr+Ñ .

(23)

III. STABILITY ANALYSIS

Before presenting the main result of this section, two
lemmas are stated where both of which will later be utilized
in the proof of the theorem.

Lemma 1: The auxiliary function, denoted by L1 (t) ∈ R,
is defined as

L1 , r (Nr − β1sgn (en)) (24)

where β1 ∈ R is a positive constant. Provided that β1 satisfy

β1 ≥ ‖Nr (t)‖L∞
+

1

α

∥∥∥Ṅr (t)∥∥∥
L∞

(25)

where ‖·‖L∞
denotes infinity norm, then∫ t

t0

L1 (σ) dσ ≤ ζb1 (26)

where ζb1 ∈ R is a positive constant.
Proof: The proof is available in [1].

Lemma 2: The auxiliary function, denoted by L2 (t) ∈ R,
is defined as

L2 , −β2ėnsgn (en) . (27)

Provided that β2 > 0 then∫ t

t0

L2 (σ) dσ ≤ ζb2 (28)

where ζb2 ∈ R is a positive constant.
Proof: The proof is available in [1].

The tracking result will now be proven via the following
theorem.

Theorem 1: The controller in (14) with the time–varying
gain in (16) and (19) ensures semi–global asymptotic con-
vergence of the tracking error and its time derivatives in the
sense that

∣∣∣e(i)1 (t)
∣∣∣→ 0 as t→∞ provided that α of (7) is

selected to satisfy α > 1
2 , and β2 is chosen to be positive.

Proof: Following Lyapunov function candidate, de-
noted by V (y, t) ∈ R, is defined as

V ,
1

2

n∑
j=1

e2j +
1

2
mr2 +

1

2
β̃2
1 + P1 + P2 (29)

where P1 (t), P2 (t) ∈ R are defined as

P1 , ζb1 −
∫ t

t0

L1 (σ) dσ (30)

P2 , ζb2 −
∫ t

t0

L2 (σ) dσ (31)

and β̃1 (t) ∈ R is defined as

β̃1 , β1 − β̂1 (32)
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and y (t) ∈ R(n+4)×1 is defined as

y ,
[
zT , β̃1,

√
P1,
√
P2

]T
(33)

where z (t) was defined in (13).
From the proofs of Lemmas 1 and 2, it is clear that P1 (t)

and P2 (t) are non–negative and thus V (y, t) is also non–
negative. The Lyapunov function in (29) can be bounded as

1

2
min {1,m} ‖y‖2 ≤ V ≤ max

{
1

2
m (‖y‖) , 1

}
‖y‖2 (34)

where (2) was utilized.
After taking the time derivative of (29) and substituting

(5), (7) and (23), following expression can be obtained

V̇ = −
n−1∑
j=1

e2j − αe2n + en−1en − r2 − kr2

+ rÑ − αβ2 |en| − k̇ren (35)

where (24) and (27) were also utilized. By using the fact
that en−1en ≤ 1

2

(
e2n−1 + e2n

)
, an upper bound on (35) can

be obtained as

V̇ ≤ − min

{
1

2
, α− 1

2

}
‖z‖2 + ρ2 (‖z‖)

4k
‖z‖2

− αβ2 |en| − k̇ren (36)

where (12) was utilized. Provided that α is selected to satisfy
α > 1

2 and the time–varying control gain k (t) is updated
according to update rule given in (15). From (36), following
expression is stated

V̇ ≤ −γ ‖z‖2−αβ2 |en|−r2e2n ≤ −γ ‖z‖
2−αβ2 |en| (37)

where γ ∈ R is some positive constant. From (29), (34) and
(37), it is clear that V (y, t) ∈ L∞ and thus e1 (t), · · · , en (t),
r (t), β̃1 (t), P1 (t), P2 (t) ∈ L∞. Boundedness of en (t) and
r (t) can be utilized along with (7) to show that ėn (t) ∈ L∞.
These boundedness statements can be utilized along with
(4)–(6) to prove that ė1 (t), · · · , ėn−1 (t) ∈ L∞. From (22),
it can easily be concluded that u̇ (t) ∈ L∞. The boundedness
of the auxiliary error signals and their time derivatives can
be utilized along with (6) to conclude that e(i)1 (t) ∈ L∞
i = 1, · · · , n, which can then be utilized along with (3)
and its time derivatives to prove that x(i) (t) ∈ L∞ i =
1, · · · , n. The above boundedness statements can be utilized
along with m (·), f (·) ∈ C2, to prove that m (·), f (·), ṁ (·),
ḟ (·) ∈ L∞. From (23), it is concluded that ṙ (t) ∈ L∞.

After integrating (37) in time, following expression can be
obtained

γ

∫ ∞
t0

‖z (σ)‖2 dσ+αβ2
∫ ∞
t0

|en (σ)| dσ ≤ V (t0)−V (∞)

(38)
and since V (∞) ≥ 0 following expressions are obtained∫ ∞

t0

‖z (σ)‖2 dσ ≤ V (t0)

γ
(39)∫ ∞

t0

|en (σ)| dσ ≤ V (t0)

αβ2
. (40)

From (39) and (40), it is clear that z (t) ∈ L2 and en (t) ∈
L1. Since en (t) ∈ L1 ∩ L∞, from (19), it is concluded
that β̂1 (t) ∈ L∞, and since r (t) ∈ L∞, then from (20), it
is clear that ˙̂

β1 (t) ∈ L∞. Since en (t) ∈ L2 ∩ L∞, from
(15), it is clear that k (t) ∈ L∞. Standard signal chasing
arguments can be utilized to prove that all the remaining
signals remain bounded under the closed–loop operation.
Since z (t) ∈ L2 ∩ L∞ and ż (t) ∈ L∞, Barbalat’s Lemma
[15] can be utilized to prove that ‖z (t)‖ → 0 as t→∞, and
from its definition in (13), it is clear that the tracking error
and its time derivatives asymptotically converge to zero.

IV. EXAMPLE SYSTEMS AND SIMULATION RESULTS

In order to substantiate the theoretical results, the proposed
nonlinear controller has been tested on two different systems.
The first system is a generalized first order system that
contains scalar variables only and the second system is a
two link, direct–drive, planar robot manipulator system that
contains vectoral variables. The main purpose of the usage
of two different type systems is show that the controller can
be performed efficiently for different variable types.

A. First Order Generalized Scalar System

The equations of motions are given as [16]

ẋ = −x+ δ0 (t) + u (41)

where unknown time–varying parameter is set to be

δ0 (t) = sin (t) + cos (πt) (42)

x ∈ R denotes the state variable and u ∈ R denotes the
control input. The system initial position has been set to
x(0) = 2. The control objective is to make x (t) follow a
sinusoidal desired trajectory given as

xr (t) = sin (t) . (43)

Satisfactory tracking result was obtained when the control
gains and the constant part of time–varying control gain k (t)
are selected as

α = 2 kc = 10 β2 = 10. (44)

The results are shown in Figures 1–4. The tracking result
is depicted in Figure 1, while the tracking error, control
input and the adaptive term are shown in Figures 2, 3 and
4, respectively. From Figures 1 and 2, it is clear that the
tracking control objective was met.

B. Second Order Two Link Robot Manipulator System

The two link, direct–drive, planar robot manipulator hav-
ing the following dynamic model [17][

τ1
τ2

]
=

[
p1 + 2p3c2 p2 + p3c2
p2 + p3c2 p2

] [
q̈1
q̈2

]
+

[
−p3s2q̇2 −p3s2 (q̇1 + q̇2)
p3s2q̇1 0

] [
q̇1
q̇2

]
+

[
fd1 0
0 fd2

] [
q̇1
q̇2

]
(45)
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where p1 = 3.473
[
kg −m2

]
, p2 = 0.193

[
kg −m2

]
,

p3 = 0.242
[
kg −m2

]
, fd1 = 5.3 [Nm− sec], fd2 =

1.1 [Nm− sec], c2 , cos (q2), and s2 , sin (q2). The
control objective is to make q1 (t) and q2 (t) follow a
sinusoidal desired trajectory given as

qr (t) =

[
0.7 sin (t)

(
1− exp

(
−0.3t3

))
1.2 sin (t)

(
1− exp

(
−0.3t3

)) ] . (46)

Control gain parameters were selected as follows

α = {10 2} kc = diag {5 25} β2 = diag {10 2} . (47)

The results are shown in Figures 5–8. The tracking results
are depicted in Figure 5, while the tracking errors, control
inputs and the adaptive terms are shown in Figures 6, 7 and
8, respectively. From Figures 5 and 6, it is clear that the
tracking control objective was met.

V. CONCLUSIONS

In this paper, we have presented a new self tuning RISE
feedback type controller with time–varying feedback and
an adaptive compensation gain. The proposed formulation
does neither needs a tuning methodology nor require prior
knowledge of upper–bounds of the vector containing the
desired system dynamics plus functions containing uncer-
tainties for the control gain selection. The controller for-
mulation, achieved semi–global tracking and the stability
result is backed up with a Lyapunov–type analysis. Extensive
simulation studies are presented to illustrate the tracking
performance of the proposed method.

When compared with the existing versions of the RISE
feedback controllers, the results in this paper is the only
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Fig. 3. Control Input
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Fig. 4. Time–varying Control Gain k (t)

design that addressed the self tuning of the controller gains.
The time–varying controller gains designed in this paper can
easily be applied to other RISE type controllers.
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