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APPLICATION OF THE DIVISION THEOREM TO 
NONLINEAR PHYSICAL MODELS FOR CONSTRUCTING 

TRAVELING WAVES 
 

İsmail ASLAN1 

We extend the so-called first integral method, which is based on the division 
theorem, to the Sharma-Tasso-Olver equation and the (2+1)-dimensional modified 
Boussinesq equation. Our approach provides first integrals in polynomial form with 
a high accuracy for two-dimensional plane autonomous systems. Traveling wave 
solutions are constructed through the established first integrals. 
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1. Introduction 

A good many modeling problems arising in nonlinear physical sciences 
deal with nonlinear partial differential equations (NPDEs) which exhibit rich 
structure. The existence of a special class of explicit solutions called traveling 
waves is one of the most fundamental questions regarding NPDEs since they can 
be widely found in many scientific fields such as fluid mechanics, plasma physics, 
crystal lattice theory, etc. Thus, over the four decades or so, several efficient and 
powerful analytic methods have been successfully developed by a diverse group 
of physicists and mathematicians to find such types of exact and explicit solutions 
for NPDEs. To make mention of a few, sine-cosine method [1], tanh-coth method 
[2], Adomian decomposition method [3], Wronskian technique [4], variational 
iteration method [5], Jacobi elliptic function method [6], homotopy perturbation 
method [7], sinh-Gordon equation expansion method [8],  (G'/G)-expansion 
method [9, 10], Exp-function method [11, 12] etc. However, most of the methods 
are not enough effective for integrable equations. 

Recently, a new method has been proposed by Feng [13, 14] for the 
implementation of the theory of commutative algebra to NPDEs. The procedure is 
termed as the first integral method or the algebraic curve method [15]. The 
method is precise, effective, and reliable by avoiding tedious and complicated 
algebraic calculations. It can be used as an alternative method for obtaining new 
analytic solutions of many NPDEs arising in applied physical sciences. For the 
development of the method, some useful works by others have appeared in the 
research literature [16-23]. 
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The core idea of the first integral method is to find the first integrals of 
nonlinear differential equations in polynomial form. Taking the polynomials with 
unknown polynomial coefficients into account the method provides an algorithm 
which is based on the division theorem for two variables in the complex domain. 

Our goal in this paper is to stress the power of the first integral method in 
handling NPDEs arising in applied sciences. To this end, we study two physically 
important NPDEs, namely, the Sharma-Tasso-Olver (STO) equation and the 
(2+1)-dimensional modified Boussinesq ((2+1)-mB) equation using the first 
integral method for the first time. The reason we choose to investigate the STO by 
our method is that it leads, in a remarkable manner, to a high number of first 
integrals. Besides, we consider the (2+1)-mB equation for the generalization of 
our method to higher-dimensional equations. 

2. The first integral method 

Before proceeding, let us consider a partial differential equation for a function 
( ),u x t  in the form 

                                   ( ), , , , , , 0t x tt tx xxP u u u u u u =… ,                                                (1)  
where P  is a polynomial in its arguments while subscripts denote partial 
derivatives. Via the transformation ( , ) ( )u x t U ξ= , 0kx wtξ ξ= − + , where k , w , 
and 0ξ  are arbitrary constants, Eq. (1) reduces to the ordinary differential equation 
                              2 2( , ,  ,  , , , ) 0P U wU kU w U kwU k U′ ′ ′′ ′′ ′′− − =… ,                             (2) 
where ( )U U ξ=  and the primes denote ordinary derivatives with respect to ξ . On 
the other hand, by means of the new variables  
                                                     ( ) ( )X Uξ ξ= , ( ) ( )Y Uξξ ξ= ,                             (3) 
Eq. (2) can be reduced to a two–dimensional autonomous system of the form  

                                                 
( ) ( )
( ) ( ) ( )( )

,

, ,

X Y

Y Q X Y
ξ

ξ

ξ ξ

ξ ξ ξ

=

=
                                        (4) 

where the subscript denotes ordinary derivative with respect to ξ . In general, 
solving a planar autonomous system of ODEs of the form (4) is a challenging and 
difficult task. Hence, based on the qualitative theory of ODEs [24], if one can 
derive a single first integral for the system (4), then one may be able to reduce Eq. 
(2) to a first–order integrable ODE. Then, a class of exact solutions may be 
obtained by solving the resulting first–order ODE by a quadrature. Let us recall 
the division theorem for two variables in the complex domain : 
Division Theorem. Suppose that ( ),P w z  and ( ),Q w z  are polynomials in [ ],w z  
and ( ),P w z  is irreducible in [ ],w z . If ( ),Q w z vanishes at all zero points of 
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( ),P w z , then there exist a polynomial ( ),G w z  in [ ],w z  such that 
( ) ( ) ( ), , ,Q w z P w z G w z= . 

The division theorem can be proved either by the theory of functions of several 
complex variables [15, 25] or by the following Hilbert-Nullstellensatz theorem 
from the theory of commutative algebra [26]. 
Hilbert-Nullstellensatz Theorem. Let k  be a field and L  an algebraic closure 
of k . Then 
(i) Every ideal γ  of [ ]1, , nk X X…  not containing 1 admits at least one zero in nL . 
(ii) Let 1( , , )nx x=x …  and 1( , , )ny y=y …  be two elements of nL . For the set of 
polynomials of [ ]1, , nk X X…  zero at x  to be identical with the set of polynomials 
of [ ]1, , nk X X…  zero at y , it is necessary and sufficient that there exists a k -
automorphism s  of L  such that ( )i iy s x=  for 1 i n≤ ≤ . 
(iii) For an ideal α  of [ ]1, , nk X X…  to be maximal, it is necessary and sufficient 

that there exists an x  in nL  such that α  is the set of [ ]1, , nk X X…  zero at  x . 

(iv) For a polynomial Q  of [ ]1, , nk X X…  to be zero on the set of zeros in nL  of 

an ideal γ  of [ ]1, , nk X X… , it is necessary and sufficient that there exist an 

integer 0m >  such that mQ γ∈ . 
 
Remark 1. Since the real field  is a subfield of the complex field , we can 
always extend an equation given in  to an equation in . If the extended 
equation has an algebraic curve solution in , then the real plane and the 
intersection of the manifold of this solution must be the algebraic curve solution 
of the original equation in . Thus, the division theorem stated in  can also be 
stated in  [15]. 

3. The Sharma–Tasso–Olver equation 

Let us consider the famous STO equation in the form 

                                          3 23( ) ( ) 0
2t x xx xxxu k u k u ku+ + + = ,                             (5) 

where 0k ≠  is an arbitrary constant, and ( , )u u x t= . Now, to seek for the 
traveling wave solutions of Eq. (1), we make the transformation ( , ) ( )u x t U ξ= , 

x ctξ δ= − + , where c  and δ  denote the wave speed and the phase shift, 
respectively. Then, integrating the resulting equation once,  we get 
                                            33 0kU kUU kU cU kD′′ ′+ + − − = ,                              (6)  
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where the primes denote derivatives with respect to ξ  and D  is an integration 
constant. Let z U=  and y U ′= . Hence, Eq. (6) is equivalent to the two-
dimensional autonomous system 

                                                  3

,

3

z y
cy zy z z D
k

′ =⎧
⎪
⎨ ′ = − + − +⎪⎩

                                    (7)  

which is not Hamiltonian. Now, suppose that ( )z z ξ=  and ( )y y ξ=  are the 

nontrivial solutions of (7). Also, assume that  
0

( , ) ( )
m

i
i

i
q z y A z y

=

=∑  is an 

irreducible polynomial in the complex domain  such that  

                                            
0

( ( ), ( )) ( ) 0
m

i
i

i
q z y A z yξ ξ

=

= =∑ ,                                 (8) 

where ( ) (0 ) iA z i m≤ ≤  are polynomials of z  and they are relatively prime in , 
and ( ) 0mA z ≡ . Here, Eq. (8) is called a first integral to the system (7). Since 

/dq dξ  is a polynomial in z  and y , we note that ( ( ), ( )) 0P z yξ ξ =  implies 
/ 0dq dξ = . Then, by the division theorem, there exists a polynomial 
( ) ( )B z C z y+  in the complex domain  such that 

                   ( ) ( )( )
0

( )
m

i
i

i

dq q dz q dy B z C z y A z y
d z d y dξ ξ ξ =

∂ ∂ ⎡ ⎤
= + = + ⎢ ⎥∂ ∂ ⎣ ⎦

∑ .                             (9) 

We consider the case 2m =  of (8). Hence, taking Eq. (7) and Eq. (9) into account, 
we get 

( ) ( ) ( ) ( ) ( )
2 2 2

1 1 3

0 0 0

3i i i
i i i

i i i

cA z y iA z y zy z z D B z C z y A z y
k

+ −

= = =

⎡ ⎤ ⎡ ⎤⎛ ⎞⎡ ⎤′ + − + − + = +⎡ ⎤⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎝ ⎠ ⎣ ⎦⎣ ⎦
∑ ∑ ∑ .      (10) 

Equating the coefficients of ( )0 3 iy i≤ ≤  of both sides of Eq. (10), we obtain  

                                                     ( ) ( ) ( )3
2 2: ,y A z C z A z′ =                                  (11) 

                                    ( ) ( ) ( ) ( ) ( )2
1 1 2: 6 ,y A z C z A z B z z A z′ = + ⎡ + ⎤⎣ ⎦                     (12) 

           ( ) ( ) ( ) ( ) ( ) ( )1 3
0 0 1 2

2: 3 2 2 ,cy A z C z A z B z z A z z z D A z
k

⎡ ⎤′ = + ⎡ + ⎤ + − −⎣ ⎦ ⎢ ⎥⎣ ⎦
        (13) 

                                        ( ) ( ) ( )0 3
0 1: . cy B z A z z z D A z

k
⎡ ⎤= − +⎢ ⎥⎣ ⎦

                           (14) 

From Eq. (11), we obtain that ( ) ( )( )2 0 expA z c C z dz= ∫ , where 0c is integration 

constant. Since ( )2A z  and ( )C z  are polynomials of z , we deduce that ( ) 0C z =  
and ( )2A z  must be a constant. For simplicity, we can take ( )2 1A z = . Thus, (12) 
and (13) reduces to the following equations 
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                                                    ( ) ( )1 6 ,A z B z z′ = +                                             (15) 

                                   ( ) ( ) ( ) 3
0 1

23 2 2 . cA z B z z A z z z D
k

′ = ⎡ + ⎤ + − −⎣ ⎦                       (16) 

Balancing the degrees of ( )0A z , ( )1A z , and ( )B z  in (15) and (16), we conclude 
that ( )deg 1B z =  and ( )1deg 2A z = . Letting ( ) ( )1 0 1 0B z b z b b= + ≠  and 

( ) ( )2
1 2 1 0 2 0A z a z a z a a= + + ≠  in Eq. (15), we obtain 1 22 6b a= −  and 0 1b a= . Then, 

integrating Eq. (16) once leads to 

( ) ( )
2

2 1 0 2 0
4 3 22 2

0 1 2 0 1

22 32 3 2
1 ( 2 ) ,

4 2

ca a a aa a kA z z a a z z a a D z E
+ − −− +

= + − + + − +           (17) 

where E  is an integration constant. By substituting ( )0A z , ( )1A z , and ( )B z  into 
Eq. (14) and equating all coefficients of ( )0 5 iz i≤ ≤  to zero, we obtain the 
following system of nonlinear algebraic equations  
                                3 2

2 2 2
5 4 1: 0,8 26 12z ka ka ka k− + =−                                         (18) 

                                2
1 1 2 1

4
230 35 1: 0,0ka ka a ka az − + =                                           (19) 

                    2 2 2
0 1 2 0 2 1 2 0 2

3 24 40 16: 0,12 36 8 8c ka ka caz ka a ka a ka a+ − − − + =+          (20) 
                    3

1 0 1 1 2 0 1 2
2 48 8 30: 020 12 ,2 kD ca ka a ka kDa ka a az + − + =− −                 (21) 

                    2
0 1 0 1 2

1 24 4 12: 4 0,8 Ek ca kDa ka a Ekaz − + + =− −                               (22) 
                                 0

0 1: 4 4 0. z kDa Eka− + =                                                      (23) 
Solving (18)-(23) simultaneously, we get the solution sets 

                                
2

2 0 12 , 0, 1, , 0
4
c cE D a a a
k k

== = == −    ,                                 (24) 

                                2 0 1
30, 0, , , ,
2 2

c cE D a a a
k k

= = = = − =    ∓                             (25) 

                   
2 2 2 4 3 2

1 1 1 1 1
2 02

16 8 4 4,  ,  2,  ,
16 8 2

c cka k a ka ca ka cE D a a
k k k

− + − −
= = = =            (26) 

                   
2 3

4 21 1 1
1 2 0 1,  ,  2,  ca ca kaE a D a a a

k k
− = = −=

−
= ,                                     (27) 

                                          0
2 1,  0,  2,  0

2
caE D a a

k
== − = = ,                                  (28) 

                            
2

2 0 12

50 20 3 15 3,  ,  ,  ,  
147 21 21 2 14 7

c c c c cE D a a a
k k k k k

= = = = − = ±∓ ,     (29) 

where all other constants remain arbitrary. Now, we make the following 
observations: 
(i) Using the relation (24) in (8), we get the first integral 
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2

2
c kzy

k
−

= .                                          (30) 

Combining the first equation of (7) with Eq. (30), solving the resulting equations 
by quadratures, and changing to the original variables, we obtain a solution of Eq. 
(5) in the form 

                                              ( ) ( )a 1, t nh
2

c c x ct
k k

u x t δ
⎛ ⎞

= ⎜ ⎟⎜ +
⎝ ⎠

− ⎟ ,                       (31) 

where c  and δ  are free parameters.  
(ii) Using the relation (25) in (8), we obtain the first integral 

                                                                 2cy z z
k

= ± − .                                     (32) 

Combining the first equation of (7) with Eq. (32), solving the resulting equations 
by quadratures, and changing to the original variables, we get a solution of Eq. (5) 
in the form 

                         ( )
( ) ( )cosh sinh

,
c cx ct x c

cu x
t k

k k

t
δ δ− + − +

=
±∓

,              (33) 

where c  and δ  are free parameters.  
(iii) Using the relation (26) in (8), we get the first integral 

                                                       
2 2

1 14 2 4
4

kz ka z ka cy
k

− − − +
= .                          (34) 

Combining the first equation of (7) with Eq. (34), solving the resulting equations 
by quadratures, and changing to the original variables, we obtain a solution of Eq. 
(5) in the form 

                        ( )
2 2

1 1 11 3 16 3 16( , ) tan
4 4 4

1a ka c ka cu x t x ct
k k

δ− −
= − − − + ,             (35) 

where 1a , c  and δ  are free parameters.  
(iv) Using the relation (27) in (8), we obtain the first integral 

                         ( )2 2 2
1 1 1 12 3 4

2
kz ka z k z a ka c ka

y
k

+ ± − + − −
= − .                          (36) 

Combining the first equation of (7) with Eq. (36), solving the resulting equations 
by quadratures, and changing to the original variables, we get a solution of Eq. (5) 
in the form 
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( )
( )

( )
( )

2
1 12

1 1 1

2
1 1

3 4 3
4 3 exp

2

3 4 3
2 exp

2

( , )

ka c ka
ka k c ka a x ct

k

ka c ka
k x ct

k

u x t

δ

δ

⎛ ⎞− + −⎜ ⎟+ − − +⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞− + −⎜ ⎟± − +⎜ ⎟
⎜

=

⎟
⎝ ⎠

∓

,    (37) 

where 1a , c  and δ  are free parameters.  
(v) Using the relation (28) in (8), we get the first integral 

                         
( )( )( )2 2

0 0 02 2 2

2

kz k z a c ka ka
y

k

− ± + + −
= .                                 (38) 

Combining the first equation of (7) with Eq. (38), solving the resulting equations 
by quadratures, and changing to the original variables, we obtain a solution of Eq. 
(5) in the form 

( )
( ) ( )

( )

0

0
2

0 0sinh 2

,
sinh

cosh

2

c cca x ct c ka ka x ct
k k

cc ka x ct
k

u x t

δ δ

δ

⎛ ⎞⎛ ⎞ ⎛ ⎞
− + ± + − − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞
−

=

− +⎜ ⎟
⎝ ⎠

,    (39) 

where 0a , c  and δ  are free parameters.  
(vi) Using the relation (29) in (8), we obtain the first integral 

 

3/2 2 2

3/2 5/2 3 2 7/2 3 4 4 2 2

2

45 6 21 63

100 21 630 252 21 441 375
84

ck ck z k z

c k z ck z ck z k z c ky
k

+ −

± + − + −
= .           (40) 

Combining the first equation of (7) with Eq. (40), solving the resulting equations 
by quadratures, and changing to the original variables, we get a solution of Eq. (5) 
in the form 

( )
( ) ( )

( ) ( )

3 320 133 123
7 7

3 321 4 31 33
7 7

cosh sinh
,

cosh sinh

c cc x ct x ct
k k

c ck x ct x ct
u x

k k

t
δ δ

δ δ

⎛ ⎞⎛ ⎞ ⎛ ⎞
− − + + − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞

+ − + − − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

= ,         (41) 

where c  and δ  are free parameters. 
Remark 2. By assigning special values to the parameters, we can construct 
various types of traveling waves to the STO. As a special example, if / 0c k <  in 
(31) or 0 2 /a c k= −  in (39) then the solutions turns out to be, respectively  
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                                   ( ) ( )t
2

, 1anc c x ctu x t
k k

δ− −
− +

⎛ ⎞
= − ⎜ ⎟⎜ ⎟

⎝ ⎠
,                              (42) 

                                    ( ) ( ), tanhc c x ct
k k

u x t δ− +
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

.                                   (43) 

4. The (2+1)-mB equation 

Now, we consider the (2+1)-mB equation which reads 
                                             ( )38 .tt xx xxxx yyxx

u u u u u= + + +                                 (44) 

The wave transformation ( , , ) ( ),u x y t U ξ=  x y ctξ δ= + − +  reduces (44) to the 
equation 

                                        ( )2 38c U U U U U′′′′ ′′ ′′′′ ′′= + + +                                      (45) 

where the primes denote ordinary derivatives with respect to ξ . Then, integrating 
the resulting equation (45) twice and setting the integration constants to zero,  we 
get 
                                            3 28 ( 2) 0.U U c U′′ + − − =                                            (46) 
Letting z U=  and y U ′=  in Eq. (46), we obtain the equivalent two-dimensional 
autonomous Hamiltonian system 

                                               ( )2 3

,

2 8 ,

z y

y c z z

′ =⎧⎪
⎨ ′ = − −⎪⎩

                                              (47) 

with Hamiltonian function ( )( )1 2 2 2 4
2 2( , 4) y c z zH z y h+ − += = , where h  is a 

constant. We consider the case 2m =  of (8). Hence, taking Eq. (47) and Eq. (9) 
into account, we get 

      ( ) ( ) ( )( ) ( ) ( ) ( )
2 2 2

1 1 2 3

0 0 0

2 8i i i
i i i

i i i

A z y iA z y c z z B z C z y A z y+ −

= = =

⎡ ⎤⎡ ⎤ ⎡ ⎤′ + − − = +⎡ ⎤ ⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦
∑ ∑ ∑ .      (48) 

                 
Equating the coefficients of ( )0 3 iy i≤ ≤  of both sides of Eq. (48), we obtain  

                                                     ( ) ( ) ( )3
2 2: ,y A z C z A z′ =                                  (49) 

                                              ( ) ( ) ( ) ( ) ( )2
1 1 2: ,y A z C z A z B z A z′ = +                     (50) 

                     ( ) ( ) ( ) ( ) ( ) ( )( ) ( )1 2 3
0 0 1 2: 2 2 8 ,y A z C z A z B z A z c z z A z′ = + − − −        (51) 

                                        ( ) ( ) ( )( ) ( )0 2 3
0 1: 2 8 .y B z A z c z z A z= − −                        (52) 
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From Eq. (49), we obtain that ( ) ( )( )2 0 expA z c C z dz= ∫ , where 0c is integration 

constant. Since ( )2A z  and ( )C z  are polynomials of z , we deduce that ( ) 0C z =  
and ( )2A z  must be a constant. For simplicity, we can take ( )2 1A z = . Thus, (50) 
and (51) reduces to the following equations 
                                                    ( ) ( )1A z B z′ =                                                     (53) 

                                   ( ) ( ) ( ) ( )( )2 3
0 1 2 2 8A z B z A z c z z′ = − − − .                            (54) 

Balancing the degrees of ( )0A z , ( )1A z , and ( )B z  in (53) and (54), we conclude 
that ( )deg 1B z =  and ( )1deg 2A z = . Letting ( ) ( )1 0 1 0B z b z b b= + ≠  and 

( ) ( )2
1 2 1 0 2 0A z a z a z a a= + + ≠  in Eq. (53), we obtain 1 22b a=  and 0 1b a= . Then, 

integrating Eq. (54) once leads to 

( )
( )2 22

0 2
0

14 3 22
1 2 0 1

2 2 22 16
4 2

a a a c
A

a
z a a z az za Dz

+ − −+
+ += + +                                   (55) 

where D  is an integration constant. By substituting ( )0A z , ( )1A z , and ( )B z  into 
Eq. (52) and equating all coefficients of ( )0 5 iz i≤ ≤  to zero, we obtain the 
following system of nonlinear algebraic equations  
                                            3

2 2
5 2 032:z a a+ =                                                     (56) 

                                           2
1 1

4
2 024: 5z a a a+ =                                                    (57) 

                                           2 2 2
0 2 2 1 0 2

3
216 12 6 4: 04a a c az a a a a+ − + + =                  (58) 

                                           2 3
1 1 1 0 1 2

2 8 4 6: 0,a c a a a a az + + =−                                (59) 
                                           2 2

0 0 0 1
1

24 2 2 4: 0,a c a a a Dz a− + =+                             (60) 
                                           0

1: 2 0z Da =                                                              (61) 
Solving (56)-(61) simultaneously, we get the solution sets 

                  ( ) ( )2 4 2
0 1 2

1 14 4 , 2 , 0, 4
16 2

D c c a i c a a i= − − − −= = =   ,                        (62) 

                  ( ) ( )2 4 2
0 1 2

1 14 4 , 2 , 0, 4
16 2

D c c a i c a a i= = −= − − − =   .                        (63) 

Now, we make the following observations: 
(i) Using the relation (62) in (8), we get the first integral 

                                                                 ( )2 21 2 8
4

y i c z= − − .                            (64) 

Combining the first equation of (7) with Eq. (64), solving the resulting equations 
by quadratures, and changing to the original variables, we obtain a solution of Eq. 
(44) in the form 

                      ( )
2 21 2 2tanh , 2

2 2 2
( , , ) c ci xu ct cx y t y δ− −

+ − + <= −   ,          (65) 



22                                                                 Ismail Aslan 

                        ( )
2 21 2 2tan(
2

) , 2
2 2

, ,u cx y ci xt y ct cδ− −
= − + >− +   ,          (66) 

where c  and δ  are free parameters.  
(ii) Using the relation (63) in (8), we get the first integral 

                                                                 ( )2 21 2 8
4

y i c z= − − − .                          (67) 

Combining the first equation of (7) with Eq. (67), solving the resulting equations 
by quadratures, and changing to the original variables, we obtain a solution of Eq. 
(44) in the form 

                      ( )
2 21 2 2tanh( , 2

2 2 2
, , ) c ciu x y t x y ct cδ− −

+ + <= −   ,             (68) 

                                                                      

                        ( )
2 21 2 2tan( , 2

2 2 2
, , ) c ci xu t cx y t y c δ+ − +

−
>

−
=   ,            (69) 

where c  and δ  are free parameters.  
 
Remark 3. We note that our results in  Sections 3 and 4 are based on the 
assumption of 2m =  in (8). The discussion becomes more complicated for the 
cases 3,4m =  since the hyper-elliptic integrals, the irregular singular point theory 
and the elliptic integrals of the second kind are involved. Also, we do not need to 
consider the case 5m ≥  since the fact that an algebraic equation with the degree 
greater than or equal to five is generally not solvable is well known. 
 
Remark 4. In the theory of nonlinear differential equations, searching for the first 
integrals of the nonlinear ordinary differential equations is one of the most 
important problem since they permit us to get the general solution of a nonlinear 
differential equation in the form of quadratures. We observe that the first integral 
method, for discovering first integrals, can be applied to NPDEs which can be 
converted to the following forms through the traveling wave transformation 

( ) ( ) ( ), 0u P u u R uξ α′′ ′− − = , 
( ) ( ) ( ) ( ), 0u Q u u u R uξ ξ′′ ′ ′− − =  

where α  is real, ( )R u  is a polynomial with real coefficients, ( ),P w z  and ( ),Q w z  
are polynomials in w  and z . 

5. Conclusions 

We used the first integral method to derive a wide class of traveling wave 
solutions for the STO equation and the (2+1)-mB equation. The obtained solutions 
may be important for the explanation of some practical physical problems. Being 
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easier and quicker than other traditional techniques, our method provides results 
with high accuracy. We predict that the first integral method can be found widely 
applicable in mathematical and physical sciences. 
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