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Abstract
A non-perturbative renormalization of a many-body problem, where non-
relativistic bosons living on a two-dimensional Riemannian manifold interact
with each other via the two-body Dirac delta potential, is given by the
help of the heat kernel defined on the manifold. After this renormalization
procedure, the resolvent becomes a well-defined operator expressed in terms
of an operator (called principal operator) which includes all the information
about the spectrum. Then, the ground state energy is found in the mean-field
approximation and we prove that it grows exponentially with the number of
bosons. The renormalization group equation (or Callan–Symanzik equation)
for the principal operator of the model is derived and the β function is exactly
calculated for the general case, which includes all particle numbers.

PACS numbers: 11.10.Gh, 03.65.−w, 03.65.Ge

1. Introduction

Ultraviolet divergences appear not only in quantum field theories [1] but also in many-body
theories and non-relativistic quantum mechanical problems in which the interaction has a
peculiar singular behavior at short distances [2–6]. In all these cases, infinities are encountered
when we calculate some observables (experimentally measured quantities), e.g., differential
cross section of a scattering process, bound state energy, etc. In order to circumvent these
divergences, a series of algorithmic steps must be applied, and this whole procedure is called
renormalization. The basic idea of renormalization is first to regularize the infinite integrals
by modifying the short distance (or large momenta) behavior of the interactions for ultraviolet
divergences. This can be accomplished in several ways with the assumption that the theory is
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valid up to a scale determined by an unknown parameter, called cutoff ε (or � in momentum
space). According to the modern point of view of renormalization [7], a renormalizable theory
could be regarded as an effective low-energy theory valid up to some unknown energy scale
and it is an approximation to a more fundamental theory beyond this scale. After having
introduced this cutoff parameter ε, all the measured quantities that we are considering in the
theory and the parameters given in the Hamiltonian become dependent on it. At this stage, if
we remove the cutoff parameter, we again encounter the divergent results for the observables.
However, if we think of one of the parameters in the theory (e.g., coupling constant) as a
function of ε and relate it to an observable (e.g., bound state energy of the system), by solving
the appropriate set of equations, we may remove the dependence on this unknown scale. That
is to say, we can find finite and sensible results for the other observables in the system (such as
differential cross section, phase shift) by substituting the expression for the coupling constant
found in the previous step and removing ε at the end. If all the observables are still finite after
this awkward procedure, then the theory is said to be renormalizable. If not, then one must
continue to apply the same procedure for the other remaining parameters (such as charge,
mass, etc) until every observable becomes finite. This renormalization procedure can usually
be done perturbatively and only a few non-perturbative approaches are available since most
quantum field theories are not exactly solvable.

When the de Broglie wavelength of a particle is much larger than the range of the potential,
then the interaction can be well approximated by a Dirac delta function (point interaction).
This problem in one dimension is rather easy and its solution is given in any standard textbook
in quantum mechanics. If we extend this problem into the one where a particle scatters off
a periodic set of delta function potentials, then it is one of the few completely solvable
models [8], which describes the electrons moving in a one-dimensional crystal lattice. In two
and three dimensions, the point interactions give rise to infinities but this problem can be
cured with the renormalization procedure [5, 6, 9]. Most concepts in field theory, such as
dimensional transmutation, regularization, renormalization group (RG), etc can be understood
in this simpler context. Besides the role that it plays in understanding renormalization,
it has many applications in diverse areas of physics, as well (see the references in
[2, 10]).

Point interactions are also considered in a more rigorous context, the so-called self-adjoint
extension theory developed by Von Neumann and a systematic exposition of this subject has
been discussed thoroughly in the monograph [2], where a brief history and an extensive
bibliography of it is also given. The formal Hamiltonian in D dimensions

H = − �
2

2m
∇2 − λδ(D)(x) (1)

can be rigorously defined as a self-adjoint extension of a free formally Hermitian Hamiltonian
H0 on a space with one point removed, where the delta center is located and a boundary
condition for the wavefunction at that point is introduced [6]. Moreover, there is another
rigorous approach to the above problem where a relation between the resolvents of two different
self-adjoint extensions of one symmetric operator is given and it is called Krein’s formula. The
discussion of it for point interactions has been given in [11]. Within this formalism, one can
immediately investigate the spectral properties of the point interactions, whereas the domain
issues of the operators can be preferably handled in the Von Neumann approach. The results of
the self-adjoint extension methods and the renormalization approach to the point interactions
are the same if a certain relation between the parameter of the extension and the renormalized
(or bare) coupling constant is satisfied [6].

2



J. Phys. A: Math. Theor. 46 (2013) 055401 F Erman and O T Turgut

The many-body version of the point interactions is also extensively discussed in the
literature from various directions. The Hamiltonian of the system, in which n particles of mass
m are interacting through the two-body Dirac delta interaction, is

H = − �
2

2m

n∑
i=1

∇2
i − λ

n∑
i< j=1

δ(D)(xi − x j), (2)

where λ is the coupling constant. One of the earliest studies on the many-body or few-body
version of this model in two or three dimensions dates back to the work of Flamand [12] and
the unpublished thesis of Hoppe [13], and the ones in the Soviet Union, see the references
given in [2]. More recently, a perturbative renormalization to the above n-body problem has
been worked out in [14] and also the three-body problem in two dimensions is discussed
in [15]. It has been proved that the perturbative treatment of the three-body problem shows
new divergences in three dimensions after the renormalization of the two-body sector of the
problem and these divergences appear for each added new particle [14]. Therefore, n − 1
new scales emerge after the renormalization of the n-body problem. The same model is also
rigorously studied in [16].

In one dimension, there is no divergence at all and the ground state of this many-body
problem is exactly solvable [17] and Hartree approximation gives exactly the same results for
large values of n [18]. Moreover, the same problem for the repulsive case is worked out in [19]
and the S-matrix approach for both the attractive and the repulsive cases has been studied in
[20, 21].

A quantum problem where a single particle interacts with a Dirac delta potential in two
dimensions shows also an elementary example of dimensional transmutation [3, 5, 22] (this
term is originally introduced in [23]). Under the scaling transformation x → αx, the Laplacian
and δ(2)(x) function transform similarly. In other words, they have the same dimensions [L]−2

so that the coupling constant λ is dimensionless in natural units. Therefore, Hamiltonian
(1) in two dimensions does not contain any intrinsic energy scale due to the dimensionless
coupling constant. A new parameter specifying the bound state energy is introduced after
the renormalization procedure, which then fixes the energy scale of the system and this
phenomenon is called dimensional transmutation. In fact, as shown in [6], the time-dependent
version of this problem has a larger symmetry group SO(2, 1), which exhibits one of the
simplest examples of anomaly or quantum mechanical symmetry breaking. Furthermore, the
RG equations of point interactions have been discussed in [10, 14, 24]. The β function has
been calculated exactly there and the theory has been found as asymptotically free in two
dimensions. The RG equations for the two-dimensional many-body extension of the problem,
where the Hamiltonian is given by (2) for D = 2, have been addressed for the two-body sector
in [25, 26]. They are especially useful in this case since there is no analytic solution to the
problem.

Rajeev [27] introduced a new non-perturbative renormalization method developed for
bound state problems of some quantum many-body theories: fermionic and bosonic quantum
fields interacting with a point source with two internal states and non-relativistic bosons
interacting via two-body point interactions. One of the main advantages of this approach is that
all the information about the spectrum of the model is described by an explicit formula instead
of imposing the boundary conditions on the operator as in the case of self-adjoint extension
theory. Another advantage is that the renormalization is performed non-perturbatively by
introducing fictitious degrees of freedom via orthofermion algebra so that it helps us to reduce
the renormalization to simply normal ordering of an operator which is called principal operator
� and then all the information about the spectrum of the problem can be found from its explicit
well-defined form. Due to the non-perturbative nature of this method, it is also particularly
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useful for dealing with the bound state problems. We are not going to review the original
method developed there. Instead, we suggest the reader read through the relevant parts of
the paper [27], especially the λφ4

(2+1)NR model, to make the reading of this paper easier
(the problem where bosons interact with each other via two-body Dirac delta potentials is
indeed known as the formal non-relativistic limit of the λφ4 scalar field theory [6, 28, 29]).
A mathematically more rigorous discussion of this approach to λφ4

(2+1)NR has been given
in [30].

Following the original ideas developed in [27], we previously considered the bound state
problem for N-point interactions in two- and three-dimensional Riemannian manifolds [31]
by using the heat kernel and discussed its spectral properties there. The same model from
the Krein point of view has been discussed for special explicit manifolds, such as strips or
tubes [32, 33], and it is considered as a natural model for quantum wires including point-like
impurities. The model that we will now construct is the many-body version of our previous
work [31], where the non-relativistic bosons interact with each other via a two-body Dirac
delta function potential. Our primary motivation here is to find a better understanding of the
renormalization of many-body models on Riemannian manifolds.

The paper is organized as follows. In section 2, we construct a model where the non-
relativistic bosons interact with each other via a two-body Dirac delta potential in two-
dimensional Riemannian manifolds. This construction is motivated by the work [27] where
a new non-perturbative renormalization method is developed. By extending the Fock space,
it becomes possible to renormalize the model non-perturbatively by simply normal ordering
of an operator, called the principal operator. Section 3 is about the mean-field approximation
of the model and it has been found that the magnitude of the ground state energy grows
exponentially with the number of bosons, which agrees with the answer in the flat case already
found in [27]. The same formulation can also be applied to the one-dimensional model where
there is no renormalization. In this case, the mean-field approximation that we develop here
gives exactly the same result as the one given in the literature [17, 18]. Finally, we proceed
with the RG equations for this model and the β function is exactly calculated.

2. Construction of the model

The non-perturbative method which is applied to our system here consists of the following
series of steps.

(1) We first regularize the Hamiltonian via the heat kernel.
(2) Then we extend the Fock space by the help of orthofermion algebra so that the new Fock

space becomes a direct sum of two Hilbert spaces.
(3) The Hamiltonian on the extended Fock space is constructed in such a way that the

regularized resolvent projected onto the old Fock space gives an equivalent expression
for the regularized resolvent of our original Hamiltonian. Hence, the coupling constant
becomes additive rather than multiplicative.

(4) By normal ordering the equivalent expression of the regularized resolvent, the singular
part of the problem becomes transparent due to the short time asymptotic expansion of
the heat kernel. Then, it is possible to choose the coupling constant in such a way that the
singular part is removed.

The Hamiltonian on a two-dimensional Riemannian manifold (M, g) is formally given
in the second quantized language (we use units such that � = 2m = 1)

H = −
∫
M

d2
gx φ†

g (x)∇2
gφg(x) − λ

2

∫
M2

d2
gx d2

gx′ φ†
g (x′)φ†

g (x)δ(2)
g (x, x′)φg(x)φg(x

′), (3)

4
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where d2
gx = √

det g dx1dx2 is the two-dimensional volume element, ∇2
g is the Laplace–

Beltrami operator (or simply Laplacian) defined in a local coordinate system, also written as
x ≡ (x1, x2),

∇2
g = 1√

det g

2∑
i, j=1

∂

∂xi

(
gi j
√

det g
∂

∂x j

)
, (4)

and λ is a positive coupling constant (it corresponds to an attractive interaction). Here, φ†
g (x)

and φg(x) are the bosonic creation–annihilation operators and δ(2)
g (x, x′) is the Dirac delta

function defined on the two-dimensional Riemannian manifold with the metric structure g:∫
M

d2
gx δ(2)

g (x, x′) f (x′) = f (x). (5)

It is important to note that the number of bosons
∫
M d2

gx φ†
g (x) φg(x) is conserved in our

model.
Let us suppose that there exists a negative bound state energy Eb < 0 corresponding to

the normalized wavefunction ψ(x1, . . . , xn; g), that is,∫
Mn

d2
gx1 . . . d2

gxn |ψ(x1, . . . , xn; g)|2 = 1. (6)

Due to scale invariance of the Hamiltonian under the transformation g → α2g with a positive
constant α2, the wavefunction ψ(x1, . . . , xn; g) = αnψ(x1, . . . , xn;α2g) satisfies the same
eigenvalue equation with the energy −α2|Eb|. Therefore, the existence of a negative bound
state energy implies that the energy can be made arbitrarily negative by choosing arbitrarily
large values of α. This means that the energy is not bounded from below, which is not allowed
in a sensible theory.

In order to cure the problem, we will first regularize the model. The same model in
flat space has been discussed in [27, 30] and the renormalization has been performed in a
non-perturbative way. In that case, the divergence appears due to the large values of momenta
(ultraviolet), or short distances. Hence, we expect that the ultraviolet divergence must also
exist for the same model defined on the manifold since every Riemannian manifold can locally
be considered as a flat space. In [31], we have proved that the divergence due to the short
distance is replaced with the short ‘time’ for a simplified version of this model, where a
particle interacts with several external delta potentials on a manifold. This is accomplished by
expressing the resolvent of the system in terms of the heat kernel. In this way, we have been
able to subtract the divergence from our model by using the short ‘time’ asymptotic behavior
of the heat kernel. This motivates us that the proper regularization for the many-body version
must also be performed via the heat kernel and a natural choice for the regularized Hamiltonian
is

Hε = H0 − λ(ε)

2

∫
M5

d2
gx1 d2

gx′
1 d2

gx2 d2
gx′

2 d2
gy φ†

g (x1)φ
†
g (x2)Kε (x1, y; g)Kε (y, x2; g)

× Kε (x
′
1, y; g)Kε (y, x′

2; g)φg(x
′
1)φg(x

′
2), (7)

with ε being the short ‘time’ cutoff parameter, H0 the free Hamiltonian and Kε (x, y; g) the
heat kernel on the manifold defined as a fundamental solution to the heat equation [34]

∂Kt (x, y; g)

∂t
= ∇2

g Kt (x, y; g). (8)

Unless otherwise stated, it is always assumed that the Laplacian ∇2
g acts on the functions of

the variable x. One of the most important properties of the heat kernel that we use in this paper
is that it converges to the Dirac delta function

Kt (x, y; g) → δ(2)
g (x, y), (9)

5
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as t → 0+ in the sense of distributions. It is also symmetric Kt (x, y; g) = Kt (y, x; g) for
all x, y ∈ M and t > 0 [34]. If we remove the cutoff, that is, take the limit ε → 0+, we
immediately see that we recover the original Hamiltonian given in (3). It should also be pointed
out that we consider the coupling constant in (7) as a function of the cutoff ε, and its explicit
form will be determined later.

Now, we will consider the resolvent of the Hamiltonian (3) in the Fock space FB with
an arbitrary number of bosons. Following the method developed for the same model in the
plane [27], we will extend the bosonic Fock space FB that we have started with to a larger
Fock space, as it was first introduced in [27]. For this purpose, we define new creation and
annihilation operators, which obey orthofermionic algebra [35]:

χg(x)χ†
g (y) = δ(2)

g (x, y)0,

χg(x)χg(y) = 0 = χ†
g (x)χ†

g (y), (10)

where

1 =
∫
M

d2
gxχ†

g (x)χg(x), 0 = 1 − 1 (11)

are the projection operators onto one-orthofermion and no-orthofermion states, respectively.
It follows easily that there can be at most one orthofermion in any state. The new Fock space
is introduced as a direct sum of two Hilbert spaces

F̃B = FB ⊕ [FB ⊗ L2(M)], (12)

where the first sector which does not include any orthofermion is written as bosonic Fock
space FB and the second sector with a single orthofermion as FB ⊗L2(M). Here, we identify
the space of single orthofermion states by L2(M).

The advantage of introducing this trick is that it allows us to rewrite the resolvent
of the model in such a manner that the coupling constant appears additively rather than
multiplicatively. Actually, the idea of introducing unphysical particles in such a way as to
cancel the infinities is not a new idea (see the references in [36]). As a result, we will be able
to subtract the divergence from our model nonperturbatively by simply normal ordering the
operators. Now we define the augmented regularized Hamiltonian H̃ε on F̃B as

H̃ε = H00 +
[

1√
2

∫
M3

d2
gx1 d2

gx2 d2
gy φ†

g (x1)φ
†
g (x2)Kε (x1, y; g)Kε (y, x2; g)χg(y) + h.c.

]

+ 1

λ(ε)
. (13)

If we split the Hilbert space according to the orthofermion number, then the corresponding
splitting of the operator H̃ε − E0 can be written in the following matrix form:

H̃ε − E0 =
(

a b†
ε

bε dε

)
, (14)

with a : FB → FB, b†
ε : FB ⊗ L2(M) → FB, dε : FB ⊗ L2(M) → FB ⊗ L2(M).

Accordingly, the explicit form of the matrix elements of the above matrix is

a = (H0 − E )0, dε = 1

λ(ε)

b†
ε = 1√

2

∫
M3

d2
gx1 d2

gx2 d2
gy φ†

g (x1)φ
†
g (x2)Kε (x1, y; g)Kε (y, x2; g)χg(y). (15)

Then, one can construct the augmented regularized resolvent defined as (H̃ε − E0)
−1 and

let us suppose that it is of the following matrix form:

R̃ε (E ) =
(

αε β†
ε

βε δε

)
. (16)

6
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Incidentally, the energy E here should be considered as a complex variable. One can find
αε, βε, δε in terms of a, bε and dε by a direct computation. This could be done in two apparently
different but equivalent ways and the formulas were explicitly given in the appendix of [27].
One of the solutions to αε is

αε = [a − b†
εd−1

ε bε

]−1 = 1

Hε − E
= Rε (E ). (17)

This means that R̃ε (E ) projected to FB is just the resolvent of the operator Hε . The other
solution for αε [27] is

αε = a−1 + a−1b†
ε

[
dε − bεa−1b†

ε

]−1
bεa−1. (18)

Combining both solutions gives

Rε (E ) = αε = a−1 + a−1b†
ε[�ε(E )]−1bεa−1, (19)

where we have defined

�ε(E ) = 1

λ(ε)
− 1

2

∫
M6

d2
gx1 d2

gx2 d2
gy d2

gx′
1 d2

gx′
2 d2

gy′ Kε (x1, y; g)Kε (y, x2; g)

× Kε (x
′
1, y′; g)Kε (y

′, x′
2; g)χ†

g (y)

[
φg(x1)φg(x2)

1

H0 − E
φ†

g (x′
1)φ

†
g (x′

2)

]
χg(y

′),

(20)

which is called the regularized principal operator, in which the coupling constant is written
additively. Now, in order to see and separate out the divergent part from (20), we will normal
order the operators in (20) by using the commutation relations of the field operators. For
simplicity, we explicitly perform our calculations for compact manifolds here, but our result is
also valid, in principle, for non-compact manifolds by using a similar method to that we have
used for the non-relativistic Lee model [37, 38].

In analogy with the plane wave mode expansion of the field operators in quantum field
theory, one can write the eigenfunction expansion of the creation and annihilation operators
as

φ†
g (x) =

∑
l

φ
†
l fl(x; g)

φg(x) =
∑

l

φl fl(x; g), (21)

where fl(x; g) is the complete and orthonormal eigenfunction of the Laplace–Beltrami operator
[39]:

− ∇2
g fl(x; g) = σl fl(x; g)∫

M
d2

gx fl(x; g) f ∗
m(x; g) = δlm (22)∑

l

fl(x; g) f ∗
l (y; g) = δ(2)

g (x, y),

with the spectrum {0 = σ0 � σ1 � σ2 � . . .} so that the free Hamiltonian becomes

H0 =
∑

l

σl φ
†
l φl . (23)

It must be emphasized that the degeneracy is formally taken into account in the above
sum by the index l. For simplicity, we have suppressed this possible degeneracy. Using the
commutation relation [φl, φ

†
l′ ] = δll′ , it is easy to see that (H0 − E )φ

†
l = φ

†
l (H0 − E + σl ).

7
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Multiplying this equation by (H0 − E )−1 from the left and by (H0 − E + σl )
−1 from the right

we obtain

(H0 − E )−1φ
†
l = φ

†
l (H0 − E + σl )

−1. (24)

We now multiply both sides of the above equation with fl(x; g) and take the sum over l to
obtain

(H0 − E )−1φ†
g (x) =

∑
l

φ
†
l

∫ ∞

0
dt e−t(H0−E+σl ) fl(x; g), (25)

where we have used the fact (H0 − E + σl )
−1 = ∫∞

0 dt e−t(H0−E+σl ). Since φ
†
l =∫

M d2
gy φ†

g (y) f ∗
l (y; g) and the eigenfunction expansion of the heat kernel is given by [39]

Kt (x, y; g) =
∑

l

e−tσl fl(x; g) f ∗
l (y; g), (26)

we find

(H0 − E )−1φ†
g (x) =

∫
M

d2
gy φ†

g (y)

∫ ∞

0
dt e−t(H0−E )Kt (x, y; g). (27)

Similarly, by using the same procedure, we can shift all the creation operators φ†
g (x′

1)φ
†
g (x′

2)

to the left
1

H0 − E
φ†

g (x′
1)φ

†
g (x′

2) =
∫
M2

d2
gy′

1 d2
gy′

2 φ†
g (y′

1)φ
†
g (y′

2)

×
∫ ∞

0
dt e−t(H0−E )Kt (x

′
1, y′

1; g)Kt (x
′
2, y′

2; g), (28)

and then normal order the new expression with the annihilation operators φg(x1)φg(x2) so that
we obtain the normal ordered regularized principal operator

�ε(E ) = 1

λ(ε)
− 1

2

∫
M2

d2
gx d2

gx′ χ†
g (x)

[ ∫
M4

d2
gx1 d2

gx2 d2
gx′

1 d2
gx′

2 φ†
g (x′

1)φ
†
g (x′

2)

×
∫ ∞

0
dt Kt+ε (x

′
1, x′; g)Kt+ε (x

′, x′
2; g)Kt+ε (x1, x; g)Kt+ε (x, x2; g)

× e−t(H0−E )φg(x1)φg(x2) + 4
∫
M2

d2
gx1 d2

gx2 φ†
g (x1)

×
∫ ∞

0
dt Kt+ε (x1, x′; g)Kt+2ε (x

′, x; g)Kt+ε (x, x2; g)e−t(H0−E )φg(x2)

+ 2
∫ ∞

0
dt K2

t+2ε (x, x′; g)e−t(H0−E )

]
χg(x

′), (29)

where the semi-group property of the heat kernel

Kt1+t2 (x, y; g) =
∫
M

d2
gz Kt1 (x, z; g)Kt2 (z, y; g) (30)

is used. We expect that as ε → 0+ the last ‘time’ integral in (29) is divergent since it is the
term that corresponds to the infinite expression in the principal operator for the flat space R

2,
where it has been discussed in [27]. In fact, we can also naively show that the divergence
which appears in the principal operator (29) is due to the short ‘time’ asymptotic behavior of
the heat kernel.

In order to see this, let us find an upper bound to the expectation value of the last
term in the principal operator (29) after taking the limit ε → 0+. For (n − 2)-bosonic and
one-orthofermion states

|�〉 = ∣∣ψ(n−2)

b

〉⊗ ∫
M

d2
gxχ†

g (x)ψ(x)|0〉, (31)

8
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we obtain for the expectation value

〈�|
∫
M2

d2
gx d2

gx′ χ†
g (x′)

∫ ∞

0
dt K2

t (x, x′; g)e−t(H0−E )χg(x)|�〉

=
∫ ∞

0
dt
〈
ψ

(n−2)

b

∣∣e−t(H0−E )
∣∣ψ(n−2)

b

〉 ∫
M2

d2
gx d2

gx′ ψ∗(x′)Kt (x, x′; g) Kt (x, x′; g)ψ(x)

�
∫ ∞

0
dt
〈
ψ

(n−2)

b

∣∣e−t(H0−E )
∣∣ψ(n−2)

b

〉 ∫
M2

d2
gx d2

gx′ K2
t (x, x′; g)|ψ(x)|2

�
∫
M

d2
gx
∫ ∞

0
dt
〈
ψ

(n−2)

b

∣∣e−t(H0−E )
∣∣ψ(n−2)

b

〉
K2t (x, x; g)|ψ(x)|2

=
∫
M

d2
gx |ψ(x)|2〈ψ(n−2)

b

∣∣ ∫ ∞

0
dt e−t(H0−E )K2t (x, x; g)

∣∣ψ(n−2)

b

〉
, (32)

where we have used the Cauchy–Schwarz inequality with the semi-group (30) and symmetry
properties of the heat kernel. Therefore, the ‘time’ integral on the right-hand side of (32) is
divergent due to the first term in the short ‘time’ asymptotic expansion of the diagonal heat
kernel, which is given by

Kt (x, x; g) ∼ 1

(4πt)D/2

∞∑
k=0

uk(x, x) tk, (33)

for any D-dimensional Riemannian manifold without boundary [40]. Here uk(x, x) are scalar
polynomials in the curvature tensor of the manifold and its covariant derivatives at point
x ∈ M. This means that if the left-hand side of (32) is divergent, then this is basically due to
the singular behavior of the heat kernel near t = 0 in the last term of the principal operator
(32).

All these suggest that we choose the bare coupling constant as

1

λ(ε)
=
∫ ∞

ε

dt
e−tμ2

8πt
, (34)

where −μ2 is to be related to the (experimentally determined) bound state energy of the
two-boson system. The parameter μ2 is at present an arbitrary renormalization scale, which
breaks the scale invariance in the unrenormalized problem. Even if there is no bound state in
the spectrum, our prescription will lead to a finite formulation. Yet, later on we will prove that
for sufficiently large values of μ2 we can always find a two-body bound state and hence we
may solve μ2 in terms of the physical two-body bound state energy (see equation (62)). In
section 3, a different prescription will be used where the renormalization scale is not directly
related to the bound state energy.

With the present choice of the coupling constant (34), we take the limit ε → 0+ in (29),
and readily obtain

�(E ) =
∫
M2

d2
gx d2

gx′χ†
g (x)

∫ ∞

0
dt

[
e−tμ2

8πt
δ(2)

g (x, x′) − K2
t (x, x′; g)e−t(H0−E )

]
χg(x

′)

− 1

2

∫
M2

d2
gx d2

gx′ χ†
g (x)

[ ∫
M4

d2
gx1 d2

gx2 d2
gx′

1 d2
gx′

2 φ†
g (x′

1)φ
†
g (x′

2)

∫ ∞

0
dt Kt (x

′
1, x′; g)

× Kt (x
′, x′

2; g)Kt (x1, x; g)Kt (x, x2; g) e−t(H0−E )φg(x1)φg(x2)+ 4
∫
M2

d2
gx1 d2

gx2φ
†
g (x1)

×
∫ ∞

0
dt Kt (x1, x′; g)Kt (x

′, x; g)Kt (x, x2; g) e−t(H0−E )φg(x2)

]
χg(x

′). (35)

This is a well-defined form of the principal operator and we can show that the choice for
the coupling constant (34) is sufficient to remove the divergence from our problem. Once we

9
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have a proper and well-defined expression of the principal operator, we expect that all the
divergences are removed since the resolvent which determines the spectrum of the problem is
expressed in terms of it. It must be emphasized here that the principal operator can be extended
to its largest domain of definition in the complex energy plane by analytic continuation.

We must first note that the behavior of the off-diagonal term of the heat kernel near t = 0
is intimately related to the small distance behavior due to the initial condition given for the heat
kernel. In fact one can show that the choice for the coupling constant (34) is the appropriate
one to get rid of the infinity by writing the square of the heat kernel in the following subtle
way near t = 0:

�(E )=
∫
M2

d2
gx d2

gx′χ†
g (x)

∫ ∞

0
dt

[
e−tμ2

8πt
δ(2)

g (x, x′) − K2t (x, x′; g)δ(2)
g (x, x′)e−t(H0−E )

]
χg(x

′)

+ Regular terms. (36)

The following heuristic argument can be given to justify this choice. Here, what we mean by
‘regular terms’ are the other terms in (35) and the ignored terms that are coming from outside
the region t = 0. Let us first look at the matrix element of the second term in the first ‘time’
integral in the principal operator (35):∫

M
d2

gx ψ∗
a (x)Kt (x, y; g)Kt (x, y; g)ψb(y), (37)

as t → 0+. As a consequence of (9), it is possible to replace the function ψ∗
a (x) by ψ∗

a (y) in
this limit, so that we have∫
M

d2
gx ψ∗

a (x)Kt (x, y; g)Kt (x, y; g)ψb(y) ≈ ψ∗
a (y)

∫
M

d2
gx Kt (x, y; g)Kt (x, y; g)ψb(y)

≈ ψ∗
a (y)K2t (y, y; g)ψb(y), (38)

where we have used the semi-group property of the heat kernel (30). Therefore, if we take
the integral (36) over x′ and substitute the first term in the asymptotic expansion (33) of the
diagonal heat kernel as t → 0+, we obtain

�(E ) =
∫
M

d2
gx χ†

g (x)

∫ ∞

0
dt

[
e−tμ2

8πt
− e−t(H0−E )

8πt

]
χg(x) + Regular terms

= 1

8π

∫
M

d2
gx χ†

g (x) ln

(
H0 − E

μ2

)
χg(x) + Regular terms, (39)

where the other terms in the asymptotic expansion (33) do not give rise to an infinite result.
Let us give a better justification of this choice: we will again assume that the orthofermion

operators act on some smooth functions; since the set of smooth functions is dense in the
Hilbert space norm, this is allowed.We will write one of the heat kernels as a distributional
solution in (37), and use the fact that −∇2

g is a self-adjoint operator,∫
M2

d2
gy d2

gx ψ∗
a (x)Kt (x, y; g)et∇2

g δ(2)
g (x, y)e−t(H0−E )ψb(y)

=
∫
M2

d2
gy d2

gx [et∇2
g ψ∗

a (x)Kt (x, y; g)]δ(2)
g (x, y)e−t(H0−E )ψb(y). (40)

Let us expand the exponential et∇2
g into a formal power series and define

(∇g)
k :=

{
(∇2

g )k/2, if k = 0, 2, 4, 6, . . . ;
∇g(∇2

g )(k−1)/2, if k = 1, 3, 5, 7, . . .,
(41)

where (∇g f )i = gi j ∂ f
∂x j for any smooth function f on M. Then we get terms of the following

form:

tk[(∇g)
kψ∗

a (x)]tn−k[(∇g)
n−kKt (x, y; g)]. (42)

10
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As t → 0+, the most singular terms in this expansion will come from the terms with the
highest number of derivatives of the heat kernel, thanks to the following theorem (lemma
1.7.7 in [40]): if Dα

x is a differential operator (acting on the functions of variable x) of
order α, then the asymptotic expansion of the kernel of the operator Dα

x et∇2
g on the diagonal

(in D dimensions)

Dα
x Kt (x, y; g)|x=y ∼

∞∑
k=0

t−(D+α−k)/2ek(x, Dα
x ,∇2

g ), (43)

where ek are smooth local invariants of the jets of the symbols of the operators Dα
x and ∇2

g .
Also ek are zero if k + α is odd. Thus, the most singular terms will come from the highest
powers of the Laplacian acting on the heat kernel when we formally expand the exponential
operator. This means that the dominant contribution to equation (40) is given by∫

M2
d2

gy d2
gx ψ∗

a (x)[et∇2
g Kt (x, y; g)]δ(2)

g (x, y)e−t(H0−E )ψb(y). (44)

If we make use of the heat equation (8) in the above, then we may infer that

et∇2
g Kt (x, y; g) = [et ∂

∂t′ Kt ′ (x, y; g)]|t ′=t . (45)

Using the fact that et ∂

∂t′ generates a time translation by an amount t, which is again true in the
sense of distributions:

lim
t ′→t

et ′ ∂
∂t Kt (x, x′; g) = lim

t ′→t
Kt+t ′ (x, x′; g) = K2t (x, x′; g), (46)

we see that the most singular part of the integral as t → 0+ turns out to be∫
M

d2
gy ψ∗

a (y)K2t (y, y; g)e−t(H0−E )ψb(y), (47)

where we have taken the integral with respect to x. This justifies our choice of the coupling
constant (34).

2.1. Two-dimensional flat case revisited

We can also explicitly show that this idea works for the same model on flat space R
2 by writing

the principal operator in momentum space that has already been calculated in [27]. For this
purpose, let us consider the first part of equation (35) in a two-dimensional plane, i.e.∫

R4
d2x d2x′χ†(x) lim

ε→0+

∫ ∞

ε

dt

[
e−tμ2

8πt
δ(2)(x, x′) − K2

t (x, x′)e−t(H0−E )

]
χ(x′). (48)

Substituting the explicit form of the heat kernel in R
2 [34]

Kt (x, x′) = e−|x−x′ |2/4t

4πt
, (49)

we find for (48)∫
R4

d2x d2x′ χ†(x) lim
ε→0+

∫ ∞

ε

dt

[
e−tμ2

8πt
δ(2)(x, x′) − e−|x−x′ |2/4t

(4πt)

e−|x−x′ |2/4t

(4πt)
e−t(H0−E )

]
χ(x′).

(50)

If we write the heat kernel as a Fourier transform of a function e−tp2
and then change the

integration order above for the second term, we obtain

11
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R2

d2x d2x′χ†(x)

∫ ∞

ε

dt
e−|x−x′ |2/4t

(4πt)

e−|x−x′ |2/4t

(4πt)
e−t(H0−E )χ (x′)

=
∫

R4
d2x d2x′ χ†(x)

∫ ∞

ε

dt
∫

d2 p

(2π)2

eip.(x−x′ )−tp2/2

(8πt)
e−t(H0−E )χ (x′)

=
∫

R2

d2 p

(2π)2
χ†(p)

∫ ∞

ε

dt
e−t(H0−E+p2/2)

(8πt)
χ(p). (51)

Then, equation (48) becomes as ε → 0+
∫

R2

d2 p

(2π)2
χ†(p)

∫ ∞

ε

dt

[
e−tμ2

8πt
− e−t(H0−E+p2/2)

8πt

]
χ(p)

= 1

8π

∫
R2

d2 p

(2π)2
χ†(p) ln

(
H0 − E + p2/2

μ2

)
χ(p). (52)

This is exactly the same result that was already calculated for this model defined in the flat
space R

2 [27].

2.2. Analysis of the bound state spectrum

As a result of our analysis, we now have obtained a finite well-defined model, that is, the
resolvent of the system is expressed in terms of the well-defined principal operator given in
(35)

R(E ) = 1

H0 − E
+ 1

2

1

H0 − E

∫
M

d3
gy φ†

g (y)φ†
g (y)χg(y)�−1(E )

×
∫
M

d3
gy φg(y)φg(y)χ†

g (y)
1

H0 − E
. (53)

This is the analogue of the Krein formula in the case of the many-body version of the point
interactions. All the information of the spectrum of the problem can be determined from the
above resolvent operator. In this subsection, we will discuss the spectral properties of our
model, especially the bound state spectrum.

The poles in the resolvent correspond to the bound states. For non-compact manifolds,
there cannot be any pole due to the free resolvent. For compact manifolds, we are interested
in the poles below the poles of the free resolvent. These imply that the roots of the principal
operator (35)

�(E )|�〉 = 0, (54)

determine the possible bound state spectrum. As in the case of the problem where the particles
only interact with an external Dirac delta potential, which displays a dimensional transmutation
in two dimensions [3, 5, 22], our model constructed above also realizes a kind of dimensional
transmutation. This can be seen as follows. From the original Hamiltonian (3) that we have
started, it is easy to see that the coupling constant is dimensionless so that there seems to be
no parameter whatsoever to yield an estimate of the energy by naive dimensional analysis.
However, if we have a length scale coming from the geometry, such as the curvature, this
provides a geometric energy scale which is there also for the free theory. Nevertheless, even if
it is the case, a new dimensional parameter μ2 shows up after the renormalization procedure
from relation (34). Therefore, we can say that this is a general dimensional transmutation and
it is most striking when there is no intrinsic energy scale coming from the geometry [31].

After the renormalization of the coupling constant, we must be able to predict the other
measurable quantities in terms of the measured two-particle bound state energy E (2)

gr ; in our

12
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version the arbitrary scale −μ2 should be solved in favor of this binding energy. In flat space
R

2, the two-body solution is given by E (2)
gr = −μ2 [27]. From this point on we assume −μ2

is expressed in terms of E (2)
gr . We make the following comment: let us consider a compact

manifold and apply the variational principle for the first eigenvalue ω0(E ) of �(E ) in the two-
boson sector. Since we are on a compact manifold, we choose the orthofermion wavefunction
as constant, 1√

V (M)
. We now calculate the expectation value of the principal operator �(E )

by the following variational ansatz

|�var〉 = |0〉 ⊗ 1√
V (M)

∫
M

d3
gx χ†(x)|0〉. (55)

Since �(E ) is normal ordered, all the parts which contain bosonic creation and annihilation
operators will vanish. The only term which survives sets an upper bound for ω0(E ). Hence,

ω0(E ) � 〈�var|�(E )|�var〉
�
∫ ∞

0
dt

[
e−μ2t

8πt
−
(

1

V (M)

∫
M2

d2
gx d2

gx′ Kt (x, x′; g)Kt (x
′, x; g)

)
e−|E|t

]

�
∫ ∞

0
dt

[
e−μ2t

8πt
−
(

1

V (M)

∫
M

d2
gx K2t (x, x; g)

)
e−|E|t

]
, (56)

where we have used the semi-group property of the heat kernel (30). Compactness of the
manifold implies that it is complete as a Riemannian manifold and it has a Ricci tensor
bounded from below which we formally write Rc � κ . As a result of the theorem proven by
Cheeger and Yau [41], the heat kernel has the following lower bound:

Kt (x, y; g) � Kκ
t (dg(x, y)), (57)

where Kκ
t is the heat kernel of the simply connected complete two-dimensional manifold of

constant sectional curvature κ . In particular, we choose Kκ
t (dg(x, y)) as the heat kernel of

the two-dimensional hyperbolic manifold H
2 for κ = −1/R2, where R is the corresponding

length scale. In the case the lower bound is positive, we may choose the heat kernel for the
two-dimensional flat space and the argument below becomes even simpler. Since the heat
kernel for two-dimensional hyperbolic manifolds is explicitly known [42], a lower bound of
the diagonal heat kernel in (56) is

K2t (x, x) � R
√

2

(8πt)3/2
e−t/2R2

∫ ∞

0
ds

s e−s2R2/8t

√
cosh s − 1

. (58)

From the expansion of the function cosh, we can write the denominator as
√

cosh s − 1 =√∑∞
k=1 s2k/(2k)! = (s/

√
2)

√∑∞
k=1 2s2k−2/(2k)!. Then we have

ω0(E ) �
∫ ∞

0
dt

[
e−μ2t

8πt
+ 2R

(8πt)3/2
e−t/2R2

×
∫ ∞

0
ds e−s2R2/8t−|E|t

(
− 1 +

(
1 − 1√∑∞

k=1 2s2k−2/(2k)!

))]
, (59)

where we have added and subtracted 1 in the parentheses above. Since
∑∞

k=1 2s2k−2/(2k)! � es2

for all s � 0, we have

ω0(E ) � 1

8π
ln

(
|E| + R2

2

μ2

)
+
∫ ∞

0
dt

1

4πt

(
1 − 1√

1 + 4t

)
e
−t
(
|E|+ R2

2

)
. (60)

Using
√

1 + 4t � 1 + 2t and 1 + 2t � 1 for all t � 0, we obtain

ω0(E ) � 1

8π
ln

(
|E| + R2

2

μ2

)
+ 1

2π

1

|E| + R2

2

. (61)
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ω

E Egr
2

E

ω0

ω0
upper bound

Figure 1. A typical flow of the first eigenvalue of the principal operator.

For large values of μ2 there always exists a unique E∗ < 0 such that

1

8π
ln

(
|E∗| + R2

2

μ2

)
= − 1

2π

1

|E∗| + R2

2

. (62)

As we will prove in this section

∂ω0

∂E
< 0, (63)

to get the true zero E (2)
gr of ω0(E ), we must further decrease E (or increase |E|) so that we will

have a well-defined expression of μ2 in terms of two-particle binding energy E (2)
gr < E∗ < 0,

as shown in figure 1. Therefore, by assuming that the two-body problem is solved, we can then
study the n-body problem. Since we are only interested in the bound states of the model at
the moment, we should be able to determine n-particle bound states after the renormalization
procedure. The exact treatment of this problem is rather difficult. Assuming that the details
of the two-body interaction can be understood, we will study the model in the mean-field
approximation in section 3. Before embarking on studying the mean-field analysis, we will
make some general remarks about the bound state spectrum of the problem.

It is a well-known fact that the residue of the resolvent at its isolated pole μ is the
projection operator Pμ to the corresponding eigenspace of the Hamiltonian

Pμ = − 1

2π i

∮
�μ

dE R(E ), (64)

where �μ is a small contour enclosing the isolated eigenvalue μ in the complex energy
plane [43]. Let us suppose that there exists a ground state and choose our contour enclosing
this ground state energy, namely Egr. Then, the above integral of R(E ) gives the projection
to the eigenspace |�0〉〈�0| corresponding to the minimum eigenvalue of the renormalized
Hamiltonian for the many-body system.

From (35), it is easily seen that the principal operator formally satisfies �†(E ) = �(E∗).
We assume that �(E ) defines a self-adjoint holomorphic family of type A [44], so that we

14
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can apply the spectral theorem for the principal operator or inverse of it. Since the principal
operator �(E ) acts on FB

(n−2) ⊗ L2(M), we have

�−1(E ) =
∑

k

1

ωk(E )
Pk(E ) +

∫
σ

dω(E )
1

ω(E )
Pω(E ), (65)

where the projection operator

Pk(E ) = |φk(E )〉〈φk(E )| = |ωk(E );�k(E )〉〈ωk(E );�k(E )|, (66)

is given in terms of n − 2 bosonic particle state and one-particle orthofermion state:

|ωk〉 =
∫
Mn−2

d2
gx1 d2

gx2 . . . d2
gxn−2 uk(x1, . . . , xn−2)|x1 . . . xn−2〉

|�k〉 =
∫
M

d2
gx ψk(x)χ†

g (x)|0〉. (67)

Here, ωk(E ) and |ωk(E );�k(E )〉 are the eigenvalues and the eigenvectors of the principal
operator, respectively. Similarly, the (generalized) projection operator

Pω(E ) = |φ(E )〉〈φ(E )| = |ω(E );�(E )〉〈ω(E );�(E )| (68)

corresponds to the continuous eigenvalues and eigenvectors of the principal operator. We
assume that the principal operator has discrete as well as continuous eigenvalues and the
bottom of the spectrum corresponds to a non-degenerate eigenvalue. The above integral is
taken over the continuous spectrum σ (�) of the principal operator (for simplicity, we write it
formally, it should be written more precisely as a Riemann–Stieltjies integral).

As emphasized in the previous section, the bound state spectrum corresponds to the
solutions of the zero eigenvalues of the principal operator (35). In order to estimate the ground
state energy of our system, it is crucial to determine how the eigenvalues ωk evolve with E.
For this purpose, let us calculate the derivative of the eigenvalue ωk of the principal operator
with respect to E. If we apply the Feynman–Hellman theorem to the eigenvalue problem for
the principal operator, we obtain

∂ωk

∂E
= 〈φk|∂�(E )

∂E
|φk〉 =

〈
∂�(E )

∂E

〉
. (69)

A direct computation for the derivative of the principal operator (35) with respect to the energy
E gives

∂�(E )

∂E
= −

[∫
M2

d2
gx d2

gx′χ†
g (x)

∫ ∞

0
dt t K2

t (x, x′; g)e−t(H0−E )χg(x
′)

+ 1

2

∫
M6

d2
gx d2

gx′ d2
gx1 d2

gx2 d2
gx′

1 d2
gx′

2χ
†
g (x)χg(x

′)φ†
g (x′

1)φ
†
g (x′

2)

×
∫ ∞

0
dt t Kt (x1, x; g)Kt (x2, x; g)Kt (x

′, x′
1; g)Kt (x

′, x′
2; g)e−t(H0−E )φg(x1)φg(x2)

+ 2
∫
M4

d2
gx d2

gx′ d2
gx1 d2

gx2 χ†
g (x)χg(x

′)φ†
g (x1)

×
∫ ∞

0
dt tKt (x2, x; g)Kt (x, x′; g)Kt (x

′, x1; g)e−t(H0−E )φg(x2)

]
. (70)

For simplicity, we will separate the terms in the expectation value of the principal operator in
(69), using (70). Let us first consider the first term∫

M2
d2

gx d2
gx′ ψ∗(x)

∫ ∞

0
dt t K2

t (x, x′; g)〈ωk|e−t(H0−E )|ωk〉ψ(x′), (71)
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where ψ(x) is the wavefunction of the orthofermion. If we think of the factor t in the above
integrand as an integral

∫ t
−t (du/2) and then make the change of variables t = t1+t2, u = t1−t2,

we readily obtain∫
M2

d2
gx d2

gx′ ψ∗(x)

∫ ∞

0

∫ ∞

0
dt1dt2 K2

t1+t2 (x, x′; g)〈ωk|e−(t1+t2 )(H0−E )|ωk〉ψ(x′). (72)

Using the semi-group property of the heat kernel (30), equation (72) can be rewritten as∫
M2

d2
gx d2

gx′ ψ∗(x)

∫ ∞

0

∫ ∞

0
dt1dt2

∫
M2

d2
gz1 d2

gz2 Kt1 (x, z1; g)Kt2 (z1; x′; g)Kt1 (x, z2; g)

× Kt2 (z2, x′; g)〈ωk|e−(t1+t2)(H0−E )|ωk〉ψ(x′). (73)

Changing the order of integrations, we find∫
M2

d2
gz1 d2

gz2

∣∣∣∣∣
∣∣∣∣∣
∫ ∞

0
dt1 e−t1(H0−E )

∫
M

d2
gx Kt1 (z1, x; g)Kt1 (x, z2; g)ψ∗(x)|ωk〉

∣∣∣∣∣
∣∣∣∣∣
2

, (74)

which is obviously always positive. Now we return to the expectation value of the second and
third terms in (70). It is easy to see that they can be expressed as

1

2

∫ ∞

0
dt t

∣∣∣∣∣
∣∣∣∣∣
∫
M3

d2
gx1 d2

gx2 d2
gx Kt (x1, x; g)Kt (x, x2; g)ψ∗(x) e− t

2 (H0−E )φg(x1)φg(x2)|ωk〉
∣∣∣∣∣
∣∣∣∣∣
2

+ 2
∫
M

d2
gz
∫ ∞

0
dt t

∣∣∣∣∣
∣∣∣∣∣
∫
M2

d2
gx d2

gx2 Kt/2(z, x; g)Kt (x, x2; g)ψ∗(x)

×e− t
2 (H0−E )φg(x2)|ωk〉

∣∣∣∣∣
∣∣∣∣∣
2

, (75)

where we have used the fact that we can rewrite the second heat kernel Kt (x, x′; g) in
the third term of (70) as

∫
M d2

gz Kt/2(x, z; g)Kt/2(z, x′; g) by the semi-group property (30).
Consequently, we obtain

∂ωk

∂E
< 0. (76)

The eigenvalues ωk(E )s flow with E in accordance with (76), that is, these are monotonically
decreasing functions of E. For sufficiently small values of E, there cannot be a zero eigenvalue
of the principal operator since the energy must be bounded from below. Moreover, for a given
E∗ the eigenvalues can be ordered as ω0(E∗) < ω1(E∗) < · · ·. Therefore, due to (76) and
non-degeneracy of the lowest eigenvalue ω0, only the minimum eigenvalue ω0 flows to its zero
value at the minimum energy E = Egr. Hence, the ground state corresponds to the zero of the
minimum eigenvalue ω0(E ) of �(E ), as shown in figure 2.

We may now show that E (n)
gr � E (2)

gr for compact manifolds. To see this, we take the
solution of a two-body ground state |�(2)〉 as

|�(2)〉 = |0〉 ⊗
∫
M

dgx ψ
(2)

0 (x)χ†(x)|0〉 (77)

and then make a new ansatz |�var〉 for the n-body problem in the form

|�var〉 = 1

[V (M)](n−2)/2

∫
Mn−2

dgx1 . . . dgxn−2|x1, . . . , xn−2〉 ⊗
∫
M

dgx ψ
(2)

0 (x)χ†(x)|0〉. (78)

It is convenient to split the principal operator �(E ) given in (35) as K(E ) − U (E ), where

K(E ) =
∫
M2

d2
gx d2

gx′χ†
g (x)

∫ ∞

0
dt

[
e−tμ2

8πt
δ(2)

g (x, x′) − K2
t (x, x′; g)e−t(H0−E )

]
χg(x

′) (79)
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Figure 2. A typical flow of the eigenvalues of the principal operator.

and

U (E ) = 1

2

∫ ∞

0
dt

[ ∫
M3

d2
gx d2

gx1 d2
gx2Kt (x1, x; g)Kt (x, x2; g)φg(x1)φg(x2)χg(x)

]†

e−t(H0−E )

×
[ ∫

M3
d2

gx′ d2
gx′

1 d2
gx′

2Kt (x
′
1, x′; g)Kt (x

′, x′
2; g)φg(x

′
1)φg(x

′
2)χg(x

′)
]

+ 2
∫
M

d2
gz
∫ ∞

0
dt

[ ∫
M2

d2
gx d2

gx1Kt (x1, x; g)Kt/2(x, z; g)φg(x1)χg(x)

]†

e−t(H0−E )

×
[ ∫

M2
d2

gx′ d2
gx′

1Kt (x
′
1, x′; g)Kt/2(x

′, z; g)φg(x
′
1)χg(x

′)
]
, (80)

where we have used the semi-group property of the heat kernel (30) and the assumption that
we can interchange the order of integrations. By the variational principle,

ω
(n)

0

(
E (2)

gr

)
� 〈�var|�(E (2)

gr

)|�var〉 = −〈�var|U(E (2)
gr

)|�var〉, (81)

where 〈ψ(2)

0 |K(E (2)
gr )|ψ(2)

0 〉 = 0. In order to calculate the above expectation value, we first
show that

e− t
2 (H0−E )

∫
M3

d2
gx′ d2

gx′
1 d2

gx′
2Kt (x

′
1, x′; g)Kt (x

′, x′
2; g)φg(x

′
1)φg(x

′
2)χg(x

′)|�var〉

= (n − 2)1/2(n − 3)1/2

[V (M)](n−2)/2
e− t

2 |E (2)
gr |
∫
M3

d2
gx′ d2

gx′
1 d2

gx′
2Kt (x

′
1, x′; g)Kt (x

′, x′
2; g)ψ

(2)

0 (x′)

×
∫
Mn−4

dgy3 . . . dgyn−2|y3, . . . , yn−2〉

= (n − 2)1/2(n − 3)1/2

[V (M)](n−2)/2
e− t

2 |E (2)
gr |
∫
M

d2
gx′ψ(2)

0 (x′)
∫
Mn−4

dgy3 . . . dgyn−2|y3, . . . , yn−2〉,
(82)

where we have used the fact that the free Hamiltonian operates on bosonic states and gives
zero for constant wavefunctions. We have also used the stochastic completeness of the heat
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kernel in the last line. Then, the expectation value of the first term in (80) becomes

(n − 2)(n − 3)

2

∫ ∞

0
dt e−t|E (2)

gr |
∣∣∣∣
∫
M

d2
gx ψ

(2)

0 (x)

∣∣∣∣
2 [V (M)](n−4)

[V (M)](n−2)
, (83)

which is finite due to∣∣∣∣
∫
M

d2
gx ψ

(2)

0 (x)

∣∣∣∣
2

�
[ ∫

M
d2

gx |ψ(2)

0 (x)|2
][ ∫

M
d2

gx

]
= V (M). (84)

Similarly, we can calculate the expectation value of the second term in (80) and obtain

2(n − 2)

V (M)

∫ ∞

0
dt

[∫
M

d2
gz

∣∣∣∣
∫
M

d2
gx Kt/2(x, z; g)ψ

(2)

0 (x)

∣∣∣∣
2
]

e−t|E (2)
gr |. (85)

It can be shown that the above integral is finite if we use the eigenfunction expansions (22)
and (26), so that we have∫
M

d2
gz

∣∣∣∣
∫
M

d2
gx Kt/2(x, z; g)ψ

(2)

0 (x)

∣∣∣∣
2

=
[∫

M
d2

gz

∣∣∣∣
∣∣∣∣e t

2 ∇2
g |ψ(2)

0 〉
∣∣∣∣
∣∣∣∣
2
]

=
∑

l

e−tσl |ψ̃ (2)

0 (l)|2,

(86)

where ψ
(2)

0 (x) = ∑
l fl(x; g)ψ̃

(2)

0 (l). Since
∑

l e−tσl |ψ̃ (2)

0 (l)|2 � e−tσ0
∑

l |ψ̃ (2)

0 (l)|2 and the
minimum eigenvalue σ0 = 0 for compact manifolds, the above integral is bounded from above
by 1 and so that equation (85) is finite. Hence, we obtain

ω
(n)

0 (E (2)
gr ) � − (n − 2)(n − 3)

2|E (2)
gr |[V (M)]2

∣∣∣∣
∫
M

d2
gx ψ

(2)

0 (x)

∣∣∣∣
2

− 2(n − 2)

V (M)

∫ ∞

0
dt

[∫
M

d2
gz

∣∣∣∣
∫
M

d2
gx Kt/2(x, z; g)ψ

(2)

0 (x)

∣∣∣∣
2
]

e−t|E (2)
gr | < 0. (87)

As a consequence of (76) and (87), to find the zero of ω0(E ) in the n-particle sector we must
reduce E below E (2)

gr , as shown in figure 3. This completes the proof. We will now calculate
the n-particle ground state wavefunction in terms of the solution |φ0〉 of �(Egr)|φ0〉 = 0.

Let us expand the minimum eigenvalue ω0(E ) near the bound state energy Egr

ω0(E ) = ω0(Egr) + (E − Egr)
∂ω0(E )

∂E

∣∣∣∣
Egr

+ · · · = (E − Egr)
∂ω0(E )

∂E

∣∣∣∣
Egr

+ · · · . (88)

Using this result and (65), equation (64) yields

1

2
(H0 − Egr)

−1
∫
M

d2
gx φ†

g (x)φ†
g (x)ψ0(x)

(
−∂ω0(E )

∂E

∣∣∣∣
Egr

)−1

|ω0(Egr)〉〈ω0(Egr)|

×
∫
M

d2
gy φg(y)φg(y)ψ∗

0 (y)(H0 − Egr)
−1. (89)

We assume that there is no other pole coming from (H0 −E )−1 near Egr, and no other terms for
k �= 0 contribute to the integral around E = Egr. Let the eigenvector of the principal operator
corresponding to the ground state be

|φ0(Egr)〉 =
∫
Mn−2

d2
gx1 . . . d2

gxn−2 u0(x1, . . . , xn−2)|x1 . . . xn−2〉
∫
M

d2
gx ψ0(x)χ†

g (x)|0〉. (90)

By using the eigenfunction expansion of the creation and the annihilation operators and their
commutation relations, we will shift all creation operators φ†

g (x) in (89) coming from (90) to
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Figure 3. A typical flow of the eigenvalues of the principal operator in the two- and n-boson
sectors.

the leftmost

1

H0 − E
φ†

g (x)φ†
g (x)φ†

g (x1) . . . φ†
g (xn−2) =

∫
Mn

d2
gy1 . . . d2

gyn φ†
g (y1) . . . φ†

g (yn)

×
∫ ∞

0
dt e−t(H0−E )Kt (y1, x; g)Kt (y2, x; g)Kt (y3, x1; g) . . . Kt (yn, xn−2; g),

(91)

and all annihilation operators φg(x) in (89) coming from (90) to the rightmost

φg(x)φg(x)φg(x1) . . . φg(xn−2)
1

H0 − E
=
∫
Mn

d2
gy1 . . . d2

gyn

∫ ∞

0
dt e−t(H0−E )

× Kt (y1, x; g)Kt (y2, x; g)Kt (y3, x1; g) . . . Kt (yn, xn−2; g)φg(y1) . . . φg(yn), (92)

which are the generalized versions of equations we first used in [37]. Therefore, from
equation (89), we read the state vector |�0〉 of our many-body system in terms of the eigenstate
|φ0〉 of the principal operator

|�0〉 =
∫
Mn

d2
gy1 . . . d2

gyn �0(y1, . . . , yn)|y1 . . . yn〉

= 1√
2

∫
Mn

d2
gy1 . . . d2

gyn

∫
Mn−1

d2
gx1 . . . d2

gxn−2 d2
gx

1

n!

∑
σ∈[1...n]

∫ ∞

0
dt e−t|Egr|Kt (yσ (1), x; g)

× Kt (yσ (2), x; g)Kt (yσ (3), x1; g) . . . Kt (yσ (n), xn−2; g) u0(x1, . . . , xn−2)ψ0(x)

×
(

−∂ω0(E )

∂E

∣∣∣∣
Egr

)−1/2

|y1 . . . yn〉, (93)

where the sum runs over all permutations σ of [1 2 3 . . . n]. Comparing equation (90) and
equation (93), we see that the state |�0〉 is a complicated convoluted integral of the eigenstate
|φ0〉 with the heat kernels.
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3. Mean-field approximation

In standard quantum field theory, one expects that all the bosons have the same wavefunction
u(x) for the limit of large number of bosons, i.e. as n → ∞ and the wavefunction of the
system has the product form of the one-particle wavefunctions. However, due to the singular
structure of our problem, the wavefunction in (93) cannot have a product form in the large n
limit. In order to see this, we scale t = t ′/|Egr|. With a hindsight coming from the proof that
the lower bound of the ground state energy grows exponentially with the number of bosons in
flat space [27, 30], we may assume that Egr grows fast enough as n increases. In this case, all
integrals of the heat kernels are peaked around yσ (k). (This is clear from (9) and also from the
stochastic completeness assumption.) Then, all integrals of xl are∫
M

d2
gxl Kt/|Egr|(xl, yσ (l+1))u0(x1, . . . , xl, . . . , xn−2) ≈ u0(x1, . . . , yσ (l+1), . . . , xn−2), (94)

for l = 1, . . . , n − 2 as n → ∞ and similarly for x integral. Then, the state |�0〉 becomes

|�0〉 ≈ 1√
2

∫
Mn

d2
gy1 . . . d2

gyn
1

n!

∑
σ∈[1...n]

∫ ∞

0
dt e−t|Egr|Kt (yσ (1), yσ (2); g)

× u0(yσ (3), . . . , yσ (n))ψ0(yσ (2))

(
−∂ω0(E )

∂E
|Egr

)−1/2

|y1 . . . yn〉. (95)

One can understand the singular nature of the wavefunction in this limiting form more easily.
We pick any two bosons and transform them through our formalism into an orthofermion
with its wavefunction ψ0 to be determined consistently. This orthofermion wavefunction
corresponding to the pairing could be quite regular; yet its multiplication with the heat kernel
integrated over the time variable produces a function singular as the two variables of the heat
kernel approach one another. This singularity is the same as the singularity of the bound state
wavefunction of a particle interacting with a delta source [31], hence it is square integrable.

It is important to note that |�0〉 is not in the domain of H0. To prove this, it is sufficient
to consider the following term which appears in calculating 〈�0|H0|�0〉:∫
M2

d2
gx d2

gy
∫ ∞

0
dt1 e−t1|Egr|Kt1 (x, y; g)ψ0(y)

[∫ ∞

0
dt2 e−t2|Egr|

(
− 1

2m

)
∇2

g Kt2 (x, y; g)

]

=
∫
M2

d2
gx d2

gy
∫ ∞

0
dt1 e−t1|Egr|Kt1 (x, y; g)ψ0(y)

×
[∫ ∞

0
dt2 e−t2|Egr|

(
− ∂Kt2 (x, y; g)

∂t2

)]
, (96)

where we have used the fact that the heat kernel satisfies the heat equation (8). After applying
the integration by parts to the t2 integral and using the initial condition for the heat kernel
Kt (x, y; g) → δg(x, y) as t → 0+ and (30), we find∫
M2

d2
gx d2

gy
∫ ∞

0
dt1 e−t1|Egr|Kt1 (x, y; g)ψ0(y)

[
δg(x, y) − |Egr|

∫ ∞

0
dt2 e−t2|Egr|Kt2 (x, y; g)

]

=
∫
M

d2
gx
∫ ∞

0
dt1 e−t1|Egr|Kt1 (x, x; g)ψ0(x)

−|Egr|
∫ ∞

0
dt1 e−t1|Egr|

∫
M

d2
gx
∫ ∞

0
dt2 e−t2|Egr|Kt1+t2 (x, x; g)ψ0(x). (97)

After the change of variables u = t1 + t2 and v = t1 − t2, we obtain∫
M

d2
gx ψ0(x)

[∫ ∞

0
dt1 e−t1|Egr|Kt1 (x, x; g) − |Egr|

∫ ∞

0
du u e−u|Egr|Ku(x, x; g)

]
. (98)
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The first term is divergent due to (33). Similar to the problem with point interactions on
manifolds which we studied in [31], our problem here can also be considered as a kind of
self-adjoint extension since the state �0 does not belong to the domain of the free Hamiltonian.
The self-adjoint extension of the free Hamiltonian extends this domain such that the state �0

is included. Although the state �0 is not in the domain of H0, the eigenvector corresponding
to the eigenfunction u0(x) for the lowest eigenvalue of �(E ) can be taken in the domain
of H0.

As a result, |�0〉 given in (95) is not in the product form in the large n limit, that is,

|�0〉 �=
∫
Mn

d2
gy1 . . . d2

gyn

n∏
k=1

�0(yk)|y1 . . . yn〉. (99)

The solution takes a kind of convolution of the wavefunctions in the domain of H0 with the
bound state wavefunction which is outside this domain.

Yet, �(E )s lowest eigenfunction may well be approximated by a product form for large
number of bosons, that is,

u0(x1, . . . , xn−2) = u0(x1) . . . u0(xn−2), (100)

with the normalization

||u0||2 =
∫
M

d2
gx |u0(x)|2 = 1,

∫
M

d2
gx |ψ0(x)|2 = 1. (101)

Therefore, the expectation value of the principal operator by applying the mean-field ansatz
must vanish, that is,

〈φ0|�(Egr)|φ0〉 = 0. (102)

Although such a mean-field approximation is expected to be crude in less than three
dimensions, Calogero and Degasperis [18] have shown that even in one dimension the mean-
field approach to this problem gives excellent agreement with the exact result. This is a finite
problem and we will see in the following subsection that the present approach is also consistent
with the exact result. Therefore, we expect that the mean-field approximation to this problem
in two dimensions is also reliable.

In order to calculate (102) explicitly, we will make normal ordering of the creation and
the annihilation operators by using their eigenfunction expansion. Hence, the equation above
yields∫ ∞

0
dt

[
e−tμ2

8πt
−
∫
M2

d2
gx d2

gy ψ∗
0 (x)ψ0(y)K2

t (x, y; g)

× e−t|Egr|
(∫

M2
d2

gx′ d2
gy′ u∗

0(x
′)Kt (x

′, y′; g)u0(y
′)
)n−2

]

= (n − 2)(n − 3)

2

∫ ∞

0
dt

∣∣∣∣∣
∫
M3

d2
gx d2

gx1 d2
gx2 u∗

0(x1)u
∗
0(x2)Kt (x1, x; g)Kt (x2, x; g)ψ0(x)

∣∣∣∣∣
2

× e−t|Egr|
(∫

M2
d2

gx′ d2
gy′ u∗

0(x
′)Kt (x

′, y′; g)u0(y
′)
)n−4

+ 2(n − 2)

∫ ∞

0
dt

∣∣∣∣∣
∫
M2

d2
gx d2

gy u∗
0(x)Kt (x, y; g)ψ0(y)

∣∣∣∣∣
2

× e−t|Egr|
(∫

M2
d2

gx′ d2
gy′ u∗

0(x
′)Kt (x

′, y′; g)u0(y
′)
)n−3

. (103)
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We are going to approximately solve Egr from the above equality for large values of n.
In order to solve it, we may assume that |Egr| grows rapidly with n. This is plausible
because |Egr| � μ2eπn/6 for flat space R

2 given in the mean-field approximation [27]. Every
Riemannian manifold can locally be considered as a flat space, and the infinity appears due
to the high values of momenta (ultraviolet divergence) or short distances; we expect that the
result for the large n behavior of the ground state energy is similar in the manifold case. This
allows us to consider the above equality in the large values |Egr| � μ2 so our aim is to find
only the terms that contribute most to the above integrals.

We first calculate asymptotically the left-hand side of (103)∫ ∞

0
dt

[
e−tμ2

8πt
−
∫
M2

d2
gx d2

gy ψ∗
0 (x)ψ0(y)K2

t (x, y; g)

× e−t|Egr|
(∫

M2
d2

gx′ d2
gy′ u∗

0(x
′)Kt (x

′, y′; g)u0(y
′)
)n
]
, (104)

for the large values of |Egr|. We will now ignore the additive constants to n, e.g., n − 2 � n
since n is very large. The major contribution to the above integral for large values of |Egr| can
be computed since the asymptotic expansion of the following form, namely Laplace integrals

I(|Egr|) =
∫ b

a
dt f (t)e−|Egr|g(t), (105)

is given by Watson’s lemma [45]. The main contribution to the above integral can be obtained
by Taylor or when necessary by the asymptotic expansions of the functions f (t) and g(t) near
the minimum of g(t). Similar to the reasoning given in the previous section, we write the
square of the heat kernel in a subtle way, that is, we will use the initial condition for one of the
heat kernels near t = 0. After this and an integration, we substitute the asymptotic expansion
(33) for the diagonal heat kernel near t = 0 (the region that gives the dominant contribution).
Hence, the left-hand side for large values of |Egr| � μ2 becomes∫ ∞

0
dt

[
e−tμ2

8πt
−
∫
M

d2
gx |ψ0(x)|2 e−t|Egr|

8πt

(∫
M

d2
gx′ |u0(x

′)|2
)n
]

=
∫ ∞

0
dt

[
e−tμ2

8πt
− e−t|Egr|

8πt

]
= 1

8π
ln(|Egr|/μ2). (106)

As for the right-hand side of (103), we apply the same method while we keep the next
order terms coming from the eigenfunction expansion of the heat kernel in the nth power of
the integrals. Therefore, we obtain

n2

2

∫ ∞

0
dt

∣∣∣∣∣
∫
M

d2
gx |u0(x)|2ψ0(x)

∣∣∣∣∣
2

e−t|Egr|
(∫

M
d2

gx |u0(x)|2 − tK[u0]

)n

+ 2n
∫ ∞

0
dt

∣∣∣∣∣
∫
M

d2
gx u∗

0(x)ψ0(x)

∣∣∣∣∣
2

e−t|Egr|
(∫

M
d2

gx |u0(x)|2 − tK[u0]

)n

(107)

where we have defined

K[u0] =
∫
M

d2
gx |∇gu0(x)|2, (108)

and used the eigenfunction expansion of the heat kernel (26) and expanded the exponential
inside by keeping the first two terms:

Kt (x, y; g) ≈
∑

l

(1 − tσl ) fl(x; g) fl(y; g). (109)
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We can rewrite the above expression (107) by making a change of variable t = t ′/|Egr| as

n2

2

∫ ∞

0

dt ′

|Egr|

∣∣∣∣∣
∫
M

d2
gx |u0(x)|2ψ0(x)

∣∣∣∣∣
2

e−t ′
[(

1 − t ′

|Egr|K[u0]

)|Egr|
] n

|Egr |

+2n
∫ ∞

0

dt ′

|Egr|

∣∣∣∣∣
∫
M

d2
gx u∗

0(x)ψ0(x)

∣∣∣∣∣
2

e−t ′
[(

1 − t ′

|Egr|K[u0]

)|Egr|
] n

|Egr |

. (110)

Moreover, we can think of terms in the square brackets as an exponential for large values of
|Egr| so that

n2

2

∫ ∞

0

dt ′

|Egr|

∣∣∣∣∣
∫
M

d2
gx |u0(x)|2ψ0(x)

∣∣∣∣∣
2

e−t ′− t′n
|Egr | K[u0]

+2n
∫ ∞

0

dt ′

|Egr|

∣∣∣∣∣
∫
M

d2
gx u∗

0(x)ψ0(x)

∣∣∣∣∣
2

e−t ′− t′n
|Egr | K[u0]

. (111)

From equation (103), it is easy to see that the left-hand side is a monotonically increasing
function and the right-hand side is a monotonically decreasing function of |Egr| so there is
a unique solution, say at |Egr|. Below this point |Egr|, the left-hand side is always less than
the right-hand side. Therefore, if we can find an upper bound to the right-hand side of (111),
and find a solution at |E∗| this implies that Egr � −|E∗|. For this reason, let us first set the
normalized wavefunction of the orthofermion to saturate the Cauchy–Schwarz inequality (as
noted similarly in the flat case [27])

ψ0(x) = |u0(x)|2(∫
M d2

gx |u0(x)|4)1/2 . (112)

Then, the upper bound of the right-hand side of (111) is

n2

2|Egr|
1

(1 + nK[u0]
|Egr| )

∫
M

d2
gx |u0(x)|4 + 2n

|Egr|
1(

1 + nK[u0]
|Egr|

)
(∫

M d2
gx u∗

0(x)|u0(x)|2)2∫
M d2

gx |u0(x)|4

� n2

2|Egr|
1(

1 + nK[u0]
|Egr|

) ∫
M

d2
gx |u0(x)|4 + 2n

|Egr|
1(

1 + nK[u0]
|Egr|

) , (113)

where the Cauchy–Schwarz inequality in the second term is used, that is,(∫
M d2

gx u∗
0(x)|u0(x)|2)2∫

M d2
gx |u0(x)|4 � (|||u0(x)|2|| ||u0(x)||)2∫

M d2
gx |u0(x)|4 = 1. (114)

We now recall the following theorem (theorem 2.21 in [46]). The Sobolev imbedding
theorem holds for a D-dimensional complete Riemannian manifoldMwith bounded curvature
and injectivity radius δ > 0. Moreover, for any ε > 0, there exists a constant Aq(ε) such that
every ϕ ∈ Hq

1 (M) (Hq
1 (M) is the Sobolev space defined on a manifold M) satisfies

||ϕ||p � (K(D, q) + ε)||∇gϕ||q + Aq(ε)||ϕ||q, (115)

where 1/p = 1/q − 1/D and

K(D, q) = q − 1

D − q

(
D − q

D(q − 1)

)1/q(
�(D + 1)

�(D/q)�(D + 1 − D/q)ωD−1

)1/D

, (116)

with ωD−1 is the volume of SD−1 of unit radius.
Furthermore, there is an optimal inequality for the two-dimensional case given by Aubin

[46, 47] and it states that: letM be a D-dimensional C∞ Riemannian manifolds with injectivity
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radius δ > 0. If the curvature is constant or if the dimension is two and the curvature is bounded,
then Aq(0) exists and every ϕ ∈ Hq

1 (M) satisfies

||ϕ||p � K(D, q)||∇gϕ||q + Aq(0)||ϕ||q. (117)

For R
D and H

D, the inequality holds with Aq(0) = 0.
Let us choose p = 2, q = 1 and D = 2 for our purposes; then inequality (117) is reduced

to (∫
M

d2
gx |ϕ(x)|2

)1/2

� 2

π

∫
M

d2
gx |∇gϕ(x)| + A

∫
M

d2
gx |ϕ(x)|, (118)

where K(2, 1) = 2/π and A1(0) = A. If we set ϕ(x) = |u0(x)|2, then(∫
M

d2
gx |u0(x)|4

)1/2

� 2

π

∫
M

d2
gx |u∗

0(x)∇gu0(x)| + 2

π

∫
M

d2
gx |u0(x)∇gu∗

0(x)|

+ A
∫
M

d2
gx |u0(x)|2

� A + (4/π )K1/2[u0], (119)

where we have used Cauchy–Schwarz inequality and the normalization of u0(x). Hence we
obtain an upper bound for (113)

n2

2|Egr|
(A + (4/π )K1/2[u0])2

(1 + nK[u0]
|Egr| )

+ 2n

|Egr|
1

(1 + nK[u0]
|Egr| )

. (120)

Finally, combining the two results, we find that

|Egr|
4π

ln(|Egr|/μ2) � n2A2

(
1 + βz

)2
1 + αz2

, (121)

where α = 1/|Egr|, β = 4/(πA
√

n) and z = √
nK[u0]. For simplicity, we ignore the second

term on the right-hand side but we will return to these issues once we find the solution and
check the consistency of the approximations that we have made so far. An upper bound of the
right-hand side is achieved at z∗ = β/α and its value is n2A2(1 + β2

α
). As a result of these, we

eventually obtain

Egr � −μ2en(27/π ). (122)

We note that the location of this maximum for the variable z is only formal and does not
correspond to the physical value of nK[u0]. It is simply chosen to obtain an upper bound for
the right-hand side, thus a lower bound for the energy. In fact, to be physically consistent,
nK[u0] should be of the order of |Egr| in the mean-field approximation. Since we do not know
a method to solve these equations, it is not possible to calculate the actual values. Yet it is easy
to check that in the limit where nK[u0] � |Egr|, the renormalized term becomes dominated by
this kinetic term, and the potential part also becomes much less than the renormalized term;
hence there cannot be a zero for the operator �(E ) under these assumptions. Hence, we can
keep K[u0] � |Egr| condition in our approach. This has a nice interpretation physically: for the
�(E ) operator, the ordinary total kinetic energy is of the order of the binding energy; moreover,
the binding pair, transformed into orthofermion, also has finite kinetic energy. Nevertheless,
we know that the actual wavefunction has infinite kinetic energy; thus this formalism nicely
takes out these pairs and converts them into regularly interacting particles. As a result, they
satisfy a nonlinear eigenvalue equation.

After we find the solution, it is easy to check the approximations that we have made;
the order of all these ignored terms is indeed small. To be more precise, the next order terms
coming from the asymptotic expansion become lower order terms in n for the ground state
energy.
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4. Confirmation of the present method in one dimension

We can apply our method to the ground state for the same system in one dimension, where
there is no need for renormalization as can be easily seen from the short ‘time’ asymptotic
expansion of the heat kernel (33) in (32). The exact solution and the Hartree approximation
(for bosons) to the ground state in one dimension have been studied in [17, 18]. The exact
solution is given by [17]

�(x1, . . . , xn) = C exp

⎛
⎝−λ

4

n∑
i> j=1

|xi − x j|
⎞
⎠ , (123)

where the normalization condition (
∫

Rn dx1 . . . dxnδ(xc.m)|�|2 = n) allows us to calculate the
constant C explicitly [17]. The exact ground state energy is then

Egr = −λ2

48
n(n2 − 1). (124)

The Hartree solution to the ground state wavefunction (except for the infinite degeneracy due
to translational invariance) of the same system [18] is

�H (x1, . . . , xn) = n1/2ψ(x1) . . . ψ(xn),

ψ(x) = (λn/8)1/2

cosh (λnx/4)
, (125)

where
∫∞
−∞ dx |ψ(x)|2 = 1. Since n is large in this approximation, we may also write the

above solution as (λn/2)1/2e−λn|x|/4 and the ground state energy is

EH
gr = −λ2

48
n2(n − 1). (126)

It is obvious that the exact results for the ground state coincide with the results given in the
Hartree approximation in the large particle number limit.

Now, let us return to our method and calculate the principal operator of the same system
in R, which is well defined and finite from the beginning of the problem. The result is

�(E ) = 1

λ
−
∫

R2
dx dx′χ†(x)

∫ ∞

0
dt K2

t (x, x′)e−t(H0−E )χ (x′)

− 1

2

∫
R2

dx dx′ χ†(x)

[ ∫
R4

dx1 dx2 dx′
1 dx′

2 φ†(x′
1)φ

†(x′
2)

×
∫ ∞

0
dt Kt (x

′
1, x′)Kt (x

′, x′
2)Kt (x1, x)Kt (x, x2)e

−t(H0−E )φ(x1)φ(x2)

+ 4
∫

R2
dx1dx2 φ†(x1)

∫ ∞

0
dtKt (x1, x′)Kt (x

′, x)Kt (x, x2)e
−t(H0−E )φ(x2)

]
χ(x′),

(127)

where Kt (x, y) = e−|x−y|2/4t

(4πt)1/2 . Condition (102) gives

1

λ
−
∫ ∞

0
dt
∫

R2
dx dy ψ∗

0 (x)ψ0(y)K2
t (x, y)e−t|Egr|

(∫
R2

dx′ dy′ u∗
0(x

′)Kt (x
′, y′)u0(y

′)
)n−2

= (n − 2)(n − 3)

2

∫ ∞

0
dt

∣∣∣∣∣
∫

R3
dx dx1 dx2 u∗

0(x1)u
∗
0(x2)Kt (x1, x)Kt (x2, x)ψ0(x)

∣∣∣∣∣
2

× e−t|Egr|
(∫

R2
dx′ dy′ u∗

0(x
′)Kt (x

′, y′)u0(y
′)
)n−4
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+ 2(n − 2)

∫ ∞

0
dt

∣∣∣∣∣
∫

R2
dx dy u∗

0(x)Kt (x, y)ψ0(y)

∣∣∣∣∣
2

× e−t|Egr|
(∫

R2
dx′ dy′ u∗

0(x
′)Kt (x

′, y′)u0(y
′)
)n−3

. (128)

Following the same analysis given above, we find that the left-hand side of (128) for large
values of |Egr|,

1

λ
−
∫

R

dx |ψ0(x)|2 e−t|Egr|

(8πt)1/2

(∫
R

dx′ |u0(x
′)|2
)n

= 1

λ
− 1

2
√

2|Egr|
, (129)

and the right-hand side of it in the same limit, which is the analogue of (113) in one dimension,
become less than the following term:

n2

2|Egr|
1(

1 + nK[u0]
|Egr|

) ∫
R

dx |u0(x)|4 + 2n

|Egr|
1(

1 + nK[u0]
|Egr|

) . (130)

In one dimension, the Sobolev inequality for 2 < q < ∞ is given as [48](∫
R

dx

∣∣∣∣du0

dx

∣∣∣∣
2 )θ(∫

R

dx |u0|2
)1−θ

� S1,q

(∫
R

dx |u0|q
)2/q

, (131)

where θ = 1
2

(
1 − 2

q

)
and

S1,q = qθθ (1 − θ )1−θ

22/q(q − 2)(q−2)/q

⎡
⎣

√
π�
(

q
q−2

)
�
(

q
q−2 + 1

2

)
⎤
⎦

(q−2)/q

(132)

with equality if and only if u0(x) = c cosh−2/(q−2)(b(x−a)) for some a ∈ R, b > 0 and c ∈ C.
Since we are looking for an upper bound to (130) we will choose q = 4 so that θ = 1/4. Then
the Sobolev inequality in (131) gives∫

R

dx |u0|4 � S−2
1,4

(∫
R

dx

∣∣∣∣du0

dx

∣∣∣∣
2 )1/2(∫

R

dx |u0|2
)3/2

= 1√
3

K1/2[u0], (133)

where we have used the normalization of the wavefunctions and S1,4 = 31/4. Using this result
in (130) and from (129), we obtain

1

λ
− 1

2
√

2|Egr|
� n2

2
√

3|Egr|
K1/2[u0](

1 + nK[u0]
|Egr|

) + 2n

|Egr|
1(

1 + nK[u0]
|Egr|

) . (134)

Keeping the leading order term on both sides, we obtain

1

λ
� n2

2
√

3|Egr|
K1/2[u0](

1 + nK[u0]
|Egr|

) . (135)

Let us define the variables z = nK[u0] and α = 1/|Egr|, and then find the upper bound to the
right-hand side. This occurs at z = 1/α, so we obtain

Egr � −λ2

48
n3, (136)

which is exactly the same result given in (126) in leading order. We note that in this approach
the kinetic energy of the center-of-mass motion is automatically set to be zero. We can also find
the eigenfunction from our analysis. As a result of the above theorem, the Sobolev inequality
that we have used above is saturated if

u0(x) =
√

b/2

cosh(bx)
. (137)
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Here, we have chosen the constant a = 0 without loss of generality and the coefficient
c = √

b/2 has been found from the normalization. The constant b can be determined from the
solution z = nK[u0] = |Egr|. Since the saturating solution (137) satisfies∫

R

dx |u0|4 = 1√
3

K1/2[u0], (138)

we obtain b = λn/4. Therefore we find exactly the same result obtained from the Hartree
approximation (125). Incidentally, in this limit the wavefunctions could be taken as

u0(x) =
√

λn

2
e−nλ|x|/4, (139)

and they are related to the actual wavefunction of the system by our previous formula (93).

5. Renormalization group equations

The RG equations (or Callan–Symanzik equations) for the system, where the particles do
not interact with each other but interact with an external Dirac delta potential in two- and
three-dimensional flat spaces, have been worked out in [9, 10, 14]. The many-body version
of the same problem, where the particles interact via two-body delta potentials, has also been
studied [25, 26, 49].

Recently, we have derived the generalization of the RG equations of the above one-body
model with N delta centers into two- and three-dimensional Riemannian manifolds [31]. Here,
we will show that the interacting version of the problem can also be studied explicitly, as we
will see.

One possible way for the renormalization scheme to determine how the coupling constant
changes with the energy scale is to define the following renormalized coupling constant λR(M)

in terms of the bare coupling constant λ(ε)

1

λR(M)
= 1

λ(ε)
−
∫ ∞

ε

dt
e−M2t

8πt
, (140)

where M is the renormalization scale (it is of dimension [E]1/2). Then, the renormalized
principal operator in terms of renormalized coupling constant is given by

�R(E ) = 1

λR(M)
−
∫
M2

d2
gx d2

gx′χ†
g (x)

∫ ∞

0
dt

[
K2

t (x, x′; g)e−t(H0−E )− e−tM2

8πt
δ(2)

g (x, x′)
]
χg(x

′)

−1

2

∫
M2

d2
gx d2

gx′ χ†
g (x)

[ ∫
M4

d2
gx1 d2

gx2 d2
gx′

1 d2
gx′

2 φ†
g (x′

1)φ
†
g (x′

2)

×
∫ ∞

0
dt Kt (x1, x; g)Kt (x2, x; g)Kt (x

′, x′
1; g)Kt (x

′, x′
2; g)e−t(H0−E )φg(x1)φg(x2)

+ 4
∫
M2

d2
gx1d2

gx2 φ†
g (x1)

∫ ∞

0
dt Kt (x2, x; g)Kt (x

′, x; g)Kt (x
′, x1; g)

×e−t(H0−E )φg(x2)

]
χg(x

′). (141)

Here the bound state energies are again determined from the condition �R(E )|�〉 = 0
in the n-particle sector; however there is an ambiguity: we have a family of solutions for
different choices of M and λR(M). To determine the value of λR(M) at an arbitrary value
of the renormalization point M, a natural choice would be to use the physically measured
two-body bound state energy E (2)

gr , if it exists—otherwise to use a scattering amplitude at
some two-particle energy. The solution then determines the relation between λR(M) and M.
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Explicit dependence on M cancels the implicit dependence on M through λR(M). In the case of
two-body bound state energy, the principal operator acts on |0〉 ⊗ ∫M d2

gx ψ(x)χ†
g |0〉. Hence,

because of the condition for the bound states (54) we obtain an equation, the solution of which
fixes λR(M) as a function of M, E (2)

gr :

1

λR(M)
−
∫
M2

d2
gx d2

gx′ψ∗(x)

∫ ∞

0
dt

[
K2

t (x, x′; g)e−t|E∗| − e−tM2

8πt
δ(2)

g (x, x′)
]
ψ(x′) = 0.

(142)

Even if we cannot explicitly solve this equation, the arbitrariness in the choice of the scale is
reflected by the expression below:

M
d�R(M, λR(M), E; g)

dM
= 0, (143)

or (
M

∂

∂M
+ β(λR)

∂

∂λR

)
�R(M, λR(M), E; g) = 0, (144)

where

β(λR) = M
∂λR

∂M
(145)

is called the β function and equation (144) is the RG equation. This equation implies that the
physics is independent of the choice of our renormalization scale. Using (141) and (144), we
can find the β function exactly:

β(λR) = − λ2
R

4π
< 0. (146)

This result is exactly the same as the one in flat spaces given in the literature [26] so our
problem is asymptotically free, too.

We will now derive an analogue of the Callan–Symanzik equation for our principal
operator �R and show that there is a simple solution of this equation, related to the flow of the
renormalized coupling constant. This will reconcile the present method with the tools of the
conventional approach to field theories.

In order to see this, we will use the scaling property of the heat kernel in two-dimensional
Riemannian manifolds

Kt (x, y; g) = γ −2Kγ −2t (x, y; γ −2g), (147)

with the assumption that the manifold that we are interested in is stochastically complete, that
is,
∫
M d2

gx Kt (x, y; g) = 1. There exists a unitary representation for the scaling transformation
of the metric g �→ γ −2g such that the creation and annihilation operators transform like

U (γ )φg(x)U†(γ ) = γ −1φγ −2g(x), U (γ )φ†
g (x)U†(γ ) = γ −1φ

†
γ −2g(x)

U (γ )χg(x)U†(γ ) = γ −1χγ −2g(x), U (γ )χ†
g (x)U†(γ ) = γ −1χ

†
γ −2g(x), (148)

where we have used their commutation relations and the algebra of the orthofermions defined
in (10). The wavefunction normalization will be invariant under this transformation.

Let us first simultaneously scale the energy by γ 2 and the metric by γ −2 in the renormalized
principal operator given explicitly in (141) and obtain

�R(M, λR(M), γ 2E; γ −2g) =
∫
M d2

γ −2gx χ
†
γ −2g(x)χγ −2g(x)

λR(M)
−
∫
M2

d2
γ −2gxd2

γ −2gx′χ†
γ −2g(x)

×
∫ ∞

0
dt

[
K2

t (x, x′; γ −2g)e−t(H0−γ 2E ) − e−tM2

8πt
δ

(2)

γ −2g(x, x′)
]
χγ −2g(x

′)
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−1

2

∫
M2

d2
γ −2gx d2

γ −2gx′ χ
†
γ −2g(x)

[ ∫
M4

d2
γ −2gx1 d2

γ −2gx2 d2
γ −2gx′

1 d2
γ −2gx′

2φ
†
γ −2g(x

′
1)

×φ
†
γ −2g(x

′
2)

∫ ∞

0
dt Kt (x1, x; γ −2g)Kt (x2, x; γ −2g)Kt (x

′, x′
1; γ −2g)

× Kt (x
′, x′

2; γ −2g)e−t(H0−γ 2E )φγ −2g(x1)φγ −2g(x2)

+ 4
∫
M2

d2
γ −2gx1 d2

γ −2gx2 φ
†
γ −2g(x1)

∫ ∞

0
dt Kt (x2, x; γ −2g)

× Kt (x
′, x; γ −2g)Kt (x

′, x1; γ −2g)e−t(H0−γ 2E )φγ −2g(x2)

]
χγ −2g(x

′). (149)

Now, we make a change of variable t �→ γ −2t and use the scaling property of the heat kernel
(147) and obtain

�R(M, λR(M), γ 2E; γ −2g) =
γ −2

∫
M d2

gx χ
†
γ −2g(x)χγ −2g(x)

λR(M)
−
∫
M2

d2
gx d2

gx′χ†
γ −2g(x)

×
∫ ∞

0
dtγ −2

[
K2

t (x, x′; g)e−tγ −2(H0−γ 2E ) − e−tγ −2M2

8πt
δ(2)

g (x, x′)
]
χγ −2g(x

′)

− 1

2

∫
M2

d2
gx d2

gx′ χ
†
γ −2g(x)

[
γ −6

∫
M4

d2
gx1 d2

gx2 d2
gx′

1 d2
gx′

2 φ
†
γ −2g(x

′
1)

× φ
†
γ −2g(x

′
2)

∫ ∞

0
dt Kt (x1, x; g)Kt (x2, x; g)Kt (x

′, x′
1; g)

× Kt (x
′, x′

2; g)e−tγ −2(H0−γ 2E )φγ −2g(x1)φγ −2g(x2)

+ 4γ −4
∫
M2

d2
gx1d2

gx2 φ
†
γ −2g(x1)

∫ ∞

0
dt Kt (x2, x; g)Kt (x

′, x; g)

× Kt (x
′, x1; g)e−tγ −2(H0−γ 2E )φγ −2g(x2)

]
χγ −2g(x

′), (150)

where we have used δ
(2)

γ −2g(x, x′) = γ 2δ(2)
g (x, x′) and d2

γ −2gx = γ −2 d2
gx. Using (148), and

inserting the identity U (γ )U†(γ ) in the appropriate places inside the above equation, we
obtain for U†(γ ) �R(M, λR(M), γ 2E; γ −2g) U (γ ):

U†(γ ) �R(M, λR(M), γ 2E; γ −2g) U (γ ) = 1

λR(M)
−
∫
M2

d2
gx d2

gx′χ†
g (x)

×
∫ ∞

0
dt

[
K2

t (x, x′; g)e−t(H0−E ) − e−t(γ −1M)2

8πt
δ(2)

g (x, x′)
]
χg(x

′)

− 1

2

∫
M2

d2
gx d2

gx′ χ†
g (x)

[ ∫
M4

d2
gx1 d2

gx2 d2
gx′

1 d2
gx′

2 φ†
g (x′

1)φ
†
g (x′

2)

×
∫ ∞

0
dt Kt (x1, x; g)Kt (x2, x; g)Kt (x

′, x′
1; g)Kt (x

′, x′
2; g)e−t(H0−E )φg(x1)φg(x2)

+ 4
∫
M2

d2
gx1 d2

gx2 φ†
g (x1)

∫ ∞

0
dt Kt (x2, x; g)

× Kt (x
′, x; g)Kt (x

′, x1; g)e−t(H0−E )φg(x2)

]
χg(x

′), (151)

where

U†(γ )e−tγ −2(H0−γ 2E )U (γ ) = e−t(H0−E ). (152)

Therefore we finally obtain

U†(γ ) �R(M, λR(M), γ 2E; γ −2g) U (γ ) = �R(γ −1M, λR(M), E; g). (153)
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It is important to note that we need to scale the metric as well. The idea of the metric scaling in
deriving the RG equation was motivated by [50] in the context of RG in quantum field theory
on curved spaces. Hence we have

γ
d

dγ
[U†(γ )�R(M, λR(M), γ 2E; γ −2g)U (γ ) = �R(γ −1M, λR(M), E; g)]. (154)

This leads to the RG equation for U†(γ )�R(M, λR(M), γ 2E; γ −2g)U (γ ),

γ
d

dγ
U†(γ )�R(M, λR(M), γ 2E; γ −2g)U (γ )

+M
∂

∂M
U†(γ )�R(M, λR(M), γ 2E; γ −2g)U (γ ) = 0, (155)

or [
γ

d

dγ
− β(λR)

∂

∂λR

]
U†(γ )�R(M, λR(M), γ 2E; γ −2g)U (γ ) = 0. (156)

If we postulate the following functional form for the principal matrix

U†(γ )�R(M, λR(M), γ 2E; γ −2g)U (γ ) = f (γ )�R(M, λR(γ M), E; g), (157)

and substitute into (156), we obtain an ordinary differential equation for the function f

γ
d f (γ )

dγ
= 0. (158)

This has the solution f (γ ) = 1 using the initial condition at γ = 1. Therefore, we obtain

U†(γ )�R(M, λR(M), γ 2E; γ −2g)U (γ ) = �R(M, λR(γ M), E; g), (159)

which means that there is no anomalous scaling. This interesting result has been derived in
[25, 26] for the two-particle sector in flat space for the T -matrix.

By integrating

β(λR) = M̄
∂λR(M̄)

∂M̄
= −λ2

R(M̄)

4π
(160)

between M̄ = M to M̄ = γ M, we can find the flow equation for the coupling constant

λR(γ M) = λR(M)

1 + 1
4π

λR(M) ln γ
. (161)

Indeed, the above evolution can also be derived from the choice of our coupling constant given
in (140). One can explicitly check relation (159) if the coupling constant evolves according
to (161). First, we add and subtract a term in the time integral to �R(M, λR(γ M), E; g) (as
indicated explicitly below) and use (161):

�R(M, λR(γ M), E; g) = 1

λR(M)
+ 1

4π
ln γ −

∫
M2

d2
gx d2

gx′χ†
g (x)

×
∫ ∞

0
dt

[
K2

t (x, x′; g)e−t(H0−E ) − e−tM2

8πt
δ(2)

g (x, x′)

+e−tγ −2M2

8πt
δ(2)

g (x, x′) − e−tγ −2M2

8πt
δ2

g (x, x′)
]
χg(x

′)

−1

2

∫
M2

d2
gx d2

gx′ χ†
g (x)

[ ∫
M4

d2
gx1d2

gx2d2
gx′

1d2
gx′

2 φ†
g (x′

1)φ
†
g (x′

2)

×
∫ ∞

0
dt Kt (x1, x; g)Kt (x2, x; g)Kt (x

′, x′
1; g)Kt (x

′, x′
2; g)e−t(H0−E )

× φg(x1)φg(x2) + 4
∫
M2

d2
gx1d2

gx2 φ†
g (x1)

∫ ∞

0
dt Kt (x2, x; g)

× Kt (x
′, x; g)Kt (x

′, x1; g)e−t(H0−E )φg(x2)

]
χg(x

′). (162)
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We find

�R(M, λR(γ M), E; g) = 1

λR(M)
−
∫
M2

d2
gx d2

gx′χ†
g (x)

×
∫ ∞

0
dt

[
K2

t (x, x′; g)e−t(H0−E ) − e−tγ −2M2

8πt
δ(2)

g (x, x′)
]
χg(x

′)

−1

2

∫
M2

d2
gx d2

gx′ χ†
g (x)

[ ∫
M4

d2
gx1 d2

gx2 d2
gx′

1 d2
gx′

2 φ†
g (x′

1)φ
†
g (x′

2)

×
∫ ∞

0
dt Kt (x1, x; g)Kt (x2, x; g)Kt (x

′, x′
1; g)Kt (x

′, x′
2; g)e−t(H0−E )

× φg(x1)φg(x2) + 4
∫
M2

d2
gx1 d2

gx2 φ†
g (x1)

∫ ∞

0
dt Kt (x2, x; g)

× Kt (x
′, x; g)Kt (x

′, x1; g)e−t(H0−E )φg(x2)

]
χg(x

′). (163)

This is exactly equal to �R(γ −1M, λR(M), E; g) and this is indeed
U†(γ )�R(M, λR(M), γ 2E; γ −2g)U (γ ) due to (153). This shows that one can alternatively
find the evolution of the coupling constant which is given in (161) from the scaling
relation (159).

6. Conclusion

In this paper, we have constructed a new non-perturbative renormalization method for the
many-body problem on two-dimensional manifolds. The ground state energy is studied in the
mean-field approximation. The renormalization group equation has been derived and the β

function is exactly given; as a result, it is shown that the model is asymptotically free.
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