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a  b  s  t  r  a  c  t

Quasi-supervised  learning  is  a statistical  learning  algorithm  that  contrasts  two  datasets  by  computing
estimate  for  the  posterior  probability  of each  sample  in either  dataset.  This  method  has  not  been  applied  to
histopathological  images  before.  The  purpose  of  this  study  is  to  evaluate  the  performance  of the  method
to  identify  colorectal  tissues  with  or without  adenocarcinoma.  Light  microscopic  digital  images  from
histopathological  sections  were  obtained  from  30 colorectal  radical  surgery  materials  including  adeno-
carcinoma  and  non-neoplastic  regions.  The  texture  features  were  extracted  by  using local histograms
and co-occurrence  matrices.  The  quasi-supervised  learning  algorithm  operates  on  two  datasets,  one
containing  samples  of  normal  tissues  labelled  only  indirectly,  and  the other  containing  an  unlabeled
collection  of  samples  of  both  normal  and  cancer  tissues.  As such,  the  algorithm  eliminates  the  need  for
manually  labelled  samples  of  normal  and  cancer  tissues  for conventional  supervised  learning  and  signifi-
cantly  reduces  the  expert  intervention.  Several  texture  feature  vector  datasets  corresponding  to different
extraction parameters  were  tested  within  the  proposed  framework.  The  Independent  Component  Analy-
sis dimensionality  reduction  approach  was  also  identified  as the  one  improving  the  labelling  performance
evaluated  in  this  series.  In  this  series,  the proposed  method  was  applied  to  the  dataset  of  22,080  vec-
tors  with  reduced  dimensionality  119  from  132. Regions  containing  cancer  tissue  could  be  identified
accurately  having  false  and  true  positive  rates  up  to 19%  and  88% respectively  without  using manually

labelled  ground-truth  datasets  in a  quasi-supervised  strategy.  The  resulting  labelling  performances  were
compared  to  that of  a  conventional  powerful  supervised  classifier  using  manually  labelled  ground-truth
data.  The  supervised  classifier  results  were  calculated  as 3.5%  and  95%  for the  same  case.  The results
in this  series  in  comparison  with  the  benchmark  classifier,  suggest  that  quasi-supervised  image  texture
labelling  may  be a useful  method  in the  analysis  and  classification  of  pathological  slides  but  further  study

e resu
is  required  to  improve  th

. Introduction

Computerized analysis of histopathology slides has been a very
ttractive research topic with the recent advances in computa-
ional power. Meanwhile, improvements in image analysis and

achine learning techniques allowed researchers to address the
ltimate goal of supporting pathologists in diagnosis, disease detec-
ion and grading. Increasing number of complex patterns that need
o be checked by pathologists and rapidly growing histopatho-
ogy slide databases keep the subject of automated quantitative

nalysis of histopathology slides indispensable today. There were
any studies conducted for automated detection of regions hav-

ng the characteristics of a specific disease. The diseases taken into
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consideration in this respect include colorectal dysplasia (Hamilton
et al., 1997), breast lesions (Sahiner et al., 1996; Dundar et al.,
2010, 2011), renal cell carcinoma (Waheed et al., 2007), cervi-
cal (Hallouche et al., 1992), prostate (Diamond et al., 1982; Pitts
et al., 1993; Doyle et al., 2006, 2007; Huang and Lee, 2009), oral
cancers (Muthu et al., 2012; Mookiah et al., 2011) and colon can-
cers (Hamilton et al., 1987; Nasser Esgiar et al., 1998; Rajpoot and
Rajpoot, 2004; Masood et al., 2006; Filippas et al., 2003; Nwoye
et al., 2006).

The classification accuracy in colorectal samples was  83% in dys-
plasia (Hamilton et al., 1997) and 88% in inflammatory colorectal
diseases (Ficsor et al., 2008). The accuracy acquired in identifica-
tion of colorectal cancers was  89–100% in different series (Nasser
Esgiar et al., 1998; Rajpoot and Rajpoot, 2004; Masood et al., 2006;

Filippas et al., 2003; Nwoye et al., 2006) by using various methods.

The common machine learning approach in all of these stud-
ies was  the use of a supervised classification procedure to label
the tissue regions of interest. In these supervised classification

dx.doi.org/10.1016/j.micron.2013.01.003
http://www.sciencedirect.com/science/journal/09684328
http://www.elsevier.com/locate/micron
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tudies, manually labelled training data were needed for supervised
lassifier training. Among the classification strategies put to the
ask both linear discriminate function and K-Nearest-Neighbour
on-parametric classifiers were separately used to identify can-
erous colonic mucosa (Nasser Esgiar et al., 1998) while in other
eries, a support vector machine (SVM) classifier was used to carry
ut the discrimination between normal and malignant colon tis-
ue cells (Rajpoot and Rajpoot, 2004; Masood et al., 2006). Filippas
t al. (2003) focused on the identification of normal and cancerous
olonic mucosa using a genetic algorithm. Doyle et al. performed
tudies for automated detection of prostatic adenocarcinoma and
or prostate cancer grading using Adaboost, Decision Trees and
VM classifiers (Doyle et al., 2006, 2007). There are other methods
pplied to the different types of carcinomas. In renal carcinomas,
omputer-aided histopathological classification using a multi-class
ayesian decision rule that assumes multivariate Gaussian distri-
utions for the feature vectors was also used (Waheed et al., 2007).
woye et al. used a fuzzy neural network classifier to detect adeno-
as  and adenocarcinomas in colorectal tissue slides (Waheed et al.,

007; Nwoye et al., 2006). Krishnan et al. found the best method
mong five different classifiers; Decision Tree (DT), Sugeno Fuzzy,
aussian Mixture Model (GMM), K-Nearest-Neighbour (K-NN) and
adial Basis Probabilistic (Muthu et al., 2012) classifiers.

Besides these approaches, the Multiple Instance Learning (MIL)
rocedure has been proposed as a variation of supervised learning
or problems with incomplete knowledge about labels of training
amples (Dietterich et al., 1997). In MIL, the labels are only assigned
o bags of instances. In the binary case, a bag is labelled positive if
t least one instance in that bag is positive, and the bag is labelled
egative if all the instances in it are negative. The goal of MIL  is
o classify unseen bags or instances based on the labelled bags
s the training data. This classification methodology was used in
everal applications of the automated diagnosis of breast lesions
Dundar et al., 2010, 2011) and classification human histological
mages (Zhao et al., 2006).

Beyond the construction of a texture classifier using one of clas-
ifier construction alternatives, all these methods share a common
round: a manually labelled collection of regions on histopatho-
ogy slides. The process of obtaining such a collection, however,
an be painstaking and laborious, especially when the number of
istopathology slides on which the manual labelling is carried out

s large to achieve better statistical characterization. In addition,
he inter-observer and intra-observer variability of pathologists
nterpretation of histopathology slides is a well recognized issue
Sarioglu et al., 2010) which may  even effect the common super-
ised machine learning approach.

Quasi-supervised learning (QSL) is a statistical learning algo-
ithm that contrasts two datasets by computing estimates for
he posterior probabilities of their samples of belonging in either
ataset (Karacali, 2010). The QSL method addresses an identifica-
ion problem where labelled samples are available from one class
nly, in a reference dataset. A second, unlabelled dataset is also
rovided and contains a mixture of samples from both control and
arget classes.

In performance evaluation experiments on synthetic datasets,
SL method outperformed alternative strategies based on SVM
lassification and minimum spanning trees for varying dataset size,
verlap, and dimensionality (Karacali, 2010). The QSL algorithm
as successfully operated on a limited number of colon histopatho-

ogy slide image database (Onder et al., 2010). Kokturk also studied
he separation of the electroencephalography data recorded under
ifferent visual stimuli by using the QSL algorithm (Kokturk, 2011).

he data used in that study contained multiple channel EEG recor-
ings under six different visual stimuli in random successive order.
okturk identified condition-specific EEG profiles in different com-
arison scenarios by using the QSL. The results revealed that the
47 (2013) 33–42

QSL algorithm was efficient in capturing the distinction between
the experimental data samples.

This article presents the first application of the quasi-supervised
learning algorithm to fully automated labelling of cancer histol-
ogy slides. In the quasi-supervised learning setting, a manually
curated ground truth dataset required for conventional classifier-
based methods is not available for learning. Instead, the proposed
methodology contrasts the regions observed on histology slides of
non-neoplastic tissues to those containing tumour, and automati-
cally identifies the tumour-related regions that are highly specific
to the slides of tumour tissue. As the slides of the tumour tis-
sue also contain non-neoplastic tissue regions, separation of the
tumour tissues from the surrounding tissues in the absence of pre-
viously labelled examples represents a novel labelling problem that
cannot be addressed using any of the previous methods such as
those based on support vector machines. In the experiments on a
large collection of colorectal carcinoma (CRCa) histology slides, the
proposed methodology successfully identified the tumour regions
without any manual labelling for representative regions of non-
neoplastic and cancer tissues. As such, it offers a viable alternative
to classifier-based strategies for automated labelling of histology
slides by eliminating the need for manually curating ground-truth
datasets characterizing all tissue classes of interest and thereby
minimizing the training effort.

2. Materials and methods

2.1. Histopathological Image Library

An image library of 230 light microscopic images was con-
structed to be used in the texture classification experiments. This
set of digital light microscopic images was  taken from heama-
toxylin and eosin (H&E) stained sections of formalin fixed paraffin
embedded tissue sections of non-neoplastic colorectal (NNCR) and
CRCa tissues from radical colectomy or rectum resection speci-
mens by a camera (Olympus DP70, Olympus Optical Co. Ltd., Tokyo,
Japan) connected to a light microscope (Olympus BX51, Olympus
Optical Co. Ltd., Tokyo, Japan) at an original magnification of 4×.

All the original images in the library have 256 level RGB planes,
4080 × 3720 pixel dimensions and approximately 1 �m per pixel
resolution. 4 × 4 pixels regular grid sampling was applied to all orig-
inal images to get smaller image size that yielded relatively shorter
computation times in feature extraction stage. Thus, the secondary
histopathological images used throughout this research had 4 �m
per pixel resolution.

The images were acquired using fixed capture and illumination
parameters (the microscope light exposure was  manually set to 6
from a scale of 0 to 6). The image library was then divided into two
groups as NNCR and unlabelled mixed; NNCR and CRCa. The rule
for group assignment was as follows; when an expert observed no
carcinoma region throughout an image, that image was labelled as
NNCR and assigned to the first group.

For the second group, the term “mixed” is used in order to indi-
cate that these images are composed of features associated with
both NNCR and CRCa tissues. This separation of the images into
two groups by a pathology expert was a very simple task com-
pared to manual labelling of isolated colorectal carcinoma regions
and it was much less operator dependent. The NNCR group had 127
images and the mixed group had 103 images in total.

2.2. The proposed framework
The proposed framework is illustrated in Fig. 1, in the form of a
flow diagram combining the individual methods described in this
section.
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1. First order features (Pratt, 1991; Gonzalez and Woods, 1992)
(a) Mean value of pixels,
Fig. 1. Graphical abstract of the pro

The first block of the proposed framework is texture feature
xtraction which will be explained in the following section. In this
lock, the texture feature vectors are calculated using the histo-
athology images from the reference and the mixed image groups.
ach feature vector takes the initial label of its source image group;
ither reference or mixed.

The blocks following the texture feature extraction are the vec-
or normalization and the vector dimensionality reduction blocks.
fter the dimensionality reduction, all of the reduced feature vec-

ors are then fed to the QSL algorithm. The QSL algorithm calculates
he posterior probability p0(x) for each texture feature vector x,
efined as the probability of it being assigned to the reference label.
t the same time, the optimum reference set size nopt for these

exture vector datasets is also calculated.
After p0(x) values are calculated for all feature vectors x, the

hreshold Topt is to be determined in order to set resultant tex-
ure vector labels. The feature vectors x that satisfy the condition
0(x) ≥ Topt are assigned to the label reference, whereas, all other
ectors are assigned to the label of contrast. The meaning of the
ontrasted label may  vary due to the experimental setup but it
s basically the contrasted characteristics between reference and

ixed image groups. In our study, the reference image label corre-
ponds to the healthy regions (NNCR) whereas contrasted label, i.e.
he contrast between the mixed and the reference groups, means
ancer (CRCa) or any other unknown local characteristics specific
o the mixed image group.

To display the labelling results, all local image regions are
ramed as an overlay onto the original histopathology images by
sing two different colours and line styles. The green dashed lines
epresent textures labelled as healthy and the solid red lines rep-
esent textures labelled as cancer-related.

.3. Texture feature vectors

This section describes the texture feature extraction strategy
nd presents the several different vector datasets used in this study.

.3.1. Constitution of texture feature vectors
One of the classical approaches to texture classification is to

se texture features derived from co-occurrence matrices (Haralick
t al., 1973). A co-occurrence matrix is a local approximation to the
oint distribution of grey level values of pixel pairs at specified dis-
ances. The entry of a co-occurrence matrix at the ith row and the

th column in an image I is calculated by:

I,d(i, j) =
∑

p,q�Br (x)1{I(p) = i, I(q) = j, �(p, q) = d}
∑

p,q�Br (x)1{�(p, q) = d} (1)
 QSL texture labelling framework.

where I is the grey level image, d is the pair-wise distance of pixels
and Br(x) defines the neighbourhood of radius r around a centre
coordinate x. Furthermore, p and q represent two  pixels in the
image and �(p, q) represents the Euclidean distance between them.
There is no direction specific relation exists between p and q while
selecting these image pixels. The function (1) is defined as a binary
function that takes the values 1 or 0 when its argument is true and
false, respectively.

Although it is theoretically possible to calculate texture feature
vectors around every pixel of an image under consideration, it is not
computationally feasible. Therefore, we  have assumed that the co-
occurrence matrix varied smoothly across the image, and carried
out feature vector computation for points on a regular grid with r
pixels spacing. Furthermore, the decision made for a feature vector
of a grid point was  generalized to the square image region of size
r × r centred at that point. The sketch for the calculation geometry
is shown in Fig. 2.

Texture features that characterize the appearance of an image
square are composed of the first order and the second order charac-
teristics. The first order texture features were obtained using local
histograms, whereas the second order features were obtained from
co-occurrence matrices calculated in a local image region. The list
of texture features used in this study is given below. The second
order texture feature characteristics except (2.(n)) are known as
Haralick features (Haralick et al., 1973).
Fig. 2. Texture feature vector calculation geometry.
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(b) Variance,
(c) Skewness,
(d) Kurtosis,
(e) Entropy,
(f) Energy,
(g) Maximum value of histogram,
(h) Corresponding pixel value for maximum value of histogram.

. Second order features
(a) Angular second moment,
(b) Contrast,
(c) Correlation,
(d) Sum of squares: variance,
(e) Inverse difference moment,
(f) Sum average,
(g) Sum entropy,
(h) Sum variance,
(i) Entropy,
(g) Difference variance,
(k) Difference entropy,
(l) Information measures of correlation 1,

(m)  Information measures of correlation 2,
(n) Maximum probability (maximum co-occurrence matrix ele-

ment).

For a local image square, each texture feature in the list above
onstitutes a component of its texture feature vector. It should
e noted that for a local image square, various second order tex-
ure features can be calculated for co-occurrence matrices obtained
sing different pair-wise pixel distance values d. Second order fea-
ure vector components calculated using various d values can then
e combined with the first order features to form a more detailed
eature vector.

Another strategy to enrich the set of texture features is to use a
ierarchical organization. In a hierarchical computation of texture

eatures, a set of radius values that are multiples of r is used to define
 nested set of neighbourhoods. For each neighbourhood, texture
eature vector extraction is performed and these vectors are then
oncatenated in order to have higher dimensional resultant tex-
ure feature vector. In this strategy, (i, j)th entry of a co-occurrence

atrix of a hierarchical level h = 1, 2, . . .,  H is calculated by;

I,h,d(i, j) =
∑

p,q�Br×h(x)1{I(p) = i, I(q) = j, �(p, q) = d}
∑

p,q�Br×h(x)1{�(p, q) = d} , (2)

imilar to Eq. (1).  The difference is the size of neighbourhood
r×h(x). Note that, h = 1 corresponds to non-hierarchical texture
eature extraction. The idea behind hierarchical texture feature vec-
ors is to identify small scale texture characteristics together with
hose present at larger scales. The geometry of hierarchical texture
eature calculation for h = {1, 2} is shown in Fig. 3.

.3.2. Texture feature vector datasets
Throughout this study, various texture feature vector datasets

ere constructed in order to evaluate the corresponding texture
abelling performances. A texture feature dataset is differentiated

ith the parameters used in feature vector extraction. Texture
xtraction configuration parameters used in this study are listed
n groups as below;

. Source image plane(s),
(a) Grey level plane,

(b) Lab colour planes (L, a and b).

. Basic radius value r of texture feature calculation geometry,

. Set of pairwise pixel distance values used together d,

. Hierarchical feature computation.
Fig. 3. Hierarchical texture feature vector calculation geometry for h = {1, 2}.

(a) Single neighbourhood (H = 1),
(b) Multiple nested neighbourhoods (H ≥ 2).

In the experiments of this study, both the grey level and the
colour information obtained from the histopathological images
were used in parallel. In case of colour image processing, orig-
inal images were transformed into Lab image planes using the
well-known RGB to Lab colour transformation referencing a white
point of (255, 255, 255) in the RGB space, and each image plane
was processed separately (Schwarz et al., 1987; CIE, 1986). Specif-
ically, for an image region, texture feature vectors were calculated
for each of L, a and b planes and then concatenated to produce
a single texture feature vector. Therefore, a texture feature vec-
tor obtained from an Lab image had three times the dimension
as the one obtained from a grey level image. In addition, uniform
scalar quantization on 16 intensity levels was performed on each
image plane of interest before calculating the co-occurrence matri-
ces and the texture feature vector components to limit the number
of possible image intensity pairs.

There are several limitations in selecting a radius value r for
the feature calculation geometry. Firstly, the radius value selected
was to match the discriminative local texture characteristics. Large
radius values yield less number of feature vectors than the smaller
values in total, and sustain difficulties in defining the regions of
texture transition. On the other hand, smaller radius values provide
relatively higher separation in texture transition regions but make
the labelling problem labour intensive due to larger numbers of
texture feature vectors. In addition, the smallest artifact observed in
the Histopathological Image Library, the cell nucleus was 15–20 �m
in diameter. As a result, a list of r values, 32, 48, 64, 128 pixels were
taken as alternative texture extraction configuration parameters.

For each texture feature vector dataset, a set of pair-wise pixel
distance value(s) d was arbitrarily taken into consideration with
the upper boundary equals to the basic radius r.

The level of hierarchy H was either selected as 1 or 2, limiting
the feature vector computations to neighbourhoods of radii r and
2r. H = 1 case is also regarded as the “no hierarchy” case. The
resulting texture feature vector datasets of this study are listed in
Table 1 with their respective texture feature extraction configura-
tion parameters:
2.4. Quasi-supervised learning

Quasi-supervised learning (QSL), is a machine-learning tech-
nique that uses both indirectly labelled and unlabelled data as



D. Onder et al. / Micron 

Table  1
Texture configuration parameter values for each texture feature vector dataset.

Texture features Source plane(s) r H d

Dataset 1 Grey level 64 2 {1, 3, 5, 9, 13, 17, 21, 41, 51, 61}
Dataset 2 Lab 64 2 {1, 3, 5, 9, 13, 17, 21, 41, 51, 61}
Dataset 3 Lab 64 1 {1, 3, 5, 9, 13, 17, 21, 41, 51, 61}
Dataset 4 Lab 48 2 {1, 3, 7, 13}
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Dataset 5 Lab 64 2 {1}
Dataset 6 Lab 32 2 {1, 3, 7, 13}

raining datasets and does not require manually labelled ground-
ruth vector datasets for recognition (Karacali, 2010). In a binary
ecognition setting, the algorithm is provided with two datasets:

 reference dataset C0 containing samples of one class only, and a
ixed dataset C1 containing an unlabelled collection of samples.

he algorithm then exploits the asymptotic properties of Nearest-
eighbourhood classification on randomly selected reference sets

Cover and Hart, 1967). Specifically, it estimates the posterior prob-
bilities Pr{C0|x} and Pr{C1|x} using an average number of times a
oint x is assigned to C0 or C1 with respect to a random reference
et containing n points from each collection.

The posterior probability forms the basis for automatic labelling
f the samples in the unlabelled dataset. Given a threshold T, the
nlabelled dataset samples x for which p1(x) ≥ T are identified as
amples specific to C1, and by construction, belonging to the class
ot represented in C0. Finally, the reference set size parameter n is
etermined by minimizing the following cost functional:

(n) = 4
∑

i

(p0(x)p1(x)) + 2n (3)

The first term in this cost functional represents the penalty for
he large class overlaps, while, the second term represents the pref-
rence for smaller n values to achieve better generalisation with
earest-Neighbourhood classification. The reasoning and the ver-

fication of the cost functional were explained in greater detail in
aracali (2010).

In this study, the QSL algorithm was applied to the texture
eature vectors corresponding to the reference and mixed library
mage groups and the subsequent labelling of the corresponding
mage regions were obtained. The procedure first computed the
osterior probabilities p0(x) and p1(x) for all feature vectors in the
wo datasets for the optimal reference set size n. During the compu-
ation of the posterior probability for a given n, the feature vectors
btained from the same image as the vector in consideration were
eft outside of the analysis in order to prevent biasing the analy-
is results due to the possible similarity between feature vectors
btained from the same histopathology slide.

In the labelling of a feature vector x, higher p0(x) value means
hat the vector in question is more similar to those of NNCR tissues
n the reference dataset. In turn, lower p0(x) value means that the
ector in question is different from the NNCR feature vectors and
y construction associated with CRCa.

.5. Texture labelling performance evaluation

This section describes the strategy that uses ground truth tex-
ure information in order to evaluate the labelling performance of
he proposed framework.

.5.1. Ground truth atlas data
Texture feature vector datasets and corresponding group labels
s reference or unlabelled were fed to QSL algorithm and the result-
ng labels compared with the ground-truth vector labels in order
o measure the labelling performance. To obtain ground-truth atlas
ata, a software tool, the Histopathological Image Atlas Editor (HIAE)
47 (2013) 33–42 37

was developed in C++with a Graphical User Interface for the Win-
dows operating system. The HIAE retrieves selected images from
the Histopathological Image Library and allows an expert to mark
the cancer regions by mouse. Each image in the library was divided
into a grid of 128 �m and the labelling was  manually performed
for each square block using the HIAE. This data constitutes the
ground-truth data used to evaluate the performance of the pro-
posed method. The atlas data prepared by using the HIAE, overlaid
on two colorectal histopathology images are shown in Fig. 6(a) and
(b). In these figures, individual square regions that were marked
by the expert were merged and framed as an overlay onto original
histopathology images.

An important point to emphasize here is that the ground-
truth data was collected and used for the purpose of evaluating
the performance of the proposed histopathology slide labelling
method. While such datasets are required for training conventional
supervised classification methods, the quasi-supervised learning
paradigm adopted here is designed explicitly to remove the need
for ground-truth training datasets in learning. Hence, the ground-
truth dataset was withheld from the quasi-supervised learning in
the experiments.

2.5.2. Receiver operating characteristics curve
In order to assess the separation of the NNCR and CRCa tis-

sue regions, receiver operating characteristics (ROC) curves were
constructed. An ROC curve is a graphical plot of the true positive
rate versus the false positive rate. The true positive rate, PTP, is
the probability of successful labelling of all ground-truth cancer
features vectors. Similarly, the false positive rate, PFP, is the proba-
bility of labelling NNCR features as cancer. In order to generate an
ROC curve, we  have computed PFP on the reference vector dataset
and PTP on the unlabelled vector dataset, and plotted for varying
threshold values T ranging from 0.0 to 1.0.

We  have evaluated the labelling performance corresponding to
an ROC curve via two separate strategies:

1. The area under the ROC curve: The area under the ROC curve is
a performance measure in which the larger area means a better
separation of the NNCR and CRCa tissue regions. In the ideal case,
the area under the ROC curve would be equal to 1.0.

2. The optimum recognition point on the ROC curve: The optimum
threshold value Topt is selected on the neck point of the continu-
ous ROC curve where its slope equals to 1.0. In the ideal case,
the ROC curve would be the unit step function and the opti-
mum recognition point on this curve would be at the (0.0, 1.0)
point. This ideal point means that there is no false alarm with full
true detection. After Topt is determined, the final labelling of the
images was carried out using this threshold value and the corre-
sponding PFP and PTP values were registered as the performance
measures of that labelling experiment.

When comparing the results of any two  experiments, the one
with the larger area under the ROC curve was identified as achiev-
ing a better identification. If two  experiments had very close ROC
curve areas, then the one with the optimum recognition point (PFP,
PTP) closer to ideal point (0.0, 1.0) was  accepted as more successful
identification.

2.6. Comparative classification

In order to obtain an independent evaluation of the labelling

performance, we have also used a support vector machine (SVM)
classifier trained on the ground-truth label data that was withheld
from the quasi-supervised labelling strategy (Cortes and Vapnik,
1995; Vapnik, 1998; Burges, 1998). In the SVM classification
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formance statistics are given for the SVM experiments as explained
before. It can be observed that the SVM classifier performance PFP

values are distributed around relatively lower values compared to
that of QSL. On the other hand, PTP values are much close for both

Table 2
Performances of the QSL method and the SVM classifier.

Texture features QSL SVM

(PFP , PTP) ROC area PFP(� ∓ �) PTP(� ∓ �)

Dataset 1 (0.25, 0.79) 0.84 0.15 ∓ 0.01 0.87 ∓ 0.01
Dataset 2 (0.19, 0.84) 0.88 0.03 ∓ 0.00 0.96 ∓ 0.00
8 D. Onder et al. / M

xperiments, we used a third party implementation, SVMlight

http://svmlight.joachims.org).
In order to perform the SVM classification experiments, we con-

tructed the NNCR and CRCa vector groups using ground-truth atlas
nformation. Group vectors took labels +1 and −1, regarding to the
ondition if they belong to NNCR group or not. An SVM classifier
raining vector set was then constructed by randomly selecting 90%
f these vectors and, a control vector set was constructed by the
emaining 10%. The training feature vector set was used to obtain
he classifier model, and this classifier model was operated on the
ontrol feature vector set. The SVM classifier output, obtained for
he vectors in the control set, was compared with their labels in the
istopathological Image Atlas to calculate the resultant classifica-

ion performance.
Since a relatively smaller number of texture vectors were used in

he control set of an individual SVM experiment, the performance
easures obtained were not expected to represent the actual clas-

ifier performance well. To address this issue, multiple independent
VM classification experiments (40 in our study) were performed
or a specific texture vector dataset, and the resultant classification
erformance were used to determine the corresponding statistics,
he mean and the variance. The mean and the variance statistics
etermined the performance of the classifier on a specific texture
ector dataset.

In the SVM classifier construction, we have used a Gaussian
adial basis function kernel with

(xi, xj) = exp −‖xi, xj‖2

2�2
(4)

here the scale parameter � was determined by minimizing the
umber of support vectors in the training phase via a line search.

n order to take into account the non-separable cases, the Lagrange
ultipliers of the quadratic optimization were bound from above

y 100.0 during training, producing a soft-margin classification. The
ecognition performance of the samples in the control dataset was
arried out by thresholding the classifier underlying function

(x) =
∑

i

yiˇiK(x, xj) + b (5)

y a threshold Tε(− ∞ , + ∞),  yi being +1 or −1 based on whether xi
elongs to the NNCR or CRCa groups respectively, and ˇi and b were
btained by training the classifier. The control dataset samples for
hich h(x) ≥ T were then recognized as NNCR.

.7. Vector dimensionality reduction

Vector dimensionality reduction is a mathematical transforma-
ion to represent a vector dataset in a relatively lower dimension.
he dimensionality reduction is usually performed to improve
he classification performance and the computation time. In
ur study, we have considered several vector dimensionality
eduction methods, namely, Principal Component Analysis (PCA)
Jolliffe, 2002), Isomap (Tenenbaum et al., 2000) and a basic
eature subset selection using a separation criteria as well as
ndependent Component Analysis (ICA). ICA is a vector dimen-
ional reduction approach that seeks to express a multivariate
istribution as a linear combination of statistically independent
on-Gaussian random variables (Comon, 1994; Hyvärinen et al.,
001) (http://www.cs.helsinki.fi/u/ahyvarin/whatisica.shtml). The

tatistically independent variables are called as the independent
omponents of the observed multi-dimensional signal. The ICA
ethod is widely used in the areas of signal source separation and

eature extraction.
PFA

Fig. 4. ROC curves (Datasets 1–6).

3. Results

This section presents the results of the experimental execution;
the resultant labelling performances are listed both for original and
dimensionally reduced vector datasets. In addition, performances
of the SVM supervised classifier operated on the original texture
feature vector datasets were presented for comparison to an ideal-
ized scenario.

3.1. Texture labelling performances

The ROC curves obtained by the QSL algorithm operated on
Datasets 1–6 are given in Fig. 4. According to the performance com-
parison rules described in Section 2.5 it was observed that the best
recognition performance was acquired with texture vector Dataset
2. It was  also observed that, if an experiment had better optimum
recognition point than another one, it had also larger ROC curve
area.

3.2. Comparative classification case

The QSL algorithm labelling performances and the SVM classi-
fier performances for texture feature Datasets 1–6 are presented
in Table 2. Note that, while labelling performance measure values
are given directly for the QSL experiments, the classification per-
Dataset 3 (0.19, 0.82) 0.88 0.03 ∓ 0.00 0.94 ∓ 0.00
Dataset 4 (0.20, 0.83) 0.88 0.04 ∓ 0.02 0.86 ∓ 0.26
Dataset 5 (0.21, 0.83) 0.87 0.04 ∓ 0.03 0.84 ∓ 0.40
Dataset 6 (0.23, 0.84) 0.87 0.02 ∓ 0.00 0.96 ∓ 0.00

http://svmlight.joachims.org
http://www.cs.helsinki.fi/u/ahyvarin/whatisica.shtml
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ig. 5. Two ROC curve pairs for the baseline and the ICA applied vector datasets. Th
ataset  5 are 132 and 119.

ethods. Note, however, that as the SVM classifier was  trained
n the atlas data, it represents an upper bound to the labelling
erformance when there is no ground-truth data to be used in

earning. The results in Table 2 indicate that the QSL strategy attains
 labelling performance that is close to this upper bound without
he benefit of a ground-truth learning dataset.

.3. Dimensionality reduction by ICA

The FastICA algorithm (http://research.ics.tkk.fi/ica/fastica) is a
opular ICA method that uses a fixed point iteration scheme to max-

mise non-Gaussianity of the sources. In independent experiments,
astICA has been found to be 10–100 times faster than conventional
radient descent based ICA methods.

In the experiments of this study, the original texture feature vec-
or datasets were converted to secondary feature vector datasets of
educed dimension using the FastICA method. The secondary vec-
or datasets were then fed to the QSL algorithm and the results were
ompared against the original experiments.

Two example ROC curves that were obtained from the original
nd the ICA experiments are given in Fig. 5. It can be observed that
he ROC curves obtained from the ICA applied vector datasets cor-
espond to better labelling performances compared to the original
OC curves. The labelling performance measures for the original
nd the ICA applied experiments are presented in Table 3. The
esults indicate that in all of the ICA operated experiments, except

he one on the Dataset 6, the ICA method improved the labelling
erformances.

The sample outputs for the automated labelling of QSL method
perated on a vector dataset of reduced dimensionality, overlaid

able 3
abelling performances of the QSL method for original and the ICA applied texture
eature vector datasets.

Texture features Original ICA

(PFP , PTP) ROC area (PFP , PTP) ROC area

Dataset 1 (0.25, 0.79) 0.84 (0.21, 0.84) 0.89
Dataset 2 (0.19, 0.84) 0.88 (0.22, 0.88) 0.90
Dataset 3 (0.19, 0.82) 0.88 (0.21, 0.86) 0.89
Dataset 4 (0.20, 0.83) 0.88 (0.18, 0.86) 0.91
Dataset 5 (0.21, 0.83) 0.87 (0.19, 0.88) 0.91
Dataset 6 (0.23, 0.84) 0.87 (0.32, 0.98) 0.86
eline and the reduced vector dimensions for (a) Dataset 1 are 296 and 279 and (b)

on histopathology images are shown in Fig. 6(c) and (d). In these
figures, individual square regions that were identically labelled
were merged and framed as an overlay onto original histopatho-
logy images. The ground truth atlas data corresponding to these
two histopathology images are presented in Fig. 6(a) and (b) can
also be compared with these outputs.

4. Conclusions and discussion

In this paper, we  have presented a quasi-supervised texture
labelling methodology to recognize NNCR and CRCa textures in
H&E stained colorectal histopathology images. The main contri-
bution of the proposed method was significant reduction of the
expert supervision before the automated recognition procedure.
The assignment of the images in the Histopathological Image
Library into NNCR and mixed collections was minimal compared
to preparing the ground-truth atlas data using the HIAE.

In the experiments performed on colorectal cross-section
images, the regions containing CRCa tissue were identified with
high accuracy without using manually labelled ground-truth infor-
mation. Since there is no histopathology image texture benchmark
database providing a comparison of accuracies achieved by other
classification schemes, it was unfortunately not possible to check
our results with the other methods from the literature. Experimen-
tal results indicated that the probability of false positive values by
the SVM classifier were relatively lower compared to those by the
QSL algorithm. On the other hand, the probability of true positive
values was  very close for both methods.

It was  also observed that among the various datasets corre-
sponding to different feature extraction parameters, the output
labelling performance of the QSL method was minimum when
operated on Dataset 1 constructed using grey level image infor-
mation. The colour texture feature information derived from the
Lab colour space offered the best characterization of the NNCR and
CRCa features.

In this study, we  have experimented with several dimension-
ality reduction procedures to determine if reducing the texture
vector dimensionalities would lead better classification perform-

ances. Among these procedures, only the ICA method improved
the labelling performance. One of the possible reasons for the
improvement is that ICA could extract the valuable vector compo-
nent information despite their low variances and also suppresses

http://research.ics.tkk.fi/ica/fastica
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RCa  tissue regions. (For interpretation of the references to colour in this figure leg

he redundant data. In majority of the ICA operated texture labelling
xperiments, the output recognition performances improved with
he corresponding PTP values approaching the upper bound
btained from the SVM classification experiments. On the other
and, the PFP values still remained higher than those obtained by
he SVM.

In this study, despite the high performance levels in terms of
TP, we have faced a phenomenon referred to as “malign tendency”
hich came up with high false positive rates, implying a general

ias towards labelling NNCR texture vectors as CRCa, observed
specially in the mixed labelled test group. We  believe that this
henomenon is due to severely complicated local structures in
olonic tissues and the resulting weak separation of normal and
ancer feature vectors in the multidimensional vector space.

Moreover, we have checked this assumption by performing sev-
ral QSL experiments on synthetic vector data. We  have generated
tatistically well differentiated random feature vectors for both
NCR and CRCa tissues in high dimensional space and obtained
xcellent QSL labelling performances. This evidence showed us
hat in order to increase the QSL accuracy, different texture feature
haracteristics must be incorporated into the automated labelling
ramework. A feature extraction scheme using co-occurrence

atrices calculated by the pixel pairs of a specified orientation
ould be tested. There are also several alternatives to the features
sed in this study and the comparison of their labelling perform-
nces with the QSL accuracies remains to be evaluated for the
ptimum configuration.

The proposed framework and several MIL  applications in histo-
athology should be specially compared. The main similarity is that
he proposed framework can be converted into a MIL  application
y putting the vectors calculated from a reference group slide into

 negative bag and putting the vectors calculated from a mixed

roup slide into a positive bag. This is the case in which positive
ags do not contain any negatively labelled instances and a special
IL  algorithm needs to be implemented to handle this. The main

ontrast between these two frameworks is that, in the MIL  based
logy images with overlaid ground truth atlas data. (a) Completely consists of NNCR
(d): Regions bounded by dashed green lines imply NNCR and solid red lines imply
he reader is referred to the web  version of this article.)

frameworks, the need for expert marking still exits during the clas-
sifier training phase (Zhao et al., 2006; Dundar et al., 2008, 2010,
2011).

Although there are MIL  classifiers that calculate the output
labels for each instance (Andrews et al., 2002; Chen et al., 2006)
several MIL  classifiers were designed to perform slide-level classi-
fication (Dundar et al., 2010, 2011). In contrast, the QSL algorithm
calculates the posterior probabilities for all individual instances.
It should also be pointed out that while many standard super-
vised learning methods, such as, K-Nearest-Neighbourhood, Neural
Network, and Decision Trees, have been adopted to solve the MIL
problem, the QSL method has been simply build upon a Nearest-
Neighbourhood classifier which uses the Euclidian vector distances.
Furthermore, the QSL framework does not have any constraint for
bag or instance selection.

It should also be noted that no colour normalization method
was applied to the Histopathological Image Library images due to
fixed capture and illumination parameters during image acquisi-
tion. Thus, our assumption was that these images were assumed
to share similar visual standards and lack artifacts that can occur
due to variations in the sample preparation or image acquisition
procedures. However, whether these images possessed a varia-
tion imperceptible to the naked eye in the H&E staining process
that might be affecting the computerized analysis remains an open
question. Another research can thus be carried out by performing
a colour normalization method in a preprocessing step of the pro-
posed framework prior to statistical analysis using the QSL method
(Macenko et al., 2009; Magee et al., 2009; Ruifrok and Johnston,
2001; Ruifrok et al., 2003).

In this study, many dimensionality reduction procedures were
experimented and the ICA method was  found to be the only one
improving the labelling accuracy. However, several other feature

selection or extraction algorithms leading to dimensionality reduc-
tion could not be evaluated due to long computation times required
by these methods for the texture feature vector datasets used in this
study. In the future, these algorithms, such as Exhaustive Selection
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Jain and Zongker, 1997) and Branch and Bound method (Narendra
nd Fukunaga, 1977) can be applied to the existing feature vec-
or datasets provided that they can be carried out within limits of
omputational feasibility.

As another future study, several other texture feature types,
uch as, features obtained from the segmentation of the histopath-
logy images into chromatin-rich, stromal and unstained regions,
avelet transforms and fractal dimensions will be considered for
NCR and CRCa texture separation (Karacali and Tozeren, 2007;

afari-Khouzani and Soltanian-Zadeh, 2003; Li et al., 2007; Zhang
nd Ma,  2007; Shirazi et al., 2000). In addition, the proposed
ramework will also be applied to several other differential histo-
athology cases in colorectal or other tissue sections. Furthermore,
he proposed method can form the core part of a semi-automated
exture recognition framework in order to support pathologists by
etecting the differential textures. To this end, the development
ay  also focus on a first step evaluation of huge number of histo-

athology whole-slide tissue cross-section images.
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