
1

İzmir Municipality Housing and Zoning Code Analysis and Representation
for Compliance Checking

Sibel Macit, M. Emre İlal, H. Murat Günaydın
İzmir Institute of Technology, Turkey

Georg Suter,
Vienna University of Technology, Austria

sibelmacit@iyte.edu.tr

Abstract. Systems for code compliance checking of building projects require representation of
building codes. Building codes are complex, and the development of computer implementable
representations is challenging. As a case in point, this paper reports on experiences gained while
modeling İzmir Municipality Housing and Zoning Code (IMHZcode). First, IMHZcode was
analysed to understand the various types of information contained in it in order to develop a
comprehensive building code model. The rules were classified according to their formalizability
and self-containedness. Then, existing modeling approaches were evaluated to find the most
convenient method that meets the needs for modeling IMHZcode. A key criterion used in this
evaluation was ease of maintenance by non-programmers. The paper concludes with an illustrative
example of the selected methodology’s application within the context of IMHZcode.

1. Introduction	

Development of code compliance checking systems has been an area of research that aims to
provide computational support for accurate compliance checking of building projects against
applicable building codes in a time and cost effective way. Research in this area has focused
mostly on representation of building codes in computational format, definition of building
model views, compliance checking algorithms and reporting.
The research presented in this paper focuses on computer-based representations of building
codes for automated compliance checking. Although there has been much interest in this
subject, impact on the AEC industry has been limited. A literature survey suggests two main
reasons. One reason is that most of the previous building code models were not sufficiently
comprehensive and too simplistic compared to the complex nature of building codes. To be
comprehensive, a building code model should be able to represent all of the various types of
rules in building codes. The second reason is that previous building code models are difficult
to maintain. Building codes change continuously and the model should be able to
accommodate addition of new rules and modification of existing ones. Non-programmer code
authors should be able to easily carry out such model updates. In order to avoid these two
shortcomings in previous efforts, current work focuses on two issues.

The first is to determine different types of rules by analyzing building codes so that a building
code model can be defined correctly and comprehensively. İzmir Municipality Housing and
Zoning Code (IMHZcode) has been chosen for this study, as it is representative of codes that
are in effect across Turkey. IMHZcode was analyzed to understand the characteristics of
building codes in these following steps: 1) Examining the organization of building code
sections, 2) Identifying the basic elements of building codes, and 3) Classifying the rules in
the building code according to their formalizability and self-containedness.

https://www.researchgate.net/profile/Sibel_Macit?el=1_x_100&enrichId=rgreq-04b3db563be853d5cfe8cc2f4175af84-XXX&enrichSource=Y292ZXJQYWdlOzMxMDEzNzg0NTtBUzo0MjgyODA1NTA1NjM4NDBAMTQ3OTEyMTQ0ODA1MA==
https://www.researchgate.net/profile/Georg_Suter?el=1_x_100&enrichId=rgreq-04b3db563be853d5cfe8cc2f4175af84-XXX&enrichSource=Y292ZXJQYWdlOzMxMDEzNzg0NTtBUzo0MjgyODA1NTA1NjM4NDBAMTQ3OTEyMTQ0ODA1MA==
https://www.researchgate.net/profile/Huesnue_Guenaydin?el=1_x_100&enrichId=rgreq-04b3db563be853d5cfe8cc2f4175af84-XXX&enrichSource=Y292ZXJQYWdlOzMxMDEzNzg0NTtBUzo0MjgyODA1NTA1NjM4NDBAMTQ3OTEyMTQ0ODA1MA==

2

The second issue is the development of a building code model based on a representation
methodology that accommodates a high level of maintainability. An investigation of how far
existing modeling approaches meet the needs for modeling IMHZcode has been carried out.
Although there has been several building code modeling studies in literature (Fenves, 1966;
Kiliccote et al., 1994; Han et al., 2002), there is still no widely used formal methodology to
represent rules in computer implementable format. The most common solution is to hard code
rules into the compliance checking applications. This approach can be practical for
implementing small number of simple rules but it is not generalizable and maintainable. The
SMARTcodes (AEC3, 2012) approach, in contrast, aims to enable non-programmers to define
computable rules using simple tools. It is based on the RASE (Requirement, Applicability,
Selection, Exception) methodology where rules are broken down into four constructs. Non-
programmers can identify and markup these four constructs in the actual text of the code.
At the end of the study, IMHZcode rules pertinent to residential buildings have been
represented in computer implementable format based on the RASE method.

2. Building	 Code	 Analysis	

A building code is a legal document that specifies the minimum conditions for a certain
aspect of a building construction. The main purpose of building codes is to protect public
health, safety and general welfare as they relate to the construction and occupancy of
buildings and structures. Building codes are determined by appropriate authorities in different
domains and may vary widely from country to country.

In Turkey, all legal arrangements concerning construction fall under the responsibility of the
Ministry of Public Works and Settlement. There are two laws in force: Construction Law
No.3194 and the Law on Inspection of Construction No.4708. In addition, there are various
building codes prepared by the authority. The main ones are: Housing and Zoning Code, Fire
Code, Shelter Code, Parking Code, Elevator Code, Codes for specific building uses (e.g.
private hospitals, public housing, high-rise structures, construction in disaster areas)

Individual municipalities have their own housing and zoning codes that include the rules
defined by the ministry documents and add further specifications. İzmir Municipality Housing
and Zoning Code (IMHZcode) has been chosen for this study, as İzmir is the third most
populous city in Turkey and IMHZcode is representative of codes that are in effect across
Turkey. IMHZcode was analyzed to understand the characteristics of building codes and to
develop a building code model. First, the organization of building code sections has been
examined, then the basic elements of building codes have been identified, and after that rules
in the building code have been classified according to their self-containedness and
formalizability.

2.1 Building	 Code	 Organization	
IMHZcode is the legal document that specifies minimum conditions that need to be satisfied
by settlements and construction operations within the İzmir Metropolitan Municipality and its
environs. Its main structure is formed with six different parts as follows:

Part I: General Rules (from Clause 1 to Clause 10)
Part II: Definitions (11-23)
 Chapter 1: Definitions of Municipal (Development/Zoning) Plans (11-16)
 Chapter 2: Definitions of Constructions (17-19)
 Chapter 3: Definitions of Construction Permit and Building Occupancy Permit

(20-23)

https://www.researchgate.net/publication/226892635_Compliance_Analysis_for_Disabled_Access?el=1_x_8&enrichId=rgreq-04b3db563be853d5cfe8cc2f4175af84-XXX&enrichSource=Y292ZXJQYWdlOzMxMDEzNzg0NTtBUzo0MjgyODA1NTA1NjM4NDBAMTQ3OTEyMTQ0ODA1MA==

3

Part III: Rules Related to Buildings and Land Readjustment (24-66)
Part IV: Rules Related to Construction Permit and Building Occupancy Permit

(67-76)
Part V: Buildings, Building Parts and Facilities Subject to Special Rules (77-86)
Part VI: Rules Rescinded, Interim Provisions and Entry in to Force (87-89)

IMHZcode consists of 26 different clauses containing rules that are related to buildings
(clause 40-clause 66) whereas the rest of the building code is informative or unrelated to
buildings. Each of the clauses consists of several rules defines constraints relating to one
specific object such as roofs, windows, doors, staircases etc.

2.2 Building	 Code	 Elements	

The process of representing building codes as computable rule sets is not trivial due to the
complex nature of building codes. It is essential to have an understanding of the various types
of information contained in building codes as well as the organization of the documents in
order to develop a building code model. Building codes consist of two different types of
expressions: graphical and textual. Graphical expressions, such as figures, drawings,
diagrams, and pictures are used in documents related to standards such as accessibility,
parking and elevator standards. IMHZcode (İzmir Metropolitan Municipality, Housing and
Zoning Codes) and most of the building codes in Turkey do not include graphical expressions
and this research mainly concentrates on representation of textual expressions of building
codes.

Three types of textual expressions exist in the building codes investigated:
1. General provisions
2. Definitions
3. Rules

General provisions describe the aim, scope and legal basis of the building code. For example,
the following expression quoted from IMHZcode is a general provision that describes the
scope of this code.

“ This code, prepared in accordance with Zoning Law No:3194 and rule 8 of Code
for the Implementation of Law No: 3030 on Management of the Metropolitan
Municipalities, is applied within the boundaries of and the contiguous area of İzmir
Metropolitan Municipality.”

Definition statements define the specific names used in the building code and give detailed
descriptions about definitions. For example, the following expression quoted from IMHZcode
defines meaning of a name (High-rise building).

“A building, height of which > 30.80m or has more than thirteen (13) storeys.”

Rule statements define constraints about physical building components, spaces and relations.
For example, the following expression quoted from IMHZcode defines a constraint about roof
eaves.

“Roof eaves can be done throughout the entire building facades.”

Building projects are checked against these rule statements for their compliance.

4

2.3 Rule	 Classification	
Building codes are written text documents, to be interpreted by humans. They are not
structured in a strict and straightforward manner that can be interpreted by machine. They
have a complicated structure. While some simple rules can easily be defined in a single
statement, others require a series of statements making exceptions, clarifications and
modifications. The analysis of IMHZcode structure has revealed two types of rules:

• Self-contained rules
• Linked explanatory rules
Self-contained rules. They indicate how something will be, must be, should be, or can be. A
rule related to the width of the stairs is an example of this type.

“The minimum width for flights and landings of stairs shall be 1.20 m.”

Linked-explanatory rules. These rules are clarifications, exceptions, exemptions, or
modifications of other rules. For example, consider the following two rules from IMHZcode,
one modification and one exception example, for the above rule on the minimum width for
stairs.

 “These dimensions can be reduced to 0.90 m. for single-family house, basement,
and service stairs.”

 “These dimension restrictions may be ignored for stairs leading to attics that are
not occupied.”

In addition to a complex structure, building codes contain rules that may be open to
interpretation, ambiguous and sometimes even contradictory and therefore impossible to
model completely. Classification of rules according to their formalizability is necessary to
assess the potential coverage of building code representations. Three additional types of rules
have been identified:

• Formalizable rules,
• Semi-formalizable rules, and
• Non-formalizable rules.
Formalizable rules. They can be represented in a computer implementable format and allow
for automated compliance checking without any ambiguities. The following is an example
from IMHZcode:

 “Roof slope cannot exceed 33%.”

Semi-formalizable rules. They contain fuzzy concepts that require interpretation (e.g.
enough, easily, nearly, appropriate, and approximately). These rules require clarification of
the concepts involved either during modeling of the rule or later during compliance checking.
Example:

“Spaces left as shelter must be able to dispose of garbage easily.”

Non-formalizable rules. They rely on qualitative evaluations such as ones based on
aesthetics or characteristics as well as evaluations where local authority is allowed to use
initiative. These rules are impossible to represent in computable format and necessitate
manual compliance checking under all conditions. Example:

“Roofs must be compatible with the building and in harmony with the character of
the streetscape. “

5

In the final stage of the analysis, IMHZcode is decomposed into a list of rules. 258 rules are
found on residential buildings. All rules have been classified according to their formalizability
and whether they are self-contained or not. For example, rules on residential buildings of
clause 41 of IMHZcode are shown in Table 1.

Table 1: Classification of rules on residential buildings contained in clause 41 of IMHZcode

Clause 41- Roofs

Rule statements Rule type

Self-contained vs
Linked-explanatory

Formalizability

Roofs must be compatible with the building and in
harmony with the character of the streetscape.

Self-contained Non-formalizable

Roof slope cannot exceed 33%. Self-contained Formalizable

The roof pitch is calculated from building façade without
taking into consideration the eave’s width.

Linked-explanatory
(clarification)

Formalizable

Independent units cannot be built in the attic. Self-contained Formalizable

In these spaces only elevator towers, central air
conditioning systems, and chimneys can be built.

Linked-explanatory
(exception)

Formalizable

Storage for coal cannot be placed in the attic or flat roofs. Self-contained Formalizable

Skylights, forehead and gable walls, solar panels and
tanks cannot rise more than 0.60 m. from the roof plane.

Self-contained Formalizable

No extensions are allowed above the roof except for
chimneys and airshafts.

Self-contained Formalizable

If Masonry parapets’ height is less than 1.10 m., it is not
included in the building height

Linked-explanatory
(clarification)

Formalizable

The classification of IMHZcode rules on residential buildings revealed that 58% of the rules
are self-contained and formalizable and 21% are explicative and formalizable. As indicated in
Table 2, 79% of IMHZcode rules on residential buildings can be represented in a computer
implementable format.

Table 2: Results of the classification of IMHZcode rules on residential buildings

 Formalizable rules Semi-formalizable
rules

Non-formalizable
rules

Self-contained rules 58% (149) 7% (17) 4% (12)

Linked explanatory
rules 21% (55) 6% (14) 4% (11)

Total 79% (204) 13% (31) 8% (23)

6

3. Building	 Code	 Representation	

3.1 Building	 Code	 Models	

Through the analysis of IMHZcode, different types of rules to be represented have been
identified. Afterwards, an investigation for the appropriate representation was carried out. In
this step, existing representation approaches have been evaluated especially in terms of
maintainability. Although there has been a lot of interest in building code modeling, there are
still no standards or defined methods to represent building codes in computer implementable
formats. The most common representation approach is to hardcode rules in computer
programming languages. The main disadvantage to this approach is that it requires a high-
level of expertise in computer programming to define, write and maintain building codes.
However, the ability to update and maintain the representation is important because building
codes change continuously.
Existing building code models are summarized below:

Basic Models (Decision Tables). Decision tables (Fenves, 1966) are the initial efforts on
building code representations. In this model, building code rules are represented in the precise
and unambiguous form of decision tables. However, each table represents only one rule and
therefore, decision table-based models need interlinks among various tables because rules
have often internal relationships between each other. Such interlinks among tables make
working with decision table based models difficult.

Condition/Consequence Models. If-then conditions are defined for building code rules in
condition/consequence models (Garrett and Fenves, 1987). These models are flexible and
easily implementable in code compliance checking systems. However, this kind of models
lack an organization of the building codes and requires many redundancies when defining
rules.
Logic Models. Formal logics are used to represent building code rules in logic models
(Hakim and Garrett, 1993; Rasdorf and Lakmazaheri, 1990). Logic models also use if-then
conditions. Knowledge of logic is required to model building codes and understand them.
Logic models include user-defined predicates and logical operators that prevent them from
being widely implementable.

Object-Oriented Models. Object-oriented models (Garrett and Hakim, 1992) use classes and
attributes to represent building code rules. Although object-oriented models have some
advantages (e.g. flexibility, and extensibility) as compared with previous models, there are
still some difficulties in maintainability. The main difficulty is that these models are only
editable by users who have object-oriented programing knowledge. Moreover, object-oriented
models are less human readable and understandable.

Hybrid Models. Hybrid models combine some of the previous representation approaches.
Yabuki and Law (1993) combined object-oriented models and first order predicate logic to
develop an Object-Logic model. Kiliccote (1994) developed a context-oriented model, which
utilizes an object-oriented approach as well. This model addresses the same problem of the
complexity of the previous object oriented models. While hybrid models benefit from
advantages of the combined approaches, they inherit shortcomings from the previous
approaches such as the problem of complexity.
Semantic Models (SMARTcodes). The SMARTcodes (AEC3, 2012) is a semantic approach
which proposes to mark-up building codes in such a way that rules are automatically
generated in a computer implementable format. This approach will be explained in detail in

https://www.researchgate.net/publication/270850361_Logic-Based_Approach_for_Modeling_Organization_of_Design_Standards?el=1_x_8&enrichId=rgreq-04b3db563be853d5cfe8cc2f4175af84-XXX&enrichSource=Y292ZXJQYWdlOzMxMDEzNzg0NTtBUzo0MjgyODA1NTA1NjM4NDBAMTQ3OTEyMTQ0ODA1MA==
https://www.researchgate.net/publication/245282052_Object-Oriented_Model_of_Engineering_Design_Standards?el=1_x_8&enrichId=rgreq-04b3db563be853d5cfe8cc2f4175af84-XXX&enrichSource=Y292ZXJQYWdlOzMxMDEzNzg0NTtBUzo0MjgyODA1NTA1NjM4NDBAMTQ3OTEyMTQ0ODA1MA==
https://www.researchgate.net/publication/226753581_A_description_logic_approach_for_representing_engineering_design_standards?el=1_x_8&enrichId=rgreq-04b3db563be853d5cfe8cc2f4175af84-XXX&enrichSource=Y292ZXJQYWdlOzMxMDEzNzg0NTtBUzo0MjgyODA1NTA1NjM4NDBAMTQ3OTEyMTQ0ODA1MA==

7

the next section. Based on simple constructs that can be identified from actual text of the
rules, it offers a higher level of maintainability by non-programmers and is found to be the
most appropriate approach for representing IMHZcode.

3.2 SMARTcodes	 and	 RASE	 Methodology	

SMARTcodes provides a protocol and a software program for creating tagged representations
of actual building code texts (Conover, 2009). It is based on a process using a mark-up
language to mark the actual text of the building code according to SMARTcodes protocol.
This can be done by code authors. The mark-upped text is structured into an XML version of
the actual building code. The structured XML is then converted into computer implementable
rules. The SMARTcodes protocol defines which textual parts should have one of four colors,
each representing one of the four constructs that rules are built on. The four constructs are
defined by the RASE methodology. The main goal of the RASE methodology is to identify
the common constructs for building code rules. It states that building code rules can be broken
down into four constructs: Requirement, Applicability, Selection, and Exception.

Building codes contain a number of rules, and each rule contains of a number of requirement,
applicability, selection, and exception parts. Every rule must have at least one requirement
indicator. It is the condition that must be satisfied by one or more aspects of a building.
Similarly, every rule must have at least one applicability indicator that defines which aspects
of the building the requirements apply to. Applicability indicators can be seen as a definition
of scope associated with the rule. Rules may have selection indicators if the rule is for
specified cases among the applicable elements. Rules may also contain exception indicators.
Exception information identifies the conditions under which the rule is not applicable to the
building elements. RASE methodology utilizes these four types of indicators as a basis of the
common constructs of rules. Each of these four constructs has attributes such as a property, a
comparator and a target value with a unit (Nisbet et al., 2009). Code authors are able to
markup these indicators that appear in the actual text of the code using SMARTcodes Builder
software which creates and XML formatted version of the code. A screenshot of the
SMARTcodes Builder software is shown in Figure 1.

Figure 1: SMARTcodes Builder (AEC3, 2012)

8

3.3 Representation	 of	 IMHZcode	

Among existing representation approaches, the RASE methodology has been found as the
most appropriate for representing IMHZcode since it accommodates a scheme where code
authors are able to maintain the representation.

IMHZcode rules have been modeled as requirement, applicability, selection, and exception
objects. Each object is attributed to have an id, a property, a comparator, a target value, and a
unit. Property is a term defined within the code. A value may be numeric, descriptive or
boolean, while the comparators include greater, lesser, equal, etc. Some examples of how
rules are modeled are shown in Table 3.

Table 3: Examples of rules from IMHZcode modeled according to the RASE method

 Rule text Applicabilities Selections Exceptions Requirements

1 Clear height of doors shall be at
least 2.10 m.

door - - door.height>= 2.10m

2 Clear width of entrance doors of
independent unit shall be at least
1.00 m.

door type=entrance - door.width>=1.00m

3 Buildings shall have at least one
non-wood staircase.

building - - hasStair=true
&
stair.material=!wood

4 The minimum width of a flight
and a landing shall be 1.20 m.

stair - - flightWidth=1.20m
landingWidth=1.20m

5 Roofs in general must remain
within 33% sloping height,
except duplex houses.

roof - Building.type=
duplex houses

pitch<=33%

Building code rules, in a RASE-based structured form, are stored in a relational database.
Rules are entered using the database interface, however, the goal is to provide a simple tool
for building code authors to enter rules. Acceptance of building code models by the AEC
industry is not possible without tools directly usable by the building code authors who have
no programming background. Building code authors, without assistance, should be able to
create new rules and update existing ones.

The testing of the representation was done through an actual implementation. Currently, two
commonly used compliance-checking applications are Express Data Manager (EDM), and
Solibri Model Checker (SMC). EDM has a module for writing new rules in EXPRESS, but it
is complex and requires a high level of expertise. SMC rules are hard coded into the system
and SMC does not support adding new rules. As a result, neither of these systems is suitable
as a test bed for IMHZcode representation. For this reason a new system has been
implemented for compliance checking of building model with IMHZcode model. It consists
of three main components. Building Code Rule Builder, Building Code View Builder, and
Checker. Figure 2 illustrates a conceptual framework for compliance checking system.

9

BIM

Architect

Structured
Building

Code
Specialist

Building Code
View Builder

Building Code
Rule Builder

Building
Code
View

Checker

Building
Code

Building
Code
Rule

Report

1 2

3

Figure 2: Conceptual framework for compliance checking system

Building Code Rule Builder connects to the database where structured building code rules are
stored, reads the applicable structured rules and prepares rule instances for Checker. Building
Code View Builder accesses and extracts the building model data and derives the appropriate
model view for Checker. The third and major component is Checker. It applies rules to the
building model and returns a report. A building element passes a check if it either is not
applicable or is exempt or is as required. Figure 3 is a screenshot where compliance checking
of a simple building with three rooms and three doors against door rules takes place.

Figure 3: A screenshot of the testing application

10

4. Conclusion	

Analyzing the complex structure of building codes and determining different types of rules is
the first step in developing building code models. It is important to document how much of
the building code and which types of rules can be modeled reliably in automated compliance
checking systems. The analysis on the IMHZcode has identified 3 types of rules according to
their formalizability. 79% of the rules are formalizable and are modeled easily. Another 13%
are semi-formalizable. These can be modeled once the responsible authority resolves the
ambiguities. Only 8% are non-formalizable and cannot be included in automated checking.
Formalizable and semi-formalizable rules constitute 92% of the IMHZcode.
Building codes are updated continuously and the model needs to be maintained by the
authority responsible for code checking. Therefore, evaluation of previous work on
representations focused on maintainability. SMARTcodes approach with a protocol for
converting existing codes from text to computer implementable format was chosen.
SMARTcodes is based on RASE which is a simple method of structuring information
embedded in the rules. The formalizable IMHZcode rules were successfully represented in
computational format using RASE constructs. Yet, an approach to checking semi-
formalizable rules still needs to be developed along with a process that includes how non-
formalizable rules are handled.

5. Acknowledgements	

This study was supported in part by The Scientific and Technological Research Council of
Turkey (TUBITAK).

References	
AEC3. 2012. International Code Council [Online]. Available: http://www.aec3.com/en/5/5_013_ICC.htm

[Accessed February, 23, 2013].
Conover, D. 2009. Method and apparatus for automatically determining compliance with building regulations.

Washington, DC, US patent application 20090125283.
Fenves, S. J. (1966). Tabular Decision Logic for Structural Design. Journal of Structural Division ASCE, 92,

Garrett, J. H. and Fenves, S. J. (1987). A knowledge-based standards processor for structural
component design. Engineering with Computers, 2, 219-238.

Garrett, J. H. J. and Hakim, M. M. (1992). Object-Oriented Model of Engineering Design Standards. Journal of
Computing in Civil Engineering, 6, 323-347.

Hakim, M. M. and Garrett, J. H. (1993). A description logic approach for representing engineering design
standards. Engineering with Computers, 9, 108-124.

Han, C., Kunz, J. C. and Law, K. H. (2002). Compliance Analysis for Disabled Access. In: William J. McIver, J.
a. A. K. E. (ed.) Advances in Digital Government Technology, Human Factors, and Policy. Kluwer,
Boston, MA.

Kiliccote, H., James H. Garrett, J., Chmielenski, T. J. and Reed, K. A. (1994). The Context-Oriented Model: An
Improved Modeling Approach for Representing and Processing Design Standards. In: Khozeimeh, K.,
ed. First ASCE Congress on Computing in Civil Engineering, June 1994, Washington, D.C. New
York:ASCE, 145-152.

Nisbet, N., Wix, J. and Conover, D. (2009). The Future of Virtual Construction and Regulation Checking.
Virtual Futures for Design, Construction & Procurement. Blackwell Publishing Ltd.

Rasdorf, W. J. and Lakmazaheri, S. (1990). Logic-Based Approach for Modeling Organization of Design
Standards. Journal of Computing in Civil Engineering, 4, 102-123.

Yabuki, N. and Law, K. H. (1993). An Object-Logic model for the representation and processing of design
standards. Engineering with Computers, 9, 133-159

View publication statsView publication stats

https://www.researchgate.net/publication/270850361_Logic-Based_Approach_for_Modeling_Organization_of_Design_Standards?el=1_x_8&enrichId=rgreq-04b3db563be853d5cfe8cc2f4175af84-XXX&enrichSource=Y292ZXJQYWdlOzMxMDEzNzg0NTtBUzo0MjgyODA1NTA1NjM4NDBAMTQ3OTEyMTQ0ODA1MA==
https://www.researchgate.net/publication/270850361_Logic-Based_Approach_for_Modeling_Organization_of_Design_Standards?el=1_x_8&enrichId=rgreq-04b3db563be853d5cfe8cc2f4175af84-XXX&enrichSource=Y292ZXJQYWdlOzMxMDEzNzg0NTtBUzo0MjgyODA1NTA1NjM4NDBAMTQ3OTEyMTQ0ODA1MA==
https://www.researchgate.net/publication/245282052_Object-Oriented_Model_of_Engineering_Design_Standards?el=1_x_8&enrichId=rgreq-04b3db563be853d5cfe8cc2f4175af84-XXX&enrichSource=Y292ZXJQYWdlOzMxMDEzNzg0NTtBUzo0MjgyODA1NTA1NjM4NDBAMTQ3OTEyMTQ0ODA1MA==
https://www.researchgate.net/publication/245282052_Object-Oriented_Model_of_Engineering_Design_Standards?el=1_x_8&enrichId=rgreq-04b3db563be853d5cfe8cc2f4175af84-XXX&enrichSource=Y292ZXJQYWdlOzMxMDEzNzg0NTtBUzo0MjgyODA1NTA1NjM4NDBAMTQ3OTEyMTQ0ODA1MA==
https://www.researchgate.net/publication/226892635_Compliance_Analysis_for_Disabled_Access?el=1_x_8&enrichId=rgreq-04b3db563be853d5cfe8cc2f4175af84-XXX&enrichSource=Y292ZXJQYWdlOzMxMDEzNzg0NTtBUzo0MjgyODA1NTA1NjM4NDBAMTQ3OTEyMTQ0ODA1MA==
https://www.researchgate.net/publication/226892635_Compliance_Analysis_for_Disabled_Access?el=1_x_8&enrichId=rgreq-04b3db563be853d5cfe8cc2f4175af84-XXX&enrichSource=Y292ZXJQYWdlOzMxMDEzNzg0NTtBUzo0MjgyODA1NTA1NjM4NDBAMTQ3OTEyMTQ0ODA1MA==
https://www.researchgate.net/publication/226892635_Compliance_Analysis_for_Disabled_Access?el=1_x_8&enrichId=rgreq-04b3db563be853d5cfe8cc2f4175af84-XXX&enrichSource=Y292ZXJQYWdlOzMxMDEzNzg0NTtBUzo0MjgyODA1NTA1NjM4NDBAMTQ3OTEyMTQ0ODA1MA==
https://www.researchgate.net/publication/226753581_A_description_logic_approach_for_representing_engineering_design_standards?el=1_x_8&enrichId=rgreq-04b3db563be853d5cfe8cc2f4175af84-XXX&enrichSource=Y292ZXJQYWdlOzMxMDEzNzg0NTtBUzo0MjgyODA1NTA1NjM4NDBAMTQ3OTEyMTQ0ODA1MA==
https://www.researchgate.net/publication/226753581_A_description_logic_approach_for_representing_engineering_design_standards?el=1_x_8&enrichId=rgreq-04b3db563be853d5cfe8cc2f4175af84-XXX&enrichSource=Y292ZXJQYWdlOzMxMDEzNzg0NTtBUzo0MjgyODA1NTA1NjM4NDBAMTQ3OTEyMTQ0ODA1MA==
https://www.researchgate.net/publication/226917155_An_Object-Logic_model_for_the_representation_and_processing_of_design_standards?el=1_x_8&enrichId=rgreq-04b3db563be853d5cfe8cc2f4175af84-XXX&enrichSource=Y292ZXJQYWdlOzMxMDEzNzg0NTtBUzo0MjgyODA1NTA1NjM4NDBAMTQ3OTEyMTQ0ODA1MA==
https://www.researchgate.net/publication/226917155_An_Object-Logic_model_for_the_representation_and_processing_of_design_standards?el=1_x_8&enrichId=rgreq-04b3db563be853d5cfe8cc2f4175af84-XXX&enrichSource=Y292ZXJQYWdlOzMxMDEzNzg0NTtBUzo0MjgyODA1NTA1NjM4NDBAMTQ3OTEyMTQ0ODA1MA==
https://www.researchgate.net/publication/310137845

	smacit_eg-ice2013_final

