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Abstract Sphingolipids including ceramides and its

derivatives such as ceramide-1-phosphate, glucosylcera-

mide (GlcCer), and sphingosine-1-phosphate are essential

structural components of cell membranes. They now rec-

ognized as novel bioeffector molecules which control var-

ious aspects of cell growth, proliferation, apoptosis, and

drug resistance. Ceramide, the central molecule of sphin-

golipid metabolism, generally mediates anti-proliferative

responses such as inhibition of cell growth, induction of

apoptosis, and/or modulation of senescence. There are two

major classes of sphingolipids. One of them is glyco-

sphingolipids which are synthesized from the hydrophobic

molecule, ceramide. GlcCer, generated by glucosylcera-

mide synthase (GCS) that transfers the glucose from UDP-

glucose to ceramide, is an important glycosphingolipid

metabolic intermediate. GCS regulates the balance between

apoptotic ceramide and antiapoptotic GlcCer. Downregu-

lation or inhibition of GCS results in increased apoptosis

and decreased drug resistance. The mechanism underlying

the drug resistance which develops with increased gluco-

sylceramide expression is associated with P-glycoprotein.

In various types of cancers, overexpression of GCS has been

observed which renders GCS a good target for the treatment

of cancer. This review summarizes our current knowledge

on the structure and functions of glucosylceramide synthase

and glucosylceramide and on the roles of glucosylceramide

synthase in cancer therapy and drug resistance.
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Introduction

Sphingolipids (SLs) are a family of lipids that play

essential roles as structural cell membrane components that

contribute to the regulation of the fluidity and the sub-

domain structure of the lipid bilayers [1–4]. These mem-

brane lipids do not only function as structural components

of the cell membrane, but they also possess important roles

in signal transduction as second messengers and in vital

cellular processes such as differentiation, migration,

apoptosis, cell proliferation, cell cycle arrest, senescence,

and inflammation [5–8]. The basic structure of all sphin-

golipids consists of up to three components: a sphingoid

backbone (such as sphingosine, 1,3-dihydroxy-2-amino-

alkane and its derivatives), an amide-linked long-chain

fatty acid tail, and several distinct modifications of the head

group [9, 10]. The head groups define the various sphin-

golipid classes, with a hydroxyl group found in ceramides;

phosphorylcholine, in sphingomyelin (SM); and carbohy-

drates, in the various glycosphingolipids [11, 12]. The

sphingoid backbone is an aliphatic 2-amino-1,3-diol. From

this basic lipid, addition of fatty acids that are typically

16–26 carbon atoms in length, phosphate/sulfate groups,

and carbohydrates results in a large group of lipids with

numerous physiological roles [10, 11, 13, 14].
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Faculty of Science, İzmir Institute of Technology,

Urla, Izmir 35430, Turkey

e-mail: yusufbaran@iyte.edu.tr; ysfbrn@gmail.com

E. Apohan

Department of Biology, Faculty of Art and Science,

İnönü University, Malatya, Turkey

123

Cancer Chemother Pharmacol (2013) 71:13–20

DOI 10.1007/s00280-012-1984-x



Briefly, sphingolipids are synthesized de novo from

serine and palmitate, which condense serine and palmitoyl

CoA to form 3-keto-dihydrosphingosine through the action

of serine palmitoyltransferase (SPT) [15–17]. This is then

reduced to produce dihydrosphingosine (sphinganine),

which is then acylated by dihydroceramide synthases (also

known CerS) (Fig. 1) [15, 17, 18].

Bioactive sphingolipids including ceramide, ceramide-

1-phosphate (C1P), dihydroceramide (dhCer), sphingosine,

and sphingosine-1-phosphate (S1P) play important roles in

malignant growth [6, 19]. Ceramide is the central molecule

in sphingolipid and glycosphingolipid biosynthesis, and

there are three metabolic pathways leading to ceramide: the

sphingomyelinase pathway, the de novo pathway, and the

exogenous ceramide-recycling pathway [11, 18]. These

metabolic pathways occur in different cellular compart-

ments [3].

Ceramide is an intracellular lipid that has been shown to

regulate the activity of various biochemical and molecular

targets involved in anti-proliferative responses and in

cellular responses including oxidative stress and apoptosis

[20, 21]. The biological effects of ceramide depend on

many parameters, such as cell type, nature of cell receptors,

and their concentration [22].

Ceramide consists of a long-chain amino alcohol

(sphingoid base) carboamidically linked to a fatty acid,

most commonly with a long chain. The primary alcoholic

group of ceramide serves as the attachment site for different

moieties such as phosphate, phosphocholine, and saccha-

rides, producing ceramide-1-phosphate, sphingomyelin and

glycosphingolipids, respectively [4]. Glycosphingolipids

(GSL) are membrane components composed of a group of

membrane lipids in which the lipid portion is embedded in

the outer leaflet of the plasma membrane with the sugar

chain extending to the extracellular space [23–25]. GSLs

are involved in many fundamental cellular processes,

including growth, differentiation, morphogenesis, sensitiv-

ity, and response to exogenous compounds [26]. These

molecules may also modulate cell signaling by controlling

the assembly and specific activities of the plasma membrane

Fig. 1 Pathways of sphingolipid metabolisms
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proteins [27]. GSLs are composed of a sphingoid base and a

long, mostly saturated amide-linked acyl chain. The struc-

ture of the polar head group may vary significantly, ranging

from one neutral monosaccharide residue to big assemblies

of carbohydrates and sialic acid [28, 29].

Glucosylceramide (GlcCer) is an important glyco-

sphingolipid metabolic intermediate [6, 30, 31] which

serves as the starting point in the biosynthesis of a wide

variety of GSLs [32]. The synthesis and organization of

lipids take place at the endoplasmic reticulum (ER) and the

Golgi complex and are precisely regulated. Ceramide is

synthesized at the ER and transported to other locations. It

either undergoes vesicular trafficking to the cis-Golgi,

where it is converted to GlcCer, or gets transported to the

trans-Golgi for conversion to sphingomyelin (SM) [33].

GlcCer is the product of the transfer of glucose by gluco-

sylceramide synthase (GCS) from UDP-glucose to cera-

mide [6, 34]. Studies have shown that GluCer has

proliferative functions on various cells. Therefore, it is

important in the chemotherapeutic drug resistance [6].

This review will focus on the structure and functions of

glucosylceramide synthase and glucosylceramide, and the

roles of glucosylceramide synthase in treatment and drug

resistance of cancer. It will also discuss targeting the glu-

cosylceramide synthase/glucosylceramide pathway for the

treatment of cancer.

Structure and functions of glucosylceramide synthase

and glucosylceramide

Glucosylceramides are present in almost all eukaryotic

organisms and in a few bacteria, and they play a key role in

the synthesis of hundreds of different GSLs [29, 35, 36].

GSLs are characteristic constituents of plasma membranes

of mammalian cells. They may modulate cell proliferation,

differentiation, and cell–cell interaction [37] and play an

important role in the metastatic spread of tumor cells since

GSLs on the cell membrane have been implicated as

functionally important molecules in tumor cell attachment

[38]. They are glycolipids that contain a hydrophilic head

group sugar, D-glucose, and a hydrophobic lipid moiety

[26]. The structures of the sugar head groups and the cer-

amide backbones of many GlcCer from animals, plants,

fungi, and bacteria have demonstrated variety [35]. The

biosynthesis of GlcCer results of biochemical events

leading to complex structures. The above structures are

embedded at the surface of cells by non-covalent interac-

tions between phospholipids and the ceramide part of the

glycolipids. The carbohydrate is endowed of recognition

properties, modulated by the nature of the lipid moiety

responsible for the self-assembling properties of the

whole [39]. GlcCers have been degraded both by a

glucocerebrosidase in lysosomes and by a non-lysosomal

glucocerebrosidase in the cytosol [29].

GlcCers have been found to be involved in many cel-

lular processes such as cell proliferation, oncogenic trans-

formation, differentiation, and tumor metastasis, and more

recently, they have been implicated in venous thrombosis

and in the anticoagulant activity of protein C [26]. GlcCer

functions have been listed as (1) contributing to the phys-

ical properties and physiological functions of membranes,

(2) serving as the basic precursor for over 300 species of

glycosphingolipids found in different mammalian cell

types, and (3) GlcCer synthesis and degradation are

believed to contribute to the control of the level of cera-

mide [35, 40].

GlcCers are formed from ceramide and UDP-glucose by

the microsomal enzyme, UDP-glucose: ceramide d-gluco-

syltransferase also known as GCS (EC 2.4.1.80), that is, a

transmembrane protein localized in the cis/medial Golgi,

with an N-terminal signal-anchor sequence and a C-ter-

minal catalytic domain located in the cytoplasm [14, 23,

41–43]. The rate of reaction under physiological conditions

may depend on the tissue level of UDP-glc, which in turn

depends on the level of glucose in a particular tissue [44].

This enzyme does not possess similarity to other known

glycosyltransferases. The structure of the enzyme is quite

unique since all other glycosyltransferases involved in GSL

synthesis are localized to the lumenal side of the Golgi

apparatus or ER [45]. It catalyzes the transfer of a glucose

moiety from UDP-glucose to the primary hydroxyl group

of ceramide to yield GlcCer with inversion of the anomeric

configuration for synthesis of glucosylceramide [46–48].

The catalytic activity of GSC interferes with the func-

tion of both GlcCer and higher GSLs. These functions

include two phenomena of medical importance. First,

turnover of higher GSLs requires their continuous but

matching degradation. Inhibition of GlcCer biosynthesis by

drugs can reduce the accumulation of higher sphingolipid.

Second, the development of cancer cells toward apoptosis

or proliferation and their level of multidrug resistance

depend on the ratio of ceramide to glycosphingolipids

[42, 43]. The activity of GCS was first determined in 1968

and since then different enzymatic assays have been

developed [49]. This enzyme is located on the cytosolic

membrane leaflet of the Golgi apparatus. From here,

GlcCer can reach the plasma membrane by direct transport,

or it can be modified by further glycosylation in the Golgi

apparatus [37, 50, 51]. Glucose is first glycosylated with

the C1 hydroxyl group of ceramide, and then, the GlcCer

unit serves as a common coupling partner for the oligo-

saccharide donors [52]. This enzyme is also available in the

ER and microsome [53].

It has been shown that human GCS is a glycopro-

tein containing 394 amino acids encoded from 1182
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nucleotides, including a G1C rich, 59 untranslated regions

of 290 nucleotides [34]. GCS is composed of 38-kDa

monomers organized as heterodimers or heterooligomers

with both C and N termini present in the final enzyme form.

The active site of the enzyme is present on the cytosolic face

of the Golgi membrane with some epitopes shielded by

proximity to other parts of the enzyme or Golgi membrane.

In addition, there is an associated protein of 15 kDa found

in conjunction with the enzyme normally found in Golgi

membranes whose specific structure is currently unknown

[38]. Enzyme protein is both tightly membrane bound and is

a minor component of the Golgi membrane. Therefore,

purification of GCS is very difficult [45].

GCS activity is stimulated by a number of means that

increase ceramide concentrations, such as the addition of a

short-chain ceramide and treatment with bacterial sphin-

gomyelinase, endoglycoceramidase, or inhibitors of GCS

synthase [7].

Glucosylceramide synthase in drug resistance

Despite of the presence of many therapeutic approaches

developed continuously for cancer therapy, in clinic,

resistance cases against these approaches are arising at the

same time. For this reason, resistance development is one

of the major obstacles in the struggle between the cancer

cells and the therapeutics.

As well as the known mechanisms for many years,

abnormal sphingolipid metabolism has also been seen as an

effective drug resistance mechanism, recently [27, 54].

Conversion of ceramide into glucosylceramide by the

activity of GCS and therefore intracellular aggregation of

glucosylceramide is generally hold responsible for this type

of mechanism in drug resistance [1, 27, 55]. In 1996,

adriamycin resistance has been reported to be associated

with increased glucosylceramide levels in MCF-7 breast

cancer cells for the first time. This effect of glucosylcera-

mide on drug resistance has been then confirmed in many

other types of cancer cells such as melanoma, leukemia,

and neuroblastoma [27, 47, 55, 56]. However, downregu-

lation or inhibition of GCS results in increased levels of

intracellular ceramide and decreased drug resistance, that

is, reversion of drug resistance [57].

The mechanism underlying the drug resistance that gets

developed with increased glucosylceramide expression is

associated with P-glycoprotein (P-gp) overexpression of

cancer cells [58, 59]. In leukemia, melanoma, colon, and

breast cancer cells, overexpression of GCS causes an

increment in the expression levels of P-gp that results in

drug resistance [60]. P-gp has been also reported to prevent

human AML cells from C8:ceramide-mediated apoptosis,

and inhibition of P-gp resulted in the sensitization of the

cells to apoptosis via C8:ceramide [54]. P-gp expression has

been reported to be responsible for the development of

resistance against the apoptotic effects of C6:ceramide on

HeLa cells [52].

Interestingly, in addition to increased levels of gluco-

sylceramide, increased levels of ceramide also results in

the overexpression of P-gp in breast cancer cells. In 2007,

it has been reported that long-term treatment of MDA-

MB-231 cells with C8:ceramide induces P-gp overexpres-

sion [61]. Moreover, under the stress conditions generated

by the doxorubicin treatment, ceramide has been observed

to trigger the overexpression of GCS and cause the arise of

doxorubicin resistance [62].

High levels of GCS also cause the overexpression of

Bcl-2 gene, an apoptosis suppressor. In adriamycin-resis-

tant K562/AO2 cells, increased levels of Bcl-2 have been

reported rather than that in sensitive K562 cells. Following

the inhibition of GCS by PPMP or downregulation by

siRNA transfection, decreased Bcl-2 gene expression lev-

els have been reported [63]. Likewise, b-catenin- and cSrc

signaling are responsible for the development of drug

resistance due to increased levels of GCS in colon, cervi-

cal, breast, and ovary cancer cells that resist doxorubicin.

In OVCAR-8 human ovarian cancer cells, GCS upregula-

tion has been reported to result in a significant increase in

the levels of cSrc- and b-catenin signaling and also in a

significant decrease in intracellular paclitaxel levels,

showing increased activity of P-gp. In contrast, downreg-

ulation of GCS causes suppression of these signaling

molecules and also of P-gp [64].

The resistance generated as a result of the overexpression

of GCS can be reversed by the inhibition of GCS, P-gp, or any

other responsible genes through the particular inhibitors, by

siRNA transfection, or via using nanoparticles [65]. Siddigui

et al. [66] reported that using oligonucleotide nanoparticles

that have been loaded with antisense GCS reversed resistance

against adriamycin in NCI/ADR-RES cells. The use of these

mixed-backbone oligonucleotides suppressing selectively

GCS overexpression have been also reported to significantly

enhance the sensitivity of human NCI/ADR-RES cells and

also of EMT6/AR1 murine breast cancer cells against doxo-

rubicin. Furthermore, these oligonucleotides decrease the size

of the tumors by increasing the levels of C18:ceramide and

apoptosis mediated by caspases [67]. In breast cancer, in vivo

and in vitro suppression of GCS by GCS siRNA also

decreases P-gp expression and the tumor size; therefore, it

reverses multidrug resistance [68]. Transfection of adriamy-

cin-resistant MCF-7/ADM human breast cancer cells with

both GCS and MDR1 siRNAs results in significant, and more

importantly, efficient reversal of multidrug resistance [69].

Our group recently showed that there were significant

increases in expression levels of imatinib resistant K562 cells

as compared to parental sensitive cells [70].
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Considering all these data, GCS is mainly responsible

for MDR in almost all types of cancer, and targeting and

inhibiting glucosylceramide synthase lead to the reversal of

this MDR, and thus sensitization, and even totally removal

of cancerous cells.

Glucosylceramide synthase in cancer therapy

GCS regulates the balance between ceramide and GlcCer,

meaning that GCS regulates drug sensitivity or resistance

to anticancer drugs [46]. Intracellular accumulation of

ceramide or exogenous ceramides cause anti-proliferative

responses, since ceramide is a strong apoptotic molecule

[51]. There is evidence that ceramide mediates cell death

by apoptotic and non-apoptotic mechanisms in several

systems [27]. Ceramide mediates cell death, while its

detoxification by conversion to glucosylceramide can

inhibit this process [51]. Because GSLs on the cell mem-

brane have been implicated as functionally important

molecules in tumor cell attachment, GluCers play an

important role in the metastatic spread of tumor cells [38].

Because of the propagator effects of GCS in cancer

cells, many researchers have studied targeting GCS in

cancer therapy in order to trigger apoptosis and render

MDR [69]. Previously, Radin has reported that the inhi-

bition of GCS with PDMP, a glucosylceramide analog,

results in an increase in the levels of ceramide and sphin-

gosine and also a decrease in protein kinase C levels in

mouse Ehrlich ascites carcinoma cells and in rat glioma

cells, that is, GCS inhibition enhances the anti-proliferative

effects of chemotherapeutics on cancer cells [71, 72].

Maurer et al. [73] have also reported that GCS inhibition

increases the intracellular ceramide levels and enhances the

cytotoxic effects of 4-HPR and safingol in tumor cells. Not

only in vitro but also in vivo studies have shown that

progression of melanoma cells decreases in response to

GCS suppression, and thus P-gp inhibition [74, 75]. In

neuroepithelioma cells, it has been reported that antisense-

and PDMP-mediated inhibition of GCS decreases the p53-

independent apoptotic effects of the antineoplastic reagent,

retinoid [76]. Furthermore, Gouazé et al. [77] have reported

that GCS inhibition leads to increased sensitivity and thus

enhanced effects of paclitaxel, doxorubicin, and vinblastine

via increasing intracellular ceramide levels in MCF-

7-AdrR cells. In 2006, PDMP, the GCS inhibitor, has been

reported to render neuroblastoma cells sensitive against

paclitaxel. This sensitization results in abnormal progres-

sion of cell cycle rather than the induction of apoptosis

[78]. In addition, apoptotic effects of a caspase-dependent

apoptosis inducer peptide molecule, lactoferricin, have

been reported to increase in response to the treatment of

CCRF-CEM and Jurkat T cell leukemia cells with PPMP, a

GCS inhibitor. It has also been shown that the combined

use of lactoferricin and tamoxifen, due to its known

inhibitory effect on GCS function, enhances the apoptotic

effects of lactoferricin, and thus, it leads to increased levels

of apoptosis in Jurkat T cell leukemia cells [79]. The imino

sugar OGT2378 that is also an inhibitor of GCS reduced

the tumorigenic capability of MEB4 melanoma cells [80].

It has been shown that GCS is overexpressed in many

multidrug-resistant cancer cell lines in leukemia, breast

cancer, and renal cell cancer [64]. Treatment of various

kinds of cancer cells with several GCS inhibitors affects

basic cellular functions such as growth, death, and adhe-

sion. Also, recent studies have demonstrated a direct cor-

relation between the development of multidrug resistance

and increased levels of GC [81]. The effects of GCS on

cancer therapy have also been revealed in follicular thyroid

carcinoma cells. In this type of cancer cells, the inhibition

of GCS enhances the anti-cancer effects of camptothecin

and doxorubicin via increasing the level of ceramide syn-

thesis [82]. Recently, it has been also reported that in tumor

cells bearing p53 mutant alleles, GCS inhibition activates

the phosphorylation of p53 and also activates the genes

related with p53-mediated apoptosis, such as Puma,

p21Waf1/Cip1, and Bax. These p53-mutant cancer cells

have also become more sensitive against doxorubicin in

response to GCS inhibition [83].

Moreover, our group has revealed that the suppression

of GCS by PDMP synergistically increases the anti-

proliferative and apoptotic effects of resveratrol on human

acute and chronic myeloid leukemia cell lines [84, 85]. Our

group has also shown that the inhibition of GCS with

PDMP increased anti-proliferative and apoptotic effects of

imatinib [86], nilotinib [87], and dasatinib [88] on chronic

myeloid leukemia cells synergistically. GCS inhibition

causes enhanced cytotoxic and apoptotic responses in

human prostate cancer cells in response to docetaxel

treatment [89]. It was also demonstrated that inhibition of

GCS reversed resistance to doxorubicin and vincristine in

leukemia [90, 91].

Accumulating literature in this area strengthen the

importance of bioactive sphingolipid metabolism for the

diagnostic and therapeutic applications in various cancers.
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