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Abstract— In this paper, a new robust integral of signum of
error (RISE) feedback type controller is designed for a class
of uncertain nonlinear systems. Unlike the previous versions of
RISE feedback type controllers, the proposed controller does
not require prior knowledge of upper bounds of the vector con-
taining the uncertainties of the dynamical system plus desired
system dynamics (and their derivatives) for the control gain
selection. The aforementioned enhancement is made possible via
the design of a time–varying compensation gain as opposed to a
constant gain used in previous RISE feedback type controllers.
Asymptotic stability of the error signals and the boundedness
of the closed–loop system signals are ensured via Lyapunov
based arguments. Numerical simulation studies are presented
to illustrate the viability of the proposed method.

I. INTRODUCTION

The tracking control problem for nonlinear systems subject

to uncertainties in their dynamics have attracted extensive

attention from the control community for decades. Successful

achievements have been made on general classes of nonlin-

ear systems both by designing adaptive [1] and robust [2]

controllers. If it is possible to separate the vector containing

the uncertain system dynamics in a linearly parametrizable

manner, (i.e., as the multiplication of a regression matrix

of known elements with a vector containing the constant

or slowly–varying system uncertainties) adaptive controllers

[3] are considered to be the commonly preferred choice. On

the other hand, when the vector containing the uncertainties

of the system or the desired trajectory is periodic with

a known period, learning controllers [4] can be applied.

When none of the above is possible and the only knowledge

about the nonlinear system is that the uncertainties of the

system are upper bounded (by either a known constant

or a known function), robust controllers, such as variable

structure controllers, are commonly considered. However,

most robust controllers, due to the use of the signum function

in their design, are discontinuous. Also with most robust

controller designs, convergence of the error signal to an

ultimate bound can be guaranteed, and over–shrinking this

ultimate bound causes chattering which, for most mechanical

systems, is undesirable.

To our best knowledge, the first continuous and asymptot-

ically stable robust controller was presented in [5] and [6]. In
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[5], motivated by the work of [2], authors presented a contin-

uous robust controller for a class of nonlinear systems with

continuously differentiable dynamics. As the methodology

utilized the integral of the signum of the error as opposed to

the signum of error used in standard sliding mode controllers,

it is referred as RISE (short for ‘Robust Integral of Sign

of Error’) feedback [7]. Controller formulations fused with

RISE feedback have then been applied to a wide variety of

systems, including autonomous flight control [8], underwater

vehicle control [9], control of special classes of multiple

input multiple output (MIMO) nonlinear systems [10], [11],

and even time delay compensation [12]. One major drawback

of the RISE feedback, however, the formulation requires a

sufficient high gain condition on the constant uncertainty

compensation gain. Specifically, the constant uncertainty

compensation gain in RISE feedback formulations require

the knowledge of the upper bounds of vectors (functions of

the desired system trajectories) containing system uncertain-

ties. To reduce the heavy control effort enforced to the system

by this high gain, researchers used adaptive [7] and neural

network (NN) based [13], [14] feedforward compensation

techniques in conjunction with RISE feedback. Recently, in

[15], Jagannathan et. al proposed a controller formulation

that utilized RISE feedback multiplied with an adaptive gain

fused with NN feedforward compensation for a class of

uncertain nonlinear systems. However, the formulation failed

to prove L1 boundedness of the error term utilized in the

design of the adaptive gain, as a result, there is no guarantee

that the proposed time–varying adaptive gain would remain

bounded under the closed–loop operation.

The increasing interest to RISE feedback in the robust

control community motivated the authors to research possible

extensions/modifications to RISE feedback methodology. In

this paper, significant research has been aimed to extend the

RISE controller formulation given in [5] by removing the

need for prior knowledge of the upper bounds of the vector

containing the desired system dynamics plus uncertainties

(and their derivatives) for the control gain selection. The

main motivation behind pursueing to extend the results in

[5] is due to the fact that using a time–varying adaptive

compensation gain reduces the heavy control effort and there-

fore eliminates the need for extra feedforward compensation

methods to be fused with the RISE controller formulation. In

this study, instead of the constant uncertainty compensation

gain, a time–varying gain is designed in the controller. The

stability of the designed controller is investigated via novel

Lyapunov based analysis. The asymptotic convergence of the

error signals and the boundedness of all the signals under the
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closed–loop operation is guaranteed. Simulation studies are

conducted to demonstrate the proof of concept numerically.

When compared to the previous controllers that utilized RISE

feedback (including [5]), the proposed method relies on

a time–varying compensation gain which does not impose

heavy control effort to the system. When compared to the

controller of [15], the proposed controller does not require a

feedforward compensation method and the analysis provides

the L1 boundedness of the error term utilized in the design

of the time–varying gain, and thus proving the boundedness

of all the signals under the closed–loop operation including

the time–varying adaptive gain.

II. ERROR SYSTEM DEVELOPMENT

In this section1, for the compactness of the presentation the

following single input single output (SISO) nonlinear system

is considered [5]

mx(n) + f = u (1)

where x(i) (t) ∈ R i = 0, ..., n are the system states,

m
(

x, ẋ, · · · , x(n−1)
)

, f
(

x, ẋ, · · · , x(n−1)
)

∈ R are uncer-

tain nonlinear functions, and u (t) ∈ R is the control input.

The standard assumption that the uncertain function m (·)
being positive (i.e., m (·) > 0) is utilized in the subsequent

development. Therefore, following bounds are assumed

m ≤ m (x) ≤ m
(

|x| , |ẋ| , · · · ,
∣

∣

∣
x(n−1)

∣

∣

∣

)

(2)

where m ∈ R is a positive constant and m (·) is some posi-

tive non–decreasing function of its arguments. The uncertain

functions m (·) and f (·) are assumed to be continuously

differentiable up to their second order time derivatives. It is

highlighted that while the development in this paper is for

the SISO system model in (1), extension to MIMO systems

is straightforward

To quantify the tracking control objective, the output

tracking error, denoted by e1 (t) ∈ R, is defined as

e1 , xr − x (3)

where xr (t) ∈ R represents the reference trajectory which

is assumed to be bounded with bounded continuous time

derivatives (i.e., x
(i)
r (t) ∈ L∞ for i = 0, · · · , (n + 2)). The

main control objective is to ensure that the output tracking

error in (3) converge asymptotically to zero, that is |e1 (t)| →
0 as t → ∞ by designing a continuous robust control law

under full–state feedback (i.e., x(i), i = 0, · · · , (n − 1) are

measurable).

To facilitate the control design, auxiliary error signals,

denoted by ei (t) ∈ R, i = 2, · · · , n, are defined in the

following manner

e2 , ė1 + e1 (4)

...

en , ėn−1 + en−1 + en−2. (5)

1As the proposed work aims to extend the results in [5], the notation in
[5] is borrowed for a better comparison with the results in this paper.

It is noted that a general expression for ei (t) i = 2, · · · , n

in terms of e1 (t) and its time derivatives can be obtained as

ei =

i−1
∑

j=0

ai,je
(j)
1 (6)

where ai,j ∈ R are known positive constant coefficients with

an,(n−1) = 1. To ease the presentation of the subsequent

stability analysis, another auxiliary error, denoted by r (t) ∈
R, is defined to have the following form

r , ėn + αen (7)

where α ∈ R is a positive constant gain. It is noted that, the

definition of r (t) has ėn (t) which requires unmeasurable

x(n) (t) then it is clear that r (t) is not measurable and thus

cannot be utilized in the control design.

After multiplying both sides of the time derivative of (7)

with m (·), substituting the second time derivative of (6) for

i = n, and the time derivative of (1), the following open–

loop dynamics for r (t) can be obtained

mṙ = −
1

2
ṁr − en − u̇ + N (8)

where N
(

x, · · · , x(n), e1, · · · , en, r, x
(n+1)
r

)

∈ R is an

auxiliary function defined as

N , m



x(n+1)
r +

n−2
∑

j=0

an,je
(j+2)
1 + αėn





+ ṁ

(

1

2
r + x(n)

)

+ ḟ + en. (9)

The above auxiliary function is partitioned as sum of two

auxiliary signals which are denoted by Nr

(

xr, · · · , x
(n)
r

)

,

Ñ
(

x, · · · , x(n), e1, · · · , en, r, x
(n+1)
r

)

∈ R and are defined

as

Nr , N |
x=xr,··· ,x(n)=x

(n)
r

(10)

Ñ , N − Nr. (11)

It should be noted that since both Nr (t) and Ṅr (t) are

functions of the desired trajectory and its time derivatives,

they are bounded functions of time (i.e., Nr (t), Ṅr (t) ∈
L∞).

Remark 1: Since the auxiliary signal N (·) defined in (9)

is continuously differentiable, Mean Value Theorem [16] can

be utilized to show that Ñ (·) can be upper bounded as

∣

∣

∣
Ñ (·)

∣

∣

∣
≤ ρ (‖z‖) ‖z‖ (12)

where ‖·‖ denotes the standard Euclidean norm, ρ : R≥0 →
R≥0 is some globally invertible, non–decreasing function of

its argument and z (t) ∈ R
(n+1) is the combined error signal

defined as

z , [e1, · · · , en, r]
T

. (13)
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Based on the subsequent stability analysis, the following

continuous robust controller is proposed

u (t) = (k + 1)

[

en (t) − en (t0) + α

∫ t

t0

en (σ) dσ

]

+

∫ t

t0

β̂ (σ) sgn (en (σ)) dσ (14)

where k ∈ R is a constant positive control gain, β̂ (t) ∈ R is

a subsequently designed time–varying (uncertainty compen-

sation) control gain, α was introduced in (7) and sgn (·) is

the standard signum function. The constant term en (t0) is

added to the controller to ensure u (t0) = 0.

Remark 2: The controller in (14) can alternatively be

considered as a modified linear controller [by treating the

first line in (14) as a proportional integral (PI) controller

in terms of en (t)] fused with a continuous self–updating

nonlinear component for uncertainty compensation [i.e., the

second line in (14)].

Remark 3: A comparison of the development thus far and

the corresponding part of [5] is now given. While the error

system development and the open–loop error dynamics are

similar, the controller in (14) is fundamentally different than

that of the controller in [5]. Specifically, the control gain of

the sgn (en) term in (11) of [5] is constant while in (14), the

control gain of the sgn (en) term is time–varying. This is a

novel departure from the existing controllers utilizing RISE

feedback.

The time–varying control gain β̂ (t) is decomposed as

β̂ (t) = β̂1 (t) + β2 (15)

where β̂1 (t) ∈ R is its time–varying part and β2 ∈ R is its

positive constant part (i.e., β2 > 0). The time–varying part

of the control gain is designed as

β̂1 =











en (t) − |en (t0)| + α
∫ t

t0
|en (σ)| dσ if en > 0

− |en (t0)| + α
∫ t

t0
|en (σ)| dσ if en = 0

−en (t) − |en (t0)| + α
∫ t

t0
|en (σ)| dσ if en < 0

(16)

and taking its time derivative results in

˙̂
β1 =







ėn (t) + αensgn (en) if en > 0
αensgn (en) if en = 0
−ėn (t) + αensgn (en) if en < 0.

(17)

Alternatively, in a more compact form, the time–varying gain

β̂1 (t) in (16) can be rewritten as

β̂1 (t) = |en (t)| − |en (t0)| + α

∫ t

t0

|en (σ)| dσ (18)

from which its time derivative is obtained as

˙̂
β1 = ėnsgn (en) + α |en|

= rsgn (en) (19)

where the definition of r (t) in (7) was utilized. Notice from

(18) that β̂1 (t0) = 0. The definitions (18) and (19) will be

preferred in the subsequent stability analysis.

At this stage, to substitute into (8), the time derivative of

the control input in (14) is calculated

u̇ = (k + 1) r +
(

β̂1 + β2

)

sgn(en) (20)

where (7) and (15) were utilized, and thus the closed–loop

error system for r (t) is obtained as

mṙ = −
1

2
ṁr−en−(k + 1) r−

(

β̂1 + β2

)

sgn(en)+Nr+Ñ.

(21)

III. STABILITY ANALYSIS

Before presenting the main result of this section, two

lemmas are stated where both of which will later be utilized

in the proof of the theorem.

Lemma 1: The auxiliary function, denoted by L1 (t) ∈ R,

is defined as

L1 , r (Nr − β1sgn (en)) (22)

where β1 ∈ R is a positive constant. Provided that β1 satisfy

β1 ≥ ‖Nr (t)‖L∞

+
1

α

∥

∥

∥
Ṅr (t)

∥

∥

∥

L∞

(23)

where ‖·‖L∞

denotes infinity norm, then

∫ t

t0

L1 (σ) dσ ≤ ζb1 (24)

where ζb1 ∈ R is a positive constant.

Proof: See Appendix I.

Lemma 2: The auxiliary function, denoted by L2 (t) ∈ R,

is defined as

L2 , −β2ėnsgn (en) . (25)

Provided that β2 > 0 then

∫ t

t0

L2 (σ) dσ ≤ ζb2 (26)

where ζb2 ∈ R is a positive constant.

Proof: See Appendix II.

Remark 4: A comparison of the stability analysis thus far

and the corresponding part of [5] is now given. Lemma 1 in

this paper is similar to Lemma 1 in [5], and Lemma 2 in this

paper was not in [5]. In this paper, in Lemma 1, a constant

parameter namely β1 is introduced. This constant parameter

is required to satisfy the condition in (23) (i.e., it must be

greater than the sum of the upper bound of the uncertain

function Nr with the upper bound of its time derivative

scaled by 1
α

) but it is not utilized in the controller in (14).

On the other hand, in [5], the similar constant parameter was

utilized in the controller in (11). This difference highlights

the main novelty of our work when compared to [5] which is

removing the need for the knowledge of the upper bounds of

the uncertain function and its time derivative. In our paper,

different from [5], Lemma 2 is presented. In the proof of

Lemma 2, the constant β2 is only required to be positive

and no additional constraints are imposed. While β2 is in

the controller in (14) [via being the positive constant part of
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the time–varying control gain β̂ (t) as introduced in (15)], it

being positive is sufficient.

The tracking result will now be proven via the following

theorem.

Theorem 1: The controller in (14) with the time–varying

gain in (15) and (18) ensures semi–global asymptotic con-

vergence of the tracking error and its time derivatives in the

sense that

∣

∣

∣
e
(i)
1 (t)

∣

∣

∣
→ 0 as t → ∞ provided that α is selected

to satisfy α > 1
2 , the control gain k is chosen large enough

when compared to the initial conditions of the system and

β2 is chosen to be positive.

Proof: Following Lyapunov function candidate, de-

noted by V (y, t) ∈ R, is defined as

V ,
1

2

n
∑

j=1

e2
j +

1

2
mr2 +

1

2
β̃2

1 + P1 + P2 (27)

where P1 (t), P2 (t) ∈ R are defined as

P1 , ζb1 −

∫ t

t0

L1 (σ) dσ (28)

P2 , ζb2 −

∫ t

t0

L2 (σ) dσ (29)

and β̃1 (t) ∈ R is defined as

β̃1 , β1 − β̂1 (30)

and y (t) ∈ R
(n+4)×1 is defined as

y ,

[

zT , β̃1,
√

P1,
√

P2

]T

(31)

where z (t) was defined in (13).

From the proofs of Lemmas 1 and 2, it is clear that P1 (t)
and P2 (t) are non–negative and thus V (y, t) is also non–

negative. The Lyapunov function in (27) can be bounded as

1

2
min {1, m} ‖y‖

2
≤ V ≤ max

{

1

2
m (‖y‖) , 1

}

‖y‖
2

(32)

where (2) was utilized.

Remark 5: When compared with the Lyapunov function

in (33) of [5], (27) includes two additional terms [i.e.,
1
2 β̃2

1 (t) and P2 (t)]. The first new term is added as a direct

consequence of the time–varying nature of the uncertainty

compensation gain β̂ (t). On the other hand, the P2 (t) term

is introduced to prove L1 boundedness of en (t) (as will

be demonstrated subsequently). This is required to prove

the boundedness of the time–varying gain β̂ (t). Proving the

boundedness of β̂ (t) is a significant improvement over the

similar results in [15] where boundedness was not ensured.

After taking the time derivative of (27) and substituting

(5), (7) and (21), following expression can be obtained

V̇ = −

n−1
∑

j=1

e2
j − αe2

n + en−1en − r2 − kr2

+ rÑ − αβ2 |en| (33)

where (22) and (25) were also utilized. By using the fact

that en−1en ≤ 1
2

(

e2
n−1 + e2

n

)

, an upper bound on (33) can

be obtained as

V̇ ≤ − min

{

1

2
, α −

1

2

}

‖z‖
2

+
ρ2 (‖z‖)

4k
‖z‖

2

− αβ2 |en| (34)

where (12) was utilized. Provided that α is selected to satisfy

α > 1
2 and the control gain k is selected according to

k >
1

4 min
{

1
2 , α − 1

2

}ρ2 (‖z‖) , (35)

from (34), following expression is stated

V̇ ≤ −γ ‖z‖2 − αβ2 |en| (36)

where γ ∈ R is some positive constant.
Given the non–negative Lyapunov function in (27), its

bounds in (32), and its non–positive time derivative in (36),
a more conservative bound on the control gain k can be
obtained, specifically, when k is chosen to satisfy

k >
1

4 min
{

1

2
, α − 1

2

}ρ
2

[
√

max {m (‖y (t0)‖) , 2}

min {1, m}
‖y (t0)‖

]

(37)

with

‖y (t0)‖
2 =

n
∑

j=1

|ej (t0)|
2 + |r (t0)|

2 + β2
1 + ζb1 + ζb2 (38)

then (35) is ensured.

From (27), (32) and (36), it is clear that V (y, t) ∈ L∞

and thus e1 (t), · · · , en (t), r (t), β̃1 (t), P1 (t), P2 (t) ∈ L∞.

Boundedness of en (t) and r (t) can be utilized along with

(7) to show that ėn (t) ∈ L∞. These boundedness statements

can be utilized along with (4)–(6) to prove that ė1 (t), · · · ,
ėn−1 (t) ∈ L∞. From (20), it can easily be concluded that

u̇ (t) ∈ L∞. The boundedness of the auxiliary error signals

and their time derivatives can be utilized along with (6) to

conclude that e
(i)
1 (t) ∈ L∞ i = 1, · · · , n, which can then

be utilized along with (3) and its time derivatives to prove

that x(i) (t) ∈ L∞ i = 1, · · · , n. The above boundedness

statements can be utilized along with m (·), f (·) ∈ C2, to

prove that m (·), f (·), ṁ (·), ḟ (·) ∈ L∞. From (21), it is

concluded that ṙ (t) ∈ L∞.

After integrating (36) in time, following expression can be

obtained

γ

∫ ∞

t0

‖z (σ)‖2
dσ +αβ2

∫ ∞

t0

|en (σ)| dσ ≤ V (t0)−V (∞)

(39)

and since V (∞) ≥ 0 following expressions are obtained
∫ ∞

t0

‖z (σ)‖
2
dσ ≤

V (t0)

γ
(40)

∫ ∞

t0

|en (σ)| dσ ≤
V (t0)

αβ2
. (41)

From (40) and (41), it is clear that z (t) ∈ L2 and en (t) ∈
L1. Since en (t) ∈ L1 ∩L∞, from (18), it is concluded that

β̂1 (t) ∈ L∞, and since r (t) ∈ L∞, then from (19), it is
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clear that
˙̂
β1 (t) ∈ L∞. Standard signal chasing arguments

can be utilized to prove that all the remaining signals remain

bounded under the closed–loop operation. Since z (t) ∈ L2∩
L∞ and ż (t) ∈ L∞, Barbalat’s Lemma [1] can be utilized to

prove that ‖z (t)‖ → 0 as t → ∞, and from its definition in

(13), it is clear that the tracking error and its time derivatives

asymptotically converge to zero.

IV. SIMULATION RESULTS

In order to substantiate the theoretical results, the proposed

nonlinear controller has been tested on a generalized first

order system that contains scalar variables. The equation of

motion is given as [17]

ẋ = −x + δ0 + u (42)

where x (t), u (t) ∈ R are the state variable and the control

input, respectively, and the unknown scalar time–varying

function δ0 (t) ∈ R is set to be

δ0 (t) = sin (t) + cos (πt) . (43)

The initial value of the state is x (0) = 2. The control ob-

jective is to make the state variable x (t) track the following

sinusoidal reference trajectory

xr (t) = sin (t) . (44)

Since this example system is first order, then in view of

Remark 2, the control input is considered as a PI controller

in terms of e1 (t) with a self–updating nonlinear component

for uncertainty compensation. As a result, the control gains α

and k are treated as PI control gains, and β2 can arbitrarily be

chosen as positive. Following set of control gains delivered

satisfactory tracking performance

α = 2, k = 10, β2 = 5. (45)

The results are shown in Figures 1–3. The tracking error,

control input and the time–varying control gain β̂ (t) are

shown in Figures 1, 2 and 3, respectively. From Figure 1,

it is clear that tracking control objective is met.

0 1 2 3 4 5 6 7 8 9 10
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Time [sec]

e
1
(t)

Fig. 1. Tracking error e1 (t)

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time [sec]

u(t)

Fig. 2. Control input u (t)

0 1 2 3 4 5 6 7 8 9 10
4.4

4.5

4.6

4.7

4.8

4.9

5

Time [sec]

Fig. 3. The time–varying control gain β̂ (t)

V. CONCLUSIONS

In this paper, a new RISE feedback controller with a time–

varying adaptive compensation control gain is designed.

Different from the existing RISE feedback type controllers

in the literature, in the proposed formulation, the control

gain selection does not require prior knowledge of the

upper bounds of the vector containing the desired system

dynamics plus functions containing uncertainties. The use

of the time–varying gain instead of constant compensation

gain used in previous formulations aimed to reduce the

heavy control effort and therefore to eliminate the need of

extra feedforward compensation methods for RISE feedback

controllers. The controller achieved semi–global tracking

via a novel Lyapunov–type analysis. Numerical simulation

studies are presented to illustrate the tracking performance

of the proposed method for a first order scalar system.

Having designed a self–updating time–varying control

gain for uncertainty compensation, a possible future work

may be performing a similar modification for the other
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control gains (i.e., k and α). Additionally, experimental

verification is also aimed.

APPENDIX I

PROOF OF LEMMA 1

After substituting (7) into (22) and then integrating in time,

the following expression is obtained

∫ t

t0

L1 (σ) dσ = α

∫ t

t0

en (σ) [Nr (σ) − β1sgn (en (σ))] dσ

+

∫ t

t0

den (σ)

dσ
Nr (σ) dσ

− β1

∫ t

t0

den (σ)

dσ
sgn (en (σ)) dσ. (46)

After integrating the second integral on the right–hand side

by parts, following expression is obtained
∫ t

t0

L1 (σ) dσ = α

∫ t

t0

en (σ) [Nr (σ) − β1sgn (en (σ))] dσ

+ en (σ)Nr (σ) |tt0

−

∫ t

t0

en (σ)
dNr (σ)

dσ
− β1 |en (σ)| |tt0

= α

∫ t

t0

en (σ)

[

Nr (σ) −
1

α

dNr (σ)

dσ

− β1sgn (en (σ))] dσ

+ en (t)Nr (t) − en (t0)Nr (t0)

− β1 |en (t)| + β1 |en (t0)| . (47)

The right–hand side of (47) can be upper bounded as
∫ t

t0

L1 (σ) dσ ≤ α

∫ t

t0

|en (σ)|

×

(

|Nr (σ)| +
1

α

∣

∣

∣

∣

dNr (σ)

dσ

∣

∣

∣

∣

− β1

)

dσ

+ |en (t)| (|Nr (t)| − β1)

+ β1 |en (t0)| − en (t0)Nr (t0) . (48)

From (48), it is easy to see that if β1 satisfies (23), then (24)

holds with

ξb1 , β1 |en (t0)| − en (t0)Nr (t0) . (49)

APPENDIX II

PROOF OF LEMMA 2

After integrating (25) in time, following steps can be

obtained [18]
∫ t

t0

L2 (σ) dσ = −β2

∫ t

t0

ėn (σ) sgn (en (σ)) dσ

= −β2

∫ t

t0

sgn (en) d (en)

= −β2

∫ t

t0

d (|en|)

= −β2 (|en (t)| − |en (t0)|)

≤ β2 |en (t0)| . (50)

From (50), it is easy to see that if β2 is chosen as positive,

then (26) holds with

ξb2 , β2 |en (t0)| . (51)
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