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Effects of Spaceflight on Cells of Bone Marrow Origin
Uzay Uçuşlarının Kemik İliği Kökenli Hücreler Üzerindeki Etkileri

Engin Özçivici
İzmir Institute of Technology, Department of Mechanical Engineering, İzmir, Turkey 

Introduction

Space travel is among the top goals of humankind. Significant
progress has been made in spaceflight technologies since the
1960s. These improvements extended the duration of space

habitation from minutes to days, months, and even years in some
cases [1]. Human activity beyond the low orbit is not expected to
cease, as prospective plans for long-duration space missions to the
Moon and Mars are in action [2]. From a purely technical
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Abstract:

Once only a subject for science fiction novels, plans for establishing habitation on space stations, the Moon, and distant
planets now appear among the short-term goals of space agencies. This article reviews studies that present biomedical
issues that appear to challenge humankind for long-term spaceflights. With particularly focus on cells of bone marrow
origin, studies involving changes in bone, immune, and red blood cell populations and their functions due to extended
weightlessness were reviewed. Furthermore, effects of mechanical disuse on primitive stem cells that reside in the bone
marrow were also included in this review. Novel biomedical solutions using space biotechnology will be required in order
to achieve the goal of space exploration without compromising the functions of bone marrow, as spaceflight appears to
disrupt homeostasis for all given cell types.   
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Özet:

Uzay istasyonları, Ay ve uzak gezegenlerde insan yaşantısının sürdürülmesi her ne kadar bilim kurgu romanlarının öğesi
olsa da, bugün uzay ajanslarının kısa vadeli hedefleri arasında yer göstermeye başlamıştır. Bu bilimsel derleme,
insanoğlunun uzun süreli uzay uçuşları sırasında karşılaştığı biyomedikal problemleri sunma hedefiyle yazılmıştır.
Özellikle kemik iliği kökenli kemik, kan ve bağışıklık hücrelerine yoğunlaşılan derlemede bu hücrelerin ağırlıksız ortamda
yaşadığı sayısal ve fonksiyonel değişiklikler sunulmuştur. Mekanik kuvvet yoksunluğunun sadece özelleşmiş hücrelerde
değil aynı zamanda kemik iliği içinde varolan öncül kök hücrelere olan etkisi de derlemeye eklenmiştir. Özetle, uzay
uçuşları kemik iliğinde bulunan bütün hücrelerin düzenini bozduğu için, uzun süreli uçuşlarının sağlıklı gerçekleşme
potansiyelinin ağırlıksız ortamın yarattığı ters etkileri ortadan kaldırabilecek yenilikçi biyomedikal çözümler ve uzay
teknolojilerine bağımlı olacağı öngörülmüştür. 

Anahtar Sözcükler: Hematopoetik kök hücreler, Kan hücreleri, Bağışıklık, Kök hücre fizyolojisi, Lenfosit, Monosit
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standpoint, the duration of a spaceflight is a problem of logistics
that requires careful optimization of escape trajectories with
required fuel and sustenance. However, the biological response of
astronauts (and cosmonauts] to space, an environment in which
spaceship crew constantly experience weightlessness, presents
equally challenging and unique biomedical problems for the
duration of spaceflight missions. These challenges need to be
addressed for humans to travel, live, and work in space and on
distant planets.

The human adaptive response to weightlessness encompasses
numerous conditions that may affect the possibility of long-term
flight missions [3]. These conditions include space motion
sickness, cardiovascular deconditioning due to reduced blood
volume, and prolonged gastrointestinal transit time. Moreover, the
immune system is known to be suppressed while bacterial
pathogens appear to be unaffected by, if not benefiting from,
spaceflight conditions. Severe and progressive catabolism in space
also affects the musculoskeletal system. Spaceship crew members
progressively lose bone minerals from weight-bearing sites,
increasing their susceptibility to kidney stones (nephrolithiasis]
during flight as well as traumatic or non-traumatic fracture both
during and after the flight mission. Loss in bone mass is also
accompanied with significant losses in leg muscle volumes caused
by muscle atrophy. 

Mission fidelity and optimum quality of life for spaceship crew
is endangered by these medical conditions. Prophylactic and/or
treatment strategies to alleviate these adverse conditions are the
subject of active research in space biomedicine. Furthermore, even
though some of these conditions are transient and recovery is
observed after returning to regular weight-bearing activities, some
others may remain persistent for the crew. Given that bone
turnover activity and cellular constituents of the immune system
are actively regulated by progenitor/stem cells that reside in the
bone marrow, adverse effects of disuse caused by weightlessness
on these cells have to be analyzed carefully in order to develop
strategies to improve spaceflight periods and even make it possible
for spaceship crew to populate other planets or satellites. The goal
of this review is to present up-to-date biomedical research
addressing the response of bone marrow cells to disuse caused by
loss of weight-bearing. 

Mechanical Loads in Biology

Since life has evolved in the presence of 1 g (‘g’ being Earth’s
gravitational pull, which is a constant acceleration of 9.81 m/s2]
for the last couple of billion years without any interruption in the
gravitational field, all cells are adapted to survive and thrive in the
presence of mechanical signals. Mammalian cells, similar to plant
[4], fungal [5], and bacterial cells [6], can detect and adapt to
mechanical forces [7]. The source of these physical forces can be
both external (atmospheric pressure, sea waves, wind, etc.] and
internal (weight occurring from gravity, blood pressure, interstitial
fluid shear, etc.] for organisms. Since mechanical forces are
omnipresent in the environment, cells can base numerous
decisions about proliferation, migration, commitment, matrix
synthesis, and maintenance on the mechanical inputs from their

environments [8]. Based on these decisions made by
corresponding cells, tissues may follow by altering their form and
function. For example, individual muscle fiber (sarcomere]
contractions and accumulated damage during physical exercise
triggers events that eventually increase the muscle tissue mass of
an athlete, a process that would make the athlete physically
stronger. Conversely, because of the reduction of mechanical loads
during spaceflight, spaceship crew members constantly lose bone
mineral from weight-bearing sites of the skeleton [9]. This adaptive
response of cells to the presence and absence of mechanical loads
needs to be fully understood in order to foresee and prevent
negative effects of sustained weightlessness experienced on long-
term spaceflights.

Cellular Niche in the Bone Marrow

Protected within a calcified cortex, bone marrow houses
different types of cells from various developmental backgrounds
with absolute importance to the survival of the organism. Other
than the small fraction of endothelial cell lineage that primarily
forms the marrow vasculature, cells in the bone marrow can be
compartmentalized into 2 types with respect to their origins, as
mesenchymal and hematopoietic cells. 

Mesenchymal cells can mainly be found in bone, muscle,
cartilage, and fat tissues, and they come from a common ancestor,
the mesenchymal stem cells. In the bone marrow, mesenchymal
stem cells can act as osteoprogenitors, with appropriate endocrine,
paracrine, and/or autocrine signals [10]. Osteoprogenitors can
drive bone formation by transforming into osteoblasts, the cells
responsible for the growth, maintenance, and repair of bone tissue.
Mesenchymal stem cells were also shown to commit to the lineages
of other mesenchymal tissues such as cartilage, fat, marrow stroma,
liver, kidney, and muscle cells [11,12,13,14].

Hematopoietic cells, on the other hand, are non-adherent and
constitute cells of lymphoid (B cells, T cells, etc.) and myeloid
(granulocytes, macrophages, megakaryocytes, etc.) origins [15].
These cells descend from a common progenitor called the
hematopoietic stem cell. In the bone marrow, hematopoietic stem
cells generally position (and home) themselves to the proximity
of cells of mesenchymal origin [16], highlighting the
communicating and regulatory behavior between mesenchymal
and hematopoietic cells. 

In a healthy individual, processes such as regeneration,
nutrient exchange, metabolite storage, and protection from
pathogens are optimized via integrated functioning of marrow
cells. Conditions that partially or completely remove mechanical
loads on the bone and the bone marrow tissue, such as aging,
obesity, bed rest, and spaceflight, adversely affect the marrow cell
populations and their functions. Furthermore, the gross
composition of the marrow irreversibly changes from red
(hematopoietic) to yellow (fatty), indicating a potentially greater
scale of disruption in homeostasis. It can be argued that,
collectively, these alterations in bone marrow tissue may increase
the incidence of morbidity and may even affect longevity for
astronauts during long-duration space missions.

2



Turk J Hematol 2013;30:1-7 Özçivici  E: Spaceflight and Bone Marrow

Bone Cells and Spaceflight

Perhaps the most prominent function of mesenchymal cells in
the bone marrow is to contribute to bone formation. Once
adequate exogenous signals are received (biophysical and/or
biochemical), mesenchymal stem cells commit to osteoblastic
lineage. Lining on the calcified tissue, osteoblasts are responsible
for new bone formation by attracting calcium ions [17,18]. During
this mineralization phase, osteoblasts become trapped in the
osteoid lacunae they had been building and transform into
osteocytes, a cell type that constitutes the biggest fraction of cells
within the bone tissue with important regulatory functions in bone
remodeling [19,20]. Parallel to new bone tissue formation, existing
bone tissue is actively resorbed by osteoclasts, a large and
multinucleated cell type. Osteoclasts come from a monocyte-
macrophage origin, and once activated, they facilitate the
resorption of the calcified tissue using extracted components with
low pH, leading to a net effect of bone loss if their work is not
complemented with osteoblasts [21]. Osteoblasts rapidly migrate
into perfusions made by osteoclasts and initiate bone formation.
Overall, this entire coupled cycle of formation and resorption is
called bone turnover. By using this dynamic turnover process, bone
tissue is able to: 1] repair a damaged matrix to maintain its
strength, 2] adapt to physical forces by adding more bone in the
areas of high loading, and 3] act as an endocrine organ to regulate
circulating Ca2+ molecules. 

Several conditions that induce reduction in or absence of
weight-bearing on long bones influence the coupling between bone
formation and resorption, causing osteopenia and eventually
osteoporosis [22]. Being either temporary or permanent, these
conditions include aging, sedentary lifestyles, confined bed rest,
partial paralysis, and spaceflight. During spaceflight, bone mineral
is constantly being lost from the weight-bearing sites of the skeleton
at an average of 2%-3% per month, accompanied by increases in
urine excretion of Ca2+ and hydroxyproline expressing the net
bone loss at the tissue level [9,23,24]. Some astronauts were even
observed to lose up to 20% bone mass during their missions
[25,26], and currently no known plateau exists for this disuse-
induced bone loss occurring during spaceflight [27]. Experimental
evidence shows that bone formation activity is suppressed during
spaceflight at the tissue level [26,28,29], preventing the effective
recovery of lost bone tissue for spaceship crew. 

On the cellular level, osteoblasts show response to actual (in-
flight) or simulated weightlessness conditions. Osteoblast
proliferation was found to be curbed during weightlessness in
parallel with reduced osteoblast metabolism [30]. The inner
morphology of osteoblasts is sensitive to weightlessness, as
significant alterations in nucleus shape and size were observed
during mechanical unloading [31]. Moreover, osteoblasts may
suffer from programmed cell death during disuse, effectively
reducing their number [32,33]. Other indicators suggest that
osteoblasts increase the secretion of chemical factors that enhance
osteoclast recruitment [34], thereby stimulating bone resorption
process. While some studies did not find any correlations between
weightlessness and osteoclast activity [35,36], others showed

increased osteoclast recruitment and pit formation during disuse
[37,38]. Regardless, it is expected that osteoclastic activity be in
tune with osteoblastic activity, as osteoblasts tightly control
osteoclast maturation and activity [39].

Mesenchymal Stem Cells and Spaceflight

Mesenchymal stem cells (MSCs), which reside in the bone
marrow, are the main source of osteoprogenitors and osteoblasts.
However, these primitive cells may lose their commitment to
osteogenic lineage and commit to adipogenic lineage as a result of
loss in mechanical loads [40,41]. Simulated disuse was also shown
to decrease the size and functionality of the marrow mesenchymal
progenitor pool, thereby adversely affecting the regeneration of the
bone tissue [35]. Once the marrow pool of MSCs is lost due to
extended weightlessness, it may not be possible for an individual
to retain healthy function once returned to regular weight-bearing
conditions [41,42,43]. Because of impaired bone formation,
regeneration of tissue that was lost during disuse is often slow and
incomplete [44]. Since reintroduction of regular mechanical loads
is not capable of fully restoring bone tissue, it is imperative for
biomedical research to prevent or treat disuse-induced loss of
osteogenic potential in the bone marrow, not only to prevent
spaceflight mission related injury, but also to protect the quality of
life beyond the mission.

Blood Cells and Spaceflight

Resident hematopoietic cells in the bone marrow serve as
important contributors of erythropoiesis, myelopoiesis,
lymphopoiesis, and bone turnover. Evidently, the functioning of
hematopoietic cells is not exempt from the adverse effects of
spaceflight. Not only does the bone turnover favor catabolism for
spaceship crew, but the red blood cell volume is also reduced with
an apparent suppression of the immune system [3].

Coming from a myelopoietic origin, red blood cells mature
from erythroblasts and have a high turnover rate as they are
exposed to severe mechanical stress during circulation [45]. As a
result of spaceflight, spaceship crew members lose around 15% of
their red blood cell mass over the course of a few weeks, a
condition known as “space anemia” [1,46,47]. The loss of red
blood cell mass is due to a physiological process called
neocytolysis, in which immature blood cells are selectively
hemolyzed because of reductions in the plasma erythropoietin
levels [48,49]. Significant reductions in the in vitro maturation of
hematopoietic cells to red blood cells were also observed in
response to weightlessness [50]. During spaceflight conditions, red
blood cells were shown to proliferate less and appeared apoptotic,
even in the presence of stimulant factors, further contributing to
the “space anemia” phenotype [51]. 

There is strong evidence that spaceship crew members suffer
from suppression of the immune system, and the magnitude of
this effect may be related to the length of exposure [3].
Abnormalities in the immune system lead to compromised defense
against both exogenous and endogenous pathogens, as well as
reduced monitoring against aberrant host cells. Unfortunately,
experimental observations to date are not conclusive due to small
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sample size and variable response. However, observed patterns
warrant further attention to clarify net effects of long-term
spaceflight on the immune system in order to potentiate human
habitation of the Moon, space, and distant planets. 

Immune cells that are capable of phagocytosis appear to be
affected by spaceflight conditions, as well. The number of
polymorphonuclear leukocytes in circulation was repeatedly
observed to be increased by 1.5-fold to 2-fold in both short-term
and long-term flights [52,53,54,55]. Circulating monocytes were
also observed to be increased in numbers after spaceflight
[53,55]. However, the phagocytic capacity and oxidative burst
potential of neutrophils and monocytes were both found to be
significantly reduced in astronauts due to long-term spaceflights,
indicating a delay in function for host defense cells against
invading pathogens [56,57,58]. 

T lymphocytes originate from a common lymphoid progenitor
(Lin-, IL-7R-, Sca-1low, c-kitlow) in the bone marrow and mature
in the thymus gland to facilitate cell-based immunity [59,60]. T
lymphocytes have 2 major subpopulations: helper T cells (CD4+)
that direct other immune cells by secreting cytokines, and cytotoxic
T cells (CD8+) that directly kill infected or cancerous cells. Previous
observations suggested that the number of circulating T cells was
reduced during spaceflight for both humans and rodents
[52,55,61,62]. Furthermore, interleukin-2, which is a biomarker
for T cell activity, was found to be decreased after spaceflight for
both helper and cytotoxic T cells [52,62]. Activation response of
T cells to stimulating agents such as phytohemagglutinin was also
found to be diminished as a result of spaceflight [62,63].

B lymphocytes also come from the common lymphoid
progenitor in the bone marrow and mediate the humoral
immune response [59]. Limited data suggest that the matured B
cell fraction was significantly suppressed in rodents that were
exposed to spaceflight, but no functional data are available for
the observed phenotype. The decrease in B cells was found to be
accompanied by an increase in the natural killer cell fraction, a
large and granular cell type that is responsible for surveillance of
cancer cells [62]. 

On a side note, unlike immune cells that are apparently
impaired in number and function during spaceflight, bacterial
cells may not be affected at all by the weightlessness environment.
On the contrary, several strains, including Salmonella enterica
and Escherichia coli, were found to benefit from spaceflight
[64,65]. Bacterial resistance to antibiotics was also found to be
increased [66], with records showing higher rate of mutation
accumulation [67]. Unfortunately, artificial environments such as
space ships contain many components in which bacteria and
mold can thrive, pointing to an increased hazard rate that may
be potentiated during long-term spaceflights [68]. Not only the
bacterial pathogens but also the latent endogenous viruses, such
as Epstein-Barr and Cytomegalovirus, were found to be
reactivated during spaceflight, possibly due to the environmental
stresses, increasing the risks of infection and cancer for the
spaceship crew [69,70,71]. 

Hematopoietic Stem Cells and Spaceflight

Accumulated evidence of the alterations in the red and white
blood cell population size and functioning associated with
spaceflight may have an array of contributors, including loss of
mechanical loads, flight stress, diet, and nutrition. It is also entirely
possible that the bone marrow stem cells that are responsible for
the replenishment of blood cell types are affected by spaceflight
conditions and alter the blood cell phenotype. Hematopoietic stem
cells are the self-renewing source of all lymphoid and myeloid cells
of an organism and they reside in the bone marrow, where the
most primitive hematopoietic stem cells seek and reside in the
close proximity of the osteoblasts [16]. Bone marrow-derived
CD34+ cells, which are assumed to be early hematopoietic
progenitors, showed reduced proliferation rate due to slower cell
cycle progression when exposed to simulated weightlessness
without losing their capacity for self-renewal [72]. Furthermore,
CD34+ cells appeared less attracted to stromal cell-derived factor,
a chemical agent that stimulates the migration of early
hematopoietic cells [73,74]. Ultrastructural properties of CD34+

cells reflected this reduced chemotaxis, as expressed with reduced
cytoskeletal F-actin expression [73]. Functional characteristics of
early hematopoietic progenitors were also found to be affected, as
observed in the altered maturation to erythrocytes, granulocytes,
and macrophages [50,73].   

Actual spaceflight and simulated weightlessness data from
hematopoietic stem cells (HSCs) are limited compared to data from
experiments involving other cell types (such as osteoblasts or T
cells), as recognition of these primitive cell types in the bone
marrow is a recent development [16,75]. However, HSCs are
expected to be affected by weightlessness as they were shown to
sense and respond to the presence of mechanical loads [76].
Another important aspect of HSC response to weightlessness is the
interaction with mature osteoblasts. Osteoblasts support HSCs in
vivo [77,78], and the ablation of osteoblasts in the bone marrow
induces extramedullary hematopoiesis [79]. Furthermore,
osteoblasts were shown to be important mediators of B cell and
megakaryocyte differentiation [80,81]. During spaceflight,
trabecular bone tissue that has a large surface area is lost from the
distal and proximal locations of metaphyses, not only accounting
for the loss of bone mass but also affecting HSC populations, as
trabecular bone is an active spot for hematopoiesis. Furthermore,
disuse-induced loss of trabecular bone is often accompanied by
increased adipocyte accumulation in the bone marrow, a condition
that can further damage the HSC functioning [82,83]. 

Conclusions

In summary, loss of gravitational loads induces adverse effects
on different cell types of bone marrow origin, including connective
tissue and immune system cells. Furthermore, not only the
committed functional cells but also primitive stem cells seem to
be affected, jeopardizing the health of spaceship crew on long-term
flight missions. This biological response to long-term loss of
mechanical loads appears to be a limiting factor for human
habitation beyond Earth. Certainly, scientific developments in the
field of space and gravitational biology are required to fully

4



Turk J Hematol 2013;30:1-7 Özçivici  E: Spaceflight and Bone Marrow

understand biological mechanisms that regulate the organism’s
response to spaceflight. In parallel, the fields of bioengineering and
space biotechnology are in search of the identification and delivery
of “physiologically relevant” mechanical loads that would
reconstitute homeostasis in the bone and marrow environment
[84]. The replacement of mechanical loads may be in the form of
repeated bouts to be applied in certain periods to protect
osteoblasts, and potentially other cells of the bone marrow, from
the adverse effects of spaceflight. In any case, the goal of
humankind to utilize space as the final frontier is clear, and
technological advances will help to boldly go where no man has
gone before.
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