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Abstract: This paper proposes a control strategy to maximize the wind energy captured in a variable speed wind
turbine, with an internal induction generator, at low to medium wind speeds. The proposed strategy controls the tip-speed
ratio, via the rotor angular speed, to an optimum point at which the efficiency constant (or power coefficient) is maximum
for a particular blade pitch angle and wind speed. This control method allows for aerodynamic rotor power maximization
without exact wind turbine model knowledge. Representative numerical results demonstrate that the wind turbine can be
controlled to achieve near maximum energy capture.
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1 Introduction

Wind energy has evolved into an attractive energy source
for electric utilities, even though it is currently responsible
for about only one percent of the global electrical power
production. The structure of wind turbines, as well as the
fact that the wind energy rate is uncontrollable, complicates
the problem of regulating power capturing. This engineering
challenge has been alleviated by the construction of vari-
able speed wind turbines, which are designed to regulate
the power captured over a range of operating speeds. How-
ever, the efficiency of power regulation is dependent on the
selected control method.

The standard region 2 (power capture maximization
mode) control scheme used for variable speed wind tur-
bines (τ = kω2, where τ is the control torque, ω is the
rotor angular speed and k is a control gain) has some dis-
advantages that can result in unsatisfactory power capture.
First, the control gain, k, is difficult to be determined due
to the dependence on exact model knowledge (maximum
power efficiency constant and optimal tip-speed ratio). Sec-
ond, the standard value of k might not provide the maxi-
mum energy capture under real world turbulent conditions.
Johnson and Fingersh [1] showed via numerical simula-
tion that smaller values of k than the standard can result
in increased power capture. They proposed a new control
scheme, specifically, an adaptive control scheme that al-
lowed for maximum power capture in the presence of para-
metric uncertainty. Similar adaptive control techniques for
wind turbine control were developed in [2] and [3].

Other wind turbine control methods such as classical con-

trol techniques [4–7], nonlinear control [8–9], robust con-
trol [10], fuzzy logic control [11–12], and intelligent con-
trol [13–14] have been utilized to regulate rotor speed and
pitch angle and to enhance energy capture. Iyasere et al. [10]
proposed a robust control strategy to control the blade pitch
angle and rotor speed in a variable speed variable pitch wind
turbine in order to maximize the energy capture, without the
knowledge of the optimal tip-speed ratio and in the presence
of model structural uncertainties.

An area of particular importance is the control of the in-
ternal generators used in wind turbines [15]. The most com-
monly used generator is the induction generator, of which
the types include cage, wound rotor and doubly fed in-
duction generator (DFIG). The dynamic modeling [16–20]
and control [21–28] of induction machines have been ex-
tensively researched. Thringer and Luomi [16] examined
the validity of various dynamic models of induction ma-
chines to include the fifth-order Park model and other re-
duced order models by predicting the low frequency dy-
namic response of a 15 kW induction machine and com-
paring results to actual measurements. They concluded that
the Park model accurately predicts rotor speed, electrical
torque, active power, reactive power and stator current re-
sponses to perturbations in the shaft torque, supply fre-
quency and voltage magnitude. In power system analysis, a
third-order model was determined to be the right fit for ac-
curacy and simplicity. Tapia et al. [17] developed the math-
ematical model of a grid connected wind driven DFIG and
presented a comparison of the simulation results to real ma-
chine performance results. They also developed a stator-
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flux-oriented vector control based technique to control the
generator power factor. Mullane and O’Malley [18] exam-
ined the inertial response of a squirrel cage and a doubly
fed induction wind turbine generator using fifth-order in-
duction generator models. They discovered that a DFIG uti-
lizing field-oriented control is strongly influenced by ro-
tor current controller bandwidth. Hu and Dawson [21] pre-
sented an adaptive partial state feedback position tracking
controller for the full-order nonlinear dynamic model for an
induction motor. The controller compensates for uncertainty
in rotor resistance and mechanical system parameters while
yielding asymptotic rotor position tracking. Datta and Ran-
ganathan [22] developed a simple position-sensorless strat-
egy for rotor-side field-oriented control of a wound rotor
induction machine. The algorithm is based on axis trans-
formation with reduced dependence on machine parameters
compared to other methods. Pena et al. [23] described a
vector control scheme for the supply-side voltage source-
converter of a DFIG for independent control of active and
reactive power. This strategy was embedded into an optimal
tracking controller in order to maximize energy capture in
a wind energy application. Two tracking schemes were de-
veloped: speed mode and current mode.

In this study, a control strategy is developed to regulate
the rotor speed of a small variable speed wind turbine sys-
tem with an induction generator. The control objective is
to maximize the energy captured by the wind turbine for
low to medium air speeds by tracking a desired rotor speed
in the presence of system nonlinearities and structural un-
certainty. Additionally, the maximization of the energy cap-
tured is achieved without the knowledge of the relation-
ship that governs the power capture efficiency of the wind
turbine. Instead, an optimization algorithm is developed to
seek the unknown optimal rotor speed that maximizes the
energy captured (via the aerodynamic rotor power), at a par-
ticular blade pitch angle and wind speed. The problem of
not explicitly knowing the rotor speed a priori is countered
by the fact that the optimal rotor speed changes as the wind
speed changes which may be accommodated for by choos-
ing the right optimization algorithm. A robust controller
is designed and proven to yield a globally uniformly ulti-
mately bounded (GUUB) stable closed loop system through
Lyapunov-based analysis.

The rest of the paper is organized as follows. In Sec-
tion 2, the system model and problem statement are mathe-
matically formulated. In Section 3, a robust nonlinear speed
tracking controller is designed based on a Lyapunov stabil-
ity analysis. In Section 4, an observer is designed to esti-
mate the system nonlinearities. In Section 5, the estimate
of the system nonlinearities is utilized to generate the ro-
tor speed reference trajectory followed by numerical results
in Section 6. Finally, concluding remarks are presented in
Section 7.

2 Wind turbine dynamic model

A typical wind turbine model consists of a wind rotor,
drive shaft and an internal induction generator. The aerody-

namic power captured by the wind, Paero(t) ∈ R
+, can be

defined as 1

Paero � 1
2
CpρaAv3

a , (1)

where ρa ∈ R
+ is the air density and A ∈ R

+ is the rotor
swept area, which is equal to πR2

b where Rb ∈ R
+ is the

blade length. The variable va(t) ∈ R
+ represents the wind

speed, and Cp (λ, β) ∈ R denotes the rotor power coeffi-
cient of the wind turbine and it is a function of the tip-speed
ratio, λ(t) ∈ R

+, and the blade pitch angle, β(t) ∈ R
+. The

tip-speed ratio, λ(t), is defined as

λ � ωRb

va
, (2)

where ω(t) ∈ R
+ is the rotor speed of wind turbine. In a

variable speed fixed pitch wind turbine system, there exists
a constant optimal rotor speed, denoted by ω∗ ∈ R

+ (and
hence an optimal tip-speed ratio, λ∗ ∈ R

+), for a given
pitch angle, β, and a particular wind speed, va, at which the
power capture efficiency is maximum. Hence, rotor power
coefficient, Cp( · ), is maximum and represented as Cmax

p

where Cmax
p � Cp (λ∗, β) and λ∗ � ω∗Rb

va
. The aerody-

namic power captured by the rotor, Paero(t), can also be
expressed as

Paero � τaeroω, (3)
where τaero(t) ∈ R

+ is the aerodynamic torque applied to
the rotor by the wind. An expression for τaero(t) can be de-
rived from (1)–(3) as

τaero � 1
2
ρaARb

Cp

λ
v2
a . (4)

Remark 1 Since the rotor power coefficient, Cp( · ),
is eventually unknown, hence the aerodynamic torque,
τaero(t), and then the aerodynamic power, Paero(t), are un-
measurable.
2.1 Mechanical subsystem dynamics

The mechanical subsystem that describes the rotor dy-
namics of the variable speed wind turbine can be of the fol-
lowing form:

Jω̇ + f = τem, (5)
where J ∈ R

+ is the rotor moment of inertia, ω̇(t) ∈ R is
the rotor acceleration, f (ω, va) ∈ R represents the system
unknown nonlinearities and is defined as f � −τaero, and
τem ∈ R

+ is the electromagnetic torque and is considered
as the torque control input for the generator.
2.2 Electrical subsystem dynamics

An induction generator is made by three stator wind-
ings and three rotor windings. A two-phase equivalent ma-
chine representation was introduced in [29] and is utilized in
this paper with the assumptions of equal mutual and auto-
inductances as well as a linear magnetic circuit. The elec-
trical dynamics of the internal induction generator can be
described by the following dynamic equations (for the ex-
act transformation of three-phase variables into two-phase
ones used in this paper, refer to [24]):

˙̄Ψs = −RsĪs + V̄s, (6)

1 Nomenclature and subscripts and superscripts can be found in Appendix A6.
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˙̄Ψr = −RrĪr + npωΔΨ̄r + V̄r, (7)
Īs = κ1Ψ̄s − κ2Ψ̄r, (8)
Īr = κ1Ψ̄r − κ2Ψ̄s, (9)
τem = αΨ̄T

s ΔΨ̄r, (10)

Δ �
[

0 −1
1 0

]
, α � npκ2, (11)

where Ψ̄s �
[
Ψ̄sa Ψ̄sb

]T
, Ψ̄r �

[
Ψ̄ra Ψ̄rb

]T ∈ R
2 are the

stator and rotor flux linkage, respectively; Īs �
[
Īsa Īsb

]T
,

Īr �
[
Īra Īrb

]T ∈ R
2 are the stator and rotor currents, re-

spectively; and V̄s �
[
V̄sa V̄sb

]T
, V̄r �

[
V̄ra V̄rb

]T ∈ R
2

are the stator and rotor voltages, respectively, where V̄s(t) is
the voltage control input to be designed later. In (8) and (9),
κ1, κ2 ∈ R

+ are constants related to the generator parame-
ters, and are given explicitly by

κ1 � Ls

L2
s − M2

, κ2 � M

L2
s − M2

. (12)

To facilitate the control development, the following
model characteristics are imposed.

Assumption 1 The system parameters J , Ls, M , np,
Rb, Rr, Rs, β and ρa are assumed to be known constants.

Assumption 2 The variables va(t), ω(t), Īs(t), Īr(t),
and V̄s(t) are assumed to be measurable.

Assumption 3 The wind speed, va(t), is assumed to be
constant or slowly time varying (i.e., v̇a(t) ∼= 0).

Assumption 4 The wind speed and its first two time
derivatives, va(t), v̇a(t), and v̈a(t), are assumed to be
bounded.

Assumption 5 As a consequence of the fact that
τaero(t) is unmeasurable, the variable f( · ), introduced in
(5), is also unmeasurable.

Assumption 6 The variables, f( · ), ḟ( · ), and f̈( · ) are
assumed to be bounded provided that their arguments are
bounded.

Remark 2 The variable f (ω, va) can be upper bounded
by a known function such that |f (ω, va)| � ρz (ω) where
ρz (ω) is continuously differentiable for all ω(t) > 0.
2.3 Electrical subsystem transformation

An auxiliary control input ωs(t) ∈ R is injected into the
electrical subsystem dynamics via time-varying coordinate
transformation [25] as follows:{

Ψs � T Ψ̄s, Is � T Īs, Vr � T V̄r,

Ψr � T Ψ̄r, Ir � T Īr, Vs � T V̄s,
(13)

where T (t) ∈ R
2×2 is defined as

T �
[

cos ε0 sin ε0

− sin ε0 cos ε0

]
, (14)

where ε̇0 = ωs. Note that T−TΔT−1 = Δ and Ṫ =
−ΔTωs. The overall dynamics of the induction generator
can then be given by the following model:

Jω̇ + f = τem, (15)
Ψ̇s = −Rsκ1Ψs + Rsκ2Ψr − ΔΨsωs + Vs, (16)
Ψ̇r = −Rrκ1Ψr + Rrκ2Ψs + npωΔΨr − ΔΨrωs

+Vr, (17)

Is = κ1Ψs − κ2Ψr, (18)
Ir = κ1Ψr − κ2Ψs, (19)
τem = αΨT

s ΔΨr, (20)

where

Ψs � [Ψs1 Ψs2 ]
T ∈ R

2, Ψr � [Ψr1 Ψr2 ]
T ∈ R

2,

Vr � [Vr1 Vr2 ]
T ∈ R

2, Vs � [Vs1 Vs2 ]
T ∈ R

2.

3 Nonlinear controller development

3.1 Control objectives

The objective of the proposed controller is to maximize
the aerodynamic rotor power of the wind turbine, Paero(t),
by tracking a desired rotor speed, ωd(t) ∈ R

+, such that
ω(t) → ωd(t) as t → ∞. This is achieved in turn by track-
ing a desired electromagnetic torque, τd(t) ∈ R

+, a de-
sired stator flux Ψd

s (t) ∈ R
2×1, and a desired rotor flux

Ψd
r (t) ∈ R

2×1 such that τem(t) → τd(t), Ψs(t) → Ψd
s (t),

and Ψr(t) → Ψd
r (t) as t → ∞ where

Ψd
s �

[
Ψd

s1 0
]T

, Ψd
r �

[
Ψd

r1 Ψd
r2

]T
, (21)

τd � α
(
Ψd

s

)T
ΔΨd

r . (22)

Remark 3 The desired rotor speed, ωd(t), is designe-
donline using a numerical-based optimization algorithm, as
shown in Section 5, to maximize the rotor power, Paero(t),
at a particular blade pitch angle, β, and wind velocity, va,
such that ωd(t) → ω∗, where the optimal speed, ω∗, is
the result of the optimum seeking algorithm after conver-
gence. Hence, Paero(t) → Pmax if ω(t) → ωd(t). Addi-
tionally, ωd(t) is designed such that ωd(t), ω̇d(t), and ω̈d(t)
are bounded.
3.2 Error system development

To quantify the control objectives, rotor speed tracking
error, denoted by e(t) ∈ R, as well as stator and rotor flux
tracking errors, denoted by ηs(t), ηr(t) ∈ R

2×1, are defined
as

e � ωd − ω, (23)

ηs =

[
ηs1

ηs2

]
�

[
Ψd

s1

0

]
−

[
Ψs1

Ψs2

]
, (24)

ηr =

[
ηr1

ηr2

]
�

[
Ψd

r1

Ψd
r2

]
−

[
Ψr1

Ψr2

]
, (25)

where ηs1(t), ηs2(t), ηr1(t), and ηr2(t) ∈ R. From the defi-
nition of the rotor speed tracking error in (23), and subsys-
tem dynamics in (5), a rotor speed open-loop error dynamics
is obtained as follows:

Jė = Jω̇d + f − τem. (26)

By adding and subtracting τd(t) to the right hand side of
(26) and substituting (20) and (22), the expression of (26)
becomes

Jė = Jω̇d + f − τd + α[
(
Ψd

s

)T
ΔΨd

r − ΨT
s ΔΨr]. (27)

The expression in (27) can be rewritten as

Jė = Jω̇d + f − τd − αΨd
s1ηr2 + αΨd

r1ηs2

−αΨd
r2

ηs1 + αηs1ηr2 − αηs2ηr1 , (28)

where (24) and (25) were utilized. Similarly, the stator and
rotor flux open-loop error dynamics are developed as fol-
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lows:[
η̇s1

η̇s2

]
=

[
Ψ̇d

s1

0

]
+ Rsκ1

[
Ψd

s1

0

]
− Rsκ1

[
ηs1

ηs2

]

+Rsκ2

[
ηr1

ηr2

]
− Rsκ2

[
Ψd

r1

Ψd
r2

]

+

[
0

Ψd
s1

]
ωs +

[
ηs2

−ηs1

]
ωs −

[
Vs1

Vs2

]
, (29)

[
η̇r1

η̇r2

]
=

[
Ψ̇d

r1

Ψ̇d
r2

]
+ Rrκ2

[
ηs1

ηs2

]
− Rrκ2

[
Ψd

s1

0

]

+Rrκ1

[
Ψd

r1

Ψd
r2

]
− Rrκ1

[
ηr1

ηr2

]

+npω

[
−ηr2

ηr1

]
− npω

[
−Ψd

r1

Ψd
r2

]

+

[
−Ψd

r2

Ψd
r1

]
ωs −

[
−ηr2

ηr1

]
ωs −

[
Vr1

Vr2

]
, (30)

where (16) and (17) were utilized.
3.3 Controller formulation

The control inputs are designed based on the subsequent
stability analysis presented in Appendices A2 and A4. The
desired torque trajectory, τd(t), is designed as

τd = Ke +
ρ2
ze

ε
+ Jω̇d − f̂s, (31)

where f̂s( · ) � 1
σs + 1

sat{f̂( · )}, sat{ · } is the saturation

function, f̂( · ) ∈ R is the estimate of f( · ) which is de-
signed in Section 4, s is the Laplace variable, ε and σ ∈ R

+

are constants, K ∈ R
+ is a control gain, and e(t) and ρz (ω)

were previously introduced in (23) and Remark 2, respec-
tively.

Remark 4 Since
1

σs + 1
is a proper bounded fil-

ter and the output of the saturation function is always

bounded; hence, it can be concluded that f̂s( · ) and ˙̂
fs( · )

are bounded. Thus, it may be concluded that |f̂s( · )| � ρs

where ρs ∈ R
+ is a bounding constant.

Remark 5 The desired stator flux, Ψd
s1(t), is designed

such that
i) Ψd

s1(t) > 0,
ii) Ψd

s1(t), Ψ̇d
s1(t), and Ψ̈d

s1(t) are bounded, and
iii) power loss in the system is minimized. Refer to Ap-

pendix A1 for details.
The first entry of the desired rotor flux, Ψd

r1(t), is designed
as

Ψd
r1 =

1
Rsκ2

[Ψ̇d
s1 + Rsκ1Ψ

d
s1 − αΨd

r2e − Rsκ1ηs1

+κs1ηs1 − Vs1 ], (32)

where κs1 ∈ R
+ is a control gain.

Remark 6 To ensure the definition in (22), Ψd
r2(t) is de-

signed such that Ψd
r2 =

−τd

αΨd
s1

.

The auxiliary control input, ωs(t), is designed as

ωs =
1

Ψd
s1

[Rsκ2Ψ
d
r2

− αΨd
r1

e + Rsκ1ηs2

−κs2ηs2 + Vs2 ], (33)
where κs2 ∈ R

+ is a control gain. The voltage control input,
Vr(t), is designed as

Vr1 =
Ψ̈d

s1

Rsκ2
+ Θ1Ψ̇

d
s1 − Θ2Ψ

d
s1 + Θ3Ψ

d
r1 + Θ4Ψ

d
r2

+
(
Θ5 − Θ6e + Θ5e

2
)
e +

(
Θ8 − Θ9Ψ

d
r2e

)
ηs1

− (Θ10 + Θ11e) ηs2 + (Θ12 − Θ9e) ηs2ηr1

+Θ13ηr1 +
Rsκ1 − κs1

Rsκ2
Vs1 , (34)

Vr2 = Ω1 − Ω2f̂s − Ω3e + αeηs1 + Ω4Ψ
d
r2ηs1

+Ω5ηs2 +
α2Ψd

s1Ψ
d
r2

Rsκ2J
ηr1

− (Ω6 − Ω7ηs1) eηr1 −
α2Ψd

r2

Rsκ2J
ηs1ηr1

+Ω8ηs2ηr1 − Ω8ηs1ηr2 + Ω9ηr2−Ω10e
2, (35)

where the terms Θi(t) and Ωj(t) for i = 1, . . . , 13 and
j = 1, . . . , 10 are explicitly defined in Appendix A6.
3.4 Stability analysis

Theorem 1 Given the error system dynamics in (28)–
(30) and the designed terms in (31)–(35) along with Re-
mark 6, the tracking error signals given in (23)–(25) are
GUUB and all signals remain bounded under closed-loop
operation.

Proof See Appendix A2.

4 Estimation of uncertain system nonlineari-
ties

The control objective is to maximize the aerodynamic ro-
tor power, Paero(t), captured by a variable speed wind tur-
bine with structurally uncertain system nonlinearities, f( · ),
by controlling the rotor speed, ω(t). The control develop-
ment in Section 3 requires estimating the uncertain nonlin-
earities, f( · ). The estimate of f( · ), denoted by f̂( · ), is
developed for two reasons: i) The estimate f̂( · ) is used as a
feed-forward term in the control design through f̂s( · ), and
ii) since Paero(t) is unmeasurable, an estimate of the cap-
tured power, denoted by P̂aero(t) ∈ R, is designed such that
P̂aero = −f̂ω, and is used in the online planning of ωd(t).
4.1 Observer error system

The main objective of the observer is to estimate the un-
certain system nonlinearities, f( · ), such that f̂( · ) → f( · )
as t → ∞. To facilitate the observer design, the following
system model is developed:

J ˙̂ω = τem − f̂ , (36)
where ω̂(t) ∈ R

+ denotes the estimated rotor speed. The
observer errors, denoted by ω̃(t), f̃(t) ∈ R, are defined as

ω̃ � ω̂ − ω, (37)
f̃ � f̂ − f. (38)

In addition, a filtered rotor speed estimation error, denoted
by r(t) ∈ R, is defined to facilitate the subsequent design



188 E. Iyasere et al. / J Control Theory Appl 2012 10 (2) 184–194

and analysis as

r � ˙̃ω + kω̃, (39)

where k ∈ R
+ is a control gain. After taking the first time

derivative of (39) and premultiplying by J , the following
expression can be obtained:

Jṙ = − ˙̂
f + ḟ + Φ − ω̃, (40)

where Φ(t) ∈ R is defined as Φ � kJ ˙̃ω + ω̃ and (36)–(38)
were utilized.

Remark 7 The mean value theorem can be utilized
to upper bound Φ(t) such that |Φ(t)| � ρN ‖X‖ where
X(t) = [ω̃(t) r(t)]T ∈ R

2, and ρN ∈ R
+ is a bounding

constant [30].
4.2 Observer design

Based on the structure of (40), as well as the subsequent
stability analysis, a continuous estimator law is proposed to
achieve the stated estimator objectives where

˙̂
f = (kf + k) r + ρ0sgn ω̃, (41)

where kf ∈ R
+ is a control gain, ρ0 ∈ R

+ is a bounding
constant, and sgn( · ) ∈ R is the standard signum function.
4.3 Stability analysis for nonlinear observer

Theorem 2 The observer design in (41) ensures that
asymptotic tracking is obtained in the sense that ω̃(t), ˙̃ω(t),
r(t) → 0 and f̂(t) → f(t) as t → ∞.

Proof See Appendix A4.

5 Trajectory generation and optimum seek-
ing algorithm

In Remark 3, it was assumed that a desired trajectory
ωd(t) canbe designed such that ωd(t), ω̇d(t) and ω̈d(t)
are bounded and ωd(t) → ω∗, where ω∗ is the unknown
rotor speed that maximizes the aerodynamic rotor power,
Paero(t), for a particular wind speed, v(t), and blade pitch
angle, β. As stated in Remark 1, Paero(t) is unmeasurable,
therefore the estimated captured power, P̂aero(t), is used as
the cost function to be optimized. The successive quadratic
estimator (SQE) is selected as the optimum seeking algo-
rithm. Although there are many optimization techniques in
the literature [31–33], the advantage of this algorithm over
conventional methods, such as the golden section search and
simplex, is that no initial cost function values or bounds on
the functional values are required [34]. The estimator ap-
proximates the cost function, P̂aero (ω̂(t)), as a quadratic
function over a local bound and successively uses this prop-
erty to predict the location of the optimum rotor speed, ω∗.

To ensure that ωd(t), ω̇d(t) and ω̈d(t) are bounded, a
filter-based form of the SQE is used, wherein at each it-
eration (new guess), ωd [n] is passed through a set of third-
order stable and proper low pass filters to generate contin-
uous bounded signals for ωd(t), ω̇d(t) and ω̈d(t). The fol-
lowing filters are used in this study:

ωd(t) =
ζ1

s3 + ζ2s2 + ζ3s + ζ4
ωd [n] , (42)

ω̇d(t) =
ζ1s

s3 + ζ2s2 + ζ3s + ζ4
ωd [n] , (43)

ω̈d(t) =
ζ1s

2

s3 + ζ2s2 + ζ3s + ζ4
ωd [n] , (44)

where ζ1, ζ2, ζ3, and ζ4 ∈ R
+ are filter constants. The op-

timization algorithm waits until certain error thresholds are
met before making the next guess (i.e., if |ωd(t) − ωd [n]| �
ē1, |f̃( · )| � ē2 and |ω(t) − ωd(t)| � ē3, then n = n + 1
where ē1, ē2, and ē3 ∈ R

+ are threshold constants, and
n ∈ Z

+).

6 Numerical simulation

A numerical case study is presented in this section to
demonstrate the performance of the control strategy intro-
duced in Section 3 and the numerical-based optimum seek-
ing reference trajectory generator in Section 5 using MAT-
LAB/Simulink. The plant model in (5) was assumed to cor-
respond to a small wind turbine, possessing the following
system nonlinearity

f = −1
2
ρaA

Cp

ω
v3
a . (45)

For simulation purposes, a 350 W wind turbine extrac-
tor and a 0.5 hp two-pole induction generator were selected.
The model parameters and control gains are chosen as
shown in Appendix A6.

The resulting rotor speed tracking error, e(t), is shown
in Fig. 1 while flux tracking errors, ηs1(t), ηs2(t), ηr1(t),
and ηr2(t), are shown in Figs. 2 and 3, respectively. From
these figures, it can be seen that globally uniformly bounded
tracking errors have been achieved under the proposed con-
trol strategy. The voltage control inputs, Vr1(t), and Vr2(t),
are shown in Fig. 4. The power coefficient function, Cp (λ)
that is illustrated in Fig. 5 (a), is an example curve ob-
tained using blade-element momentum theory [35]. It may
be observed that Cmax

p = 0.4405 occurs when λ∗ = 3.5
which corresponds to ω∗ = 5.296. The actual power effi-
ciency measure, Cp(t), shown in Fig. 5 (b), indicates that
Cp(t) → 0.4401 as ω(t) → 5.3569, which is illustrated in
Fig. 6.

Additionally, the copper losses, Ploss(t), desired stator
flux, Ψd

s1(t), and estimator error, f̃(t), are shown in Figs. 7,
8 and 9, respectively. Overall, the simulation results demon-
strate that the proposed control strategy performed satisfac-
torily and shows a robust response to structural uncertain-
ties.

Fig. 1 Rotor speed tracking error e(t).
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Fig. 2 Stator flux tracking errors ηs1(t) and ηs2(t).

Fig. 3 Rotor flux tracking errors ηr1(t) and ηr2(t).

Fig. 4 Voltage control inputs Vr1(t) and Vr2(t).

Fig. 5 Simulated and actual power coefficient functions.
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Fig. 6 Rotor speed ω(t) resulting from optimization algorithm.

Fig. 7 Copper losses Ploss(t) from optimization algorithm.

Fig. 8 Desired stator flux Ψd
s1(t).

Fig. 9 Nonlinear observer error f̃(t).

7 Conclusions

A nonlinear control strategy has been developed for a
variable speed windturbine system with an internal induc-
tion generator to optimize the energy captured from the
wind for a particular blade pitch angle. A desired rotor speed
trajectory generator is presented that seeks the unknown
optimal rotor speed while ensuring that the trajectory re-
mains bounded and sufficiently differentiable. To track the
desired trajectory, a robust tracking controller is developed.
The proposed controller is proven to yield a globally uni-
formly ultimately bounded result while keeping the closed-
loop system stable via Lyapunov-based analysis. Simulation
results were provided to verify the effectiveness of the con-
trol strategy. Future research will involve the implementa-
tion of the control strategy on a wind turbine extractor and
eliminating the assumption of constant or slowly time vary-
ing wind speed.
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Appendix

A1 Online generating of Ψd
s1(t)

The variable Ψd
s1(t) is designed to be a strictly positive func-

tion that ensures Ψd
s1(t), Ψ̇d

s1(t), and Ψ̈d
s1(t) are bounded with an

optimum reduction in copper loss. The copper loss denoted by
Ploss(t), is defined as

Ploss � Pin − Pout = IT
r Vr + τemω − IT

s Vs. (a1)
Substituting (16)–(19) into (a1) results in

Ploss = (κ1Ψr − κ2Ψs)
T(Ψ̇r + Rrκ1Ψr − Rrκ2Ψs + ΔΨrωs

−npωΔΨr) − (κ1Ψs − κ2Ψr)
T(Ψ̇s + Rsκ1Ψs

−Rsκ2Ψr + ΔΨsωs) + τemω. (a2)
At steady state, all time derivatives equal to zero and Ψr(t) →
Ψd

r (t), Ψs(t) → Ψd
s (t), τem(t) → τd(t), ω(t) → ωd(t) as t → ∞

(all error signals go to zero) resulting in the following expressions:
Ploss = (κ1Ψ

d
r − κ2Ψ

d
s )T(Rrκ1Ψ

d
r − Rrκ2Ψ

d
s + ΔΨd

r ωs

− npωdΔΨd
r ) + τdωd − (κ1Ψ

d
s − κ2Ψ

d
r )T

· (Rsκ1Ψ
d
s − Rsκ2Ψ

d
r + ΔΨd

s ωs), (a3)

Ψd
r1 =

κ1

κ2
Ψd

s1 − Vs1

Rsκ2
, (a4)

τd = −f̂s, (a5)

Ψd
r2 =

f̂s

αΨd
s1

, (a6)

ωs =
Rsκ2f̂s

α (Ψd
s1)

2 +
Vs2

Ψd
s1

, (a7)

where (29), (31), and Remark 6 were utilized. After substituting
(a4)–(a7) into (a3), Ploss can be expressed as a function of Ψd

s1(t)
as

Ploss = [
κ4

1Rr

κ2
2

+ κ2
2Rr − 2κ2

1Rs](Ψ
d
s1)

2 +
2f̂s

α2κ2
2Rs

·[κ1Vs1 f̂s(κ
2
1Rr + κ2

2Rs) + κ2Vs2(
2ακ2

1RrV
2
s1

Rs

−κ3
2Rsnpωdf̂s − ακ2

2Rsωdf̂s − ακ2
2V

2
s1)]

1

Ψd
s1

. (a8)

The expression in (a8) is then used as cost function in a filter-based
SQE numerical minimization algorithm, similar to Section 5, with
Ψd

s1(t) as the functional value. This ensures an optimum reduction
in copper losses and boundedness of Ψd

s1(t), Ψ̇d
s1(t), and Ψ̈d

s1(t).
A2 Proof of Theorem 1

A nonnegative function, denoted by V (t) ∈ R, is defined as

V =
1

2
Je2 +

1

2
ηT
s ηs +

1

2
ηT
r ηr, (a9)

which can be rewritten as

V =
1

2
zTdiag {J, 1, 1, 1, 1} z, (a10)

and can thus be bounded using the Raleigh inequality as
λmin ‖z‖2 � V � λmax ‖z‖2 , (a11)

where z(t) ∈ R
5 is defined as z � [e ηT

s ηT
r ]T, λmin �

0.5 min (J, 1), and λmax � 0.5 max (J, 1). Taking the time
derivative of (a9) results in

V̇ = eJė + [ηs1 ηs2 ]

"
η̇s1

η̇s2

#
+ [ηr1 ηr2 ]

"
η̇r1

η̇r2

#
. (a12)

After substituting (28)–(30) into (a12), V̇ (t) can be expressed as

V̇ = e[Jω̇d + f − τd − αΨd
s1ηr2 + αΨd

r1ηs2

−αΨd
r2ηs1 + αηs1ηr2 − αηs2ηr1 ]

+[ηs1 ηs2 ]

("
Ψd

s1

0

#
+ Rsκ1

"
Ψd

s1

0

#
− Rsκ1

"
ηs1

ηs2

#
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+Rsκ2

"
ηr1

ηr2

#
− Rsκ2

"
Ψd

r1

Ψd
r2

#
+

"
0

Ψd
s1

#
ωs

+

"
ηs2

−ηs1

#
ωs − Vs

)
+ [ηr1 ηr2 ]

("
Ψ̇d

r1

Ψ̇d
r2

#

+Rrκ2

"
ηs1

ηs2

#
− Rrκ2

"
Ψd

s1

0

#
+ Rrκ1

"
Ψd

r1

Ψd
r2

#

−Rrκ1

"
ηr1

ηr2

#
+

"
−Ψd

r2

Ψd
r1

#
ωs −

"
Vr1

Vr2

#)
. (a13)

Substituting (31)–(35) as well as the first time derivative of Ψd
r1(t)

and Ψd
r2(t), results in

V̇ = ef + ef̂s − Ke2 − κs1η2
s1 − κs2η2

s2 − κr1η2
r1

−κr2η2
r2 − ρ2

ze
2

ε
− ρ2

1η
2
r1

ε1
− ρ2

2η
2
r2

ε2

+
fηr1

Rsκ2JΨd
s1

`2e

ε
(Kε − ρz (e∂ρz − ρz)) + Jω̇d

+f̂s

´ − fηr2

αJΨd
s1

`1

ε
(Kε − ρz (2e∂ρz − ρz))

´
, (a14)

where ∂ρz (ω) denotes the partial derivative of ρz (ω) with respect
to ω.

Remark 8 The functions ρ1( · ) and ρ2( · ) are designed in
Appendix A3 such that

ρ1 �

˛̨̨
Jω̇d + f̂s + 2Ke − 2ρze (e∂ρz − ρz)

ε

˛̨̨
|Rsκ2JΨd

s1 |
|f | , (a15)

ρ2 �
˛̨̨
(K − ρz(2∂ρz − ρz)

ε
)

f

αJΨd
s1

˛̨̨
. (a16)

From (a14), using Remarks 2 and 6 as well as definitions of
ρ1( · ) and ρ2( · ), the function V̇ (t) can be upper bounded as fol-
lows:

V̇ � −K1e
2 − κs1η2

s1 − κs2η2
s2 − κr1η2

r1 − κr2η2
r2

+{ρs|e| − K2e
2} + ρz|e|

h
1 − ρz|e|

ε

i
+ρ1|ηr1 |

h
1 − ρ1|ηr1 |

ε1

i
+ ρ2|ηr2 |

h
1 − ρ2|ηr2 |

ε2

i
, (a17)

where the control gain, K, introduced in (31) is defined as K �
K1 + K2 with K1, K2 ∈ R

+. Applying the nonlinear damping
argument [36] to the curly bracketed terms on the right hand side
of (a17) results in the following upper bound for V̇ (t):

V̇ � −γ ‖z‖2 + ε̄, (a18)

where ε̄, γ ∈ R
+ are defined as ε̄ � ε + ε1 + ε2 +

ρ2
s

K2
and

γ � min (K1, κs1 , κs2 , κr1 , κr2). From (a11) and (a18), the fol-
lowing relationship can be obtained:

V̇ � − γV

λmax
+ ε̄. (a19)

From (a11) and (a19), the error signal ‖z(t)‖ can be upper
bounded as

‖z(t)‖ �
p

β0 exp (−β1t) + β2 [1 − exp (−β1t)], (a20)

where β0 � λmax

λmin
‖z (t0)‖2, β1 � γ

λmax
, and β2 � λmaxε̄

λminγ
.

From (a20), it can be shown that e(t), ηs(t), ηr(t) ∈ L∞. Since
e(t) ∈ L∞, (23) can be used along with Remark 3, to show that
ω(t) ∈ L∞. After utilizing the fact that ω(t) ∈ L∞, from As-
sumption 6, it is apparent that f( · ) ∈ L∞. After using Remarks
3 and 6 and the fact that e(t) ∈ L∞, along with (31), it can be
shown that τd(t) ∈ L∞. Remark 5 can be used along with the
facts that τd(t), Ψd

s1(t) ∈ L∞ to show that Ψd
r2(t) ∈ L∞. The

expression in (32) can be used along with the above boundedness

statements to show that Ψd
r1(t) ∈ L∞. Since all the signals on the

right-hand-side of (28) are bounded then it can be concluded that
ė(t) is also bounded. From the time derivative of (23), it is easy to
see that ω̇(t) is bounded; thus, from Assumption 6, it is clear that
ḟ( · ) is bounded. The mechanical subsystem dynamics in (5) can
be utilized to show that τem(t) is bounded. Above boundedness
statements can be utilized along with (24), (25), and (33) to show
that Ψs(t), Ψr(t), ωs(t) ∈ L∞. Since ω(t) and ω̇(t) are bounded,
it is clear that ρ̇z( · ) ∈ L∞. Above boundedness statements can be
used along with Assumption 4, Remarks 3, 4 and 6 to prove that
all the terms in Appendices A2 and A3 are bounded; thus, from
(34) and (35), it can be concluded that Vr1(t), Vr2(t) ∈ L∞. After
utilizing the fact that Ψ̇d

s1(t) ∈ L∞ along with the above bounded-
ness statements, from (29), it is easy to see that η̇s(t) ∈ L∞. The
time derivatives of (31) and (32) can be utilized to show that τ̇d(t)

and Ψ̇d
r1(t) are bounded. From the time derivative of the expres-

sion in Remark 5, Ψ̇d
r2(t) can be shown to be bounded. From (30),

it can be concluded that η̇r1(t), η̇r2(t) ∈ L∞. The fact that η̇s(t),
η̇r(t) ∈ L∞ can be used along with the time derivatives of (24) and
(25) to show that Ψ̇s(t) and Ψ̇r(t) are bounded; thus, from the time
derivative of (20), it is clear that τ̇em(t) is bounded. After taking
the time derivative of (5), it can concluded that ω̈(t) ∈ L∞; thus,
from the second time derivative of (23), it is clear that ë(t) ∈ L∞
where Remark 3 is utilized. From Assumption 6, it may be con-
cluded that f̈( · ) ∈ L∞. The application of standard signal chas-
ing arguments permits the conclusion that all signals in the closed-
loop system remain bounded.
A3 Design of ρz( · ), ρ1( · ), and ρ2( · )

The functions ρz( · ), ρ1( · ), and ρ2( · ) are designed to ensure
that the conditions in Remarks 2 and 8 are met

ρz =
˛̨̨
1

2
ρaA

0.45

ω
v3

˛̨̨
, (a21)

ρ1 =
˛̨̨

ρz

Rsκ2JΨd
s1

˛̨̨h2ρz|∂ρz|e2

ε
+

2ρ2
z |e|
ε

+ 2K|e|

+J |ω̇d| + |f̂s|
i
, (a22)

ρ2 =
˛̨̨

ρz

αJΨd
s1

˛̨̨
(K +

ρz + 2ρz|∂ρze|
ε

). (a23)

A4 Proof of Theorem 2

Before presenting the stability analysis, the following lemma
will be introduced and later invoked.

Lemma 1 Let the auxiliary function L(t) ∈ R be defined as

L � r(ḟ − ρ0sgn ω̃). (a24)
If the control gain ρ0 is selected to satisfy the sufficient condition

ρ0 > |ḟ( · )| +
|f̈( · )|

k
, then

� t

t0
L(τ)dτ � ζ where ζ ∈ R

+ is

defined as ζ � ρo|ω̃(t0)| − ω̃(t0)ḟ(t0).

Proof See Appendix A5.
Define an auxiliary function P (t) ∈ R as

P � ζ −
� t

to
L (τ) dτ, (a25)

where ζ and L(t) have been defined in Lemma 1. Based on the
nonnegativity of P (t) (see proof of Lemma 1), we define a non-
negative function Vo(t) ∈ R as follows:

Vo � 1

2
ω̃2 +

1

2
Jr2 + P. (a26)

After taking the time derivative of (a26) and utilizing (40), (a24),
and the time derivative of (a25), we can conveniently rearrange
terms to obtain the following expression:

V̇o = −kω̃2 − r
˙̂

f + rΦ + rρ0sgn ω̃. (a27)
After substituting (41) and utilizing Remark 7, simple algebraic
manipulations can be used to obtain the following upper bound for
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V̇o(t)

V̇o � −k ‖X‖2 +
ˆ|r| ρN ‖X‖ − kf |r|2

˜
. (a28)

Applying the nonlinear damping argument [25] to the bracketed
term in (a28) results in the following upper bound for V̇o(t)

V̇o � −[k − ρ2
N

kf
] ‖X‖2. (a29)

From (a29), it is possible to state that

V̇o � −ς ‖X‖2 for kf >
ρ2

N

k
, (a30)

where ς ∈ R
+ is a constant. From (a30) and the analysis in this

section, we can conclude that X(t) ∈ L∞. From the definition of
X(t), it can be inferred that ω̃(t), ˙̃ω(t), r(t) ∈ L∞. From (41),

it is clear that ˙̂
f( · ) ∈ L∞. Using standard signal chasing argu-

ments, it can be shown that the all the signals in the closed-loop
system remain bounded. In particular, from (40), it can be seen
that ṙ(t) ∈ L∞; thus, Ẋ(t) ∈ L∞. After employing a corollary
to Barbalat’s lemma [26], it is easy to show that ‖X(t)‖ → 0 as
t → ∞. From the definition of X(t), it can be concluded that
ω̃(t), r(t) → 0 as t → ∞. From (39), it is easy to see that
˙̃ω(t) → 0 as t → ∞. From (36), the following relationship can be
obtained

J ˙̃ω = f − f̂ = −f̃ . (a31)

From (a31), it is clear that ˙̃ω(t) → 0 implies that
˛̨̨
f̃(t)

˛̨̨
→ 0 thus

f̂(t) → f(t) so P̂aero(t) → Paero(t) as t → ∞.
A5 Proof of Lemma 1

Equation (39) can be substituted into (a24) and then integrated
in time to obtain� t

to
L(τ)dτ =

� t

to
kω̃(τ)(ḟ(τ) − ρ0sgn ω̃(τ))dτ

+
� t

to

˙̃ω(τ)ḟ(τ)dτ − ρ0

� t

to

˙̃ω(τ)sgn ω̃(τ)dτ.

(a32)

The second integral in (a32) can be integrated by parts to obtain
the following final expression:� t

to
L(τ)dτ =

� t

to
kω̃(τ)(ḟ(τ) − f̈(τ)

k
− ρ0sgn ω̃(τ))dτ

+ω̃(t)ḟ(t) − ω̃(t0)ḟ(t0). (a33)

An upper bound on the right hand side of (a33) can be written as� t

to
L(τ)dτ =

� t

to
k|ω̃(τ)|`|ḟ(τ)| + |f̈(τ)|

k
− ρ0

´
dτ. (a34)

From (a34), it is clear that if ρ0 > |ḟ( · )|+ |f̈( · )|
k

, then Lemma 1
holds.
A6 Definitions of Ωi , Θj , and tables

The terms Ωi and Θj for i = 1, . . . , 13 and j = 1, . . . , 10,
introduced in (34) and (35), respectively, are given by

Θ1 � κs1

Rsκ2
, Θ2 � Rsκ

2
1 − κ1κs1 + RsRrκ

3
2

Rsκ2
2

,

Θ3 � κ1 (Rs + Rr) − κs1 , Θ4 � npω − ωs +
αf̂s

Rsκ2J
,

Θ5 � 1

Rsκ2Ψd
s1

[f̂s(
Ψ̇d

s1

Ψd
s1

+
Γ

Jε
) + (Jω̈d − ˙̂

fs − Jω̇dΨ̇d
s1

Ψd
s1

+
α

J
(K +

ρ2
z

ε
)(Ψd

s1)
2)],

Θ6 � 1

εRsκ2Ψd
s1

[
KεΨ̇d

s1 +ρ4
z

Ψd
s1

+
K2ε+2Kρ2

z−2Jρz
∂ρz
∂ω

ω̇d

J
],

Θ7 �
2ρz

∂ρz
∂ω

Rsκ2Jε2Ψd
s1

[Kε + ρ2
z ],

Θ8 � κ2(Rs + Rr) +
κ1

κ2
(Rsκ1 − κs1) +

(αΨd
r2)

2

Rsκ2J
,

Θ9 � αΓ

Rsκ2JεΨd
s1

,

Θ10 � 1

Rsκ2J
[α2Ψd

r1Ψd
r2 + Jωs(Rsκ1 − κs1)],

Θ11 � α − αΓΨd
r1

Rsκ2JεΨd
s1

, Θ12 � α2Ψd
r2

Rsκ2J
,

Θ13 � κs1 + κr1 − Rsκ1 − Rrκ1 +
ρ2
1

ε1
,

Ω1 � 1

αΨd
s1

[
˙̂

fs − (Jω̈d − Jω̇dΨ̇d
s1

Ψd
s1

− αRrκ1Ψ
d
s1Ψd

r2

+ αΨd
s1Ψd

r1(npω − ωs))],

Ω2 � 1

αJεΨd
s1

[
JεΨ̇d

s1

Ψd
s1

+ Γ ],

Ω3 � 1

αJε2Ψd
s1

(ε(−ρ2
z(2K + JΨ̇d

s1) + 2Jρz
∂ρz

∂ω
ω̇d

− K2ε) − ρ4
z) + αΨd

s1(1 − KΨ̇d
s1

Ψd
s1

),

Ω4 � Γ

JεΨd
s1

, Ω5 � Rr(κ1 + κ2) + Ψd
r1Ω4,

Ω6 � αΓ

Rsκ2Jε
, Ω7 � Ω6

Ψd
s1

, Ω8 � Rsκ2

α
Ω6,

Ω9 � Γ

Jε
+

ρ2
2

ε2
+ κr1 − Rrκ1,

Ω10 �
2ρz

∂ρz

∂ω
αJε2Ψd

s1

(Kε + ρ2
z),

where Γ � ρ2
z − 2ρz

∂ρz

∂ω
e + Kε with κr1 , κr2 ∈ R

+ are control

gains, ε1, ε2 ∈ R
+ are constants, and ρ1( · ), ρ2( · ) ∈ R

+ are
known functions designed in Appendix A2.

Table 1 Nomenclature.

A Rotor swept area m2

Cp Power coefficient –
e Rotor speed error rad·s−1

f System nonlinearities N·m
I , Ī Current A
J Moment of inertia kg·m2

k Positive control gain –
kf Positive control gain –
k1 Positive constant –
k2 Positive constant –
K Positive control gain –
L Inductance H
M Mutual inductance H
np Number of generator pole pairs –
Paero Aerodynamic power W
R Resistance Ω

Rb Blade length m
va Wind speed m·s−2

V , V̄ Voltage V
α Positive constant –
β Blade pitch angle rad
Δ Positive definite matrix –
ε Positive constant –
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ε1 Positive constant –
ε2 Positive constant –
η Flux error Wb
λ Tip-speed ratio –
ρa Air density kg·m−3

ρN Bounding known constant –
ρo Bounding known constant –
ρs Bounding known constant –
ρz Bounding known function –
σ Positive constant –
τaero Aerodynamic torque N·m
τem Electromagnetic torque N·m
Ψ , Ψ̄ Flux linkage Wb
ω Rotor speed rad·s−1

ωs Auxiliary control input –

Table 2 Subscripts and superscripts.

∗ Optimal value max Maximum value
a, b Frame component r Rotor
d Desired value s Stator

Table 3 Values of the system parameters and control gains
used in the numerical simulation.

Symbol Value Unit

J 2.4 Kg·m2

k 10 –
kf 10 –
κr1 1 –
κr2 1 –
κs1 50 –
κs2 50 –
K 50 –
Ls 0.078 H
M 0.571 H
np 1 –
Rb 1.52 m
Rr 7.25 Ω

Rs 5.55 Ω

va 2.3 m·s−2

β 2.4 rad
ε 100 –
ε1 1 –
ε2 1 –
ρa 1.2 kg·m−3

σ 2.25 –
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