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This paper presents a new iterative algorithm called constraint removal (CR) for the

recovery of a sparse signal x from an incomplete number of linear measurements y such

that ym�1 ¼ Am�nxn�1 and mon. It is empirically demonstrated that the CR algorithm

has a recovery performance which is between basis pursuit linear programming (BP-LP)

and subspace pursuit (SP) for both zero-one and Gaussian type signals.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

A vector is K-sparse if the number of its nonzero
entries is less than or equal to the positive integer K.
A vector is sparse if the majority of its entries are zero.
Sparse recovery refers to the problem of reconstructing a
sparse signal x from a number of linear measurements y

in which the number of measurements m is smaller than
the number n of the entries in x. This can be formulated as
an underdetermined system of equations

ym�1 ¼ Am�nxn�1 ðmonÞ: ð1Þ

Compressive sampling [1,2] aims to sample data in a
compressed form by finding the sparsest solution to (1).
The ‘0 norm of a vector is equal to the number of its
nonzero entries and therefore to its sparsity. Due to the
absence of scaling property, ‘0 norm is not mathemati-
cally a norm, although it became a usual practice to call it
a norm. The straightforward way to find the sparsest
solution to (1) is thus by minimizing the ‘0 norm of the
ll rights reserved.

y.

in).
solution x

minJxJ0 subject to y¼ Ax: ð2Þ

The solution to the nonconvex problem in (2) requires a
combinatorial search which is NP-hard and therefore
practically infeasible. It has been shown in [3–5] that if
the matrix A in (1) satisfies certain properties, it is
equivalent to use the ‘1 norm instead of the ‘0 norm for
minimization. The ‘1 norm minimization problem is
called basis pursuit [6] and is solved by linear program-
ming methods. This is frequently referred to as BP-LP or
simply LP, and is written as

Basis Pursuit : minJxJ1 subject to y¼ Ax: ð3Þ

Both ‘0 and ‘1 norm minimizations are computationally
complex which have been the motivation to search for
alternative greedy pursuit algorithms with much lower
complexities and with comparable performances. The
first is the matching pursuit (MP) [7] algorithm. The MP
algorithm has been followed by many derivatives in which
the latest two algorithms stand out. They are the subspace
pursuit (SP) [8] and the compressive sampling matching
pursuit (CoSaMP) [9] algorithms. They both represent a leap
in recovery performance in MP based algorithms while still
preserving the low complexity profile of the MP. The
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constraint removal (CR) algorithm introduced in this pre-
sentation is the first greedy algorithm with nearly the same
performance of LP. The CR algorithm has a different motiva-
tion and different initial steps than all other MP based
greedy pursuits as shown in the following section.

2. Problem formulation and motivation for CR

Since the system in (1) is underdetermined, a direct
solution is not possible and infinitely many solutions
exist. One remedy is to force the solution to be sparse.
The support of a vector x denoted by supp(x) is a set
which contains the indices of the nonzero elements, i.e.
suppðxÞ ¼ fi : xia0g. Since both the support and the sparsity
levels of the signal x are not known, the only intuitive thing
to be done is to press all entries in x to zero. Doing so is
more correct than false if x is indeed sparse. Pressing all
entries to zero is done by vertically concatenating the
underdetermined matrix A with a nxn identity matrix
below and elongating the measurement vector y by pad-
ding it with n zeros downwards as shown in (5). The new
system of equations become

yðmþnÞ�1
new ¼ AðmþnÞ�n

new xn�1, ð4Þ

where

AðmþnÞ�n
new ¼

Am�n

In�n

" #
and yðmþnÞ�1

new ¼
ym�1

0n�1

" #
: ð5Þ

Eq. (4) represents an overdetermined system with an
upper and a lower part. The upper part is the initial system
for which a sparse solution is sought, the lower part is an
identity matrix pressing all entries in x towards zero.
Therefore both parts will compromise on the solution.
Multiplying both sides of (4) with AT

new, the equation
transforms to

AT
newynew ¼ AT

newAnewx: ð6Þ

Using the identities in (5), AT
newAnew ¼ ðA

T Aþ IÞ and
AT

newynew ¼ AT y, Eq. (6) is equivalent to

AT y¼ ðAT Aþ IÞx: ð7Þ

Multiplying both sides with ðAT Aþ IÞ�1 the initial solution
x¼ xinit is

xinit ¼ ðA
T Aþ IÞ�1AT y, ð8Þ

where xinit is the initial solution for the underdetermined
equation (1), and where all entries in x are equally pressed
towards zero within an overdetermined context. After
finding xinit, an initial estimate of the support can be
obtained. Assuming that the maximum expected sparsity
is K, the indexes of the largest K entries in xinit is the first
estimate of the support. This means the pressure on the
entries in the support can be released by removing the
corresponding K rows in Eq. (4) to obtain the new over-
determined equation

yðmþn�KÞ�1
new ¼ Aðmþn�KÞ�n

new xn�1: ð9Þ

Applying the same procedure described in Eqs. (6)–(8), to
Eq. (9), the new estimate of the signal x is given by

x¼ ðAT AþDÞ�1AT y: ð10Þ
This time, the solution for x involves a diagonal matrix
Dn�n in place of the identity matrix In�n in (8) due to the
removed constraints on the estimated support. The diag-
onal matrix D is obtained by setting the elements of the
identity matrix I to zero corresponding to the current
support estimate. This procedure is repeated until the
support does not change. The CR algorithm consists of
two interleaved parts in each iteration, estimating the
solution x for a given support and estimating the new
support from the solution estimate x. Eqs. (4)–(9) serve
only to describe the motivation behind CR. Eq. (10) is the
main equation to be iterated.

3. The CR algorithm

Inverted support of a vector is obtained by logically
inverting its support. Algorithm 1 describes the constraint
removal algorithm. At the end of the iterations, xout will be
our sparse solution, and the diagonal s0 of the matrix D

will contain the inverted support for xout. At each iteration
a group of the largest K entries is selected until the group
does not change. A group element may stay in the group
or may be eliminated from the group at each iteration
prohibiting fixed false elements. The third step involves
least squares evaluation which can be solved by Gaussian
elimination. Contrary to the SP and CoSaMP algorithms,
CR does not require that the sparsity of the signal be
known.

Algorithm 1. The constraint removal algorithm.

Input: Measurement matrix Am�n , measurement vector ym�1 and

maximum expected sparsity K ¼ floorðm=2Þ.

Output: Signal xn�1
out .

Initialize: xinit ¼ ðA
T Aþ IÞ�1AT y and xnew ¼ xinit .

Step-1: Set xold ¼ xnew. By setting the largest K entries in xnew to zeros

and all others to ones, produce an inverted support vector s0 .

Step-2: Produce a diagonal matrix D¼ diagðs0Þ from the vector s0 .

Step-3: Solve xnew ¼ ðA
T AþDÞ�1AT y.

Step-4: If xnew ¼ xold end iterations, set xout ¼ xnew and terminate;

else go to step 1.

4. Convergence

The convergence of the CR algorithm is straightfor-
ward. It is assumed that xa is the actual K-sparse solution
so that y¼ Axa. Referring to the main iterated equation in
step 3 of Algorithm 1 and replacing y with Axa,
the estimated solution xnew becomes

xnew ¼ ðA
T AþDÞ�1AT Axa, ð11Þ

xnew ¼ ðA
T AþDÞ�1

ðAT AþD�DÞxa, ð12Þ

xnew ¼ xa�ðA
T AþDÞ�1Dxa|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

error

: ð13Þ

Eq. (13) indicates that if D contains in its diagonal the
inverted support of the actual solution xa so that Dxa¼0,
the solution xnew converges to the actual solution xa.
Finally, it needs to be shown that the diagonal of matrix
D approaches the inverted support of xa beginning from
the first iteration where D¼ I. In the first iteration of the
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Fig. 1. Simulation results for zero-one signals whose entries can only be

1 and 0.
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Fig. 2. Simulation results for Gaussian random signals.
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CR algorithm

xnew½1� ¼ xa�ðA
T Aþ IÞ�1xa, ð14Þ

the number of columns used in ðAT Aþ IÞ�1 is equal to the
sparsity K of xa. If xnew½1� is well aligned (have a similar
order of magnitudes) with xa, in the second iteration, the
vector Dxa will be sparser than xa. As a result, the next
solution xnew½2� will be closer to and better aligned with xa

since less columns from ðAT AþDÞ�1 will be involved. This
will continue in the subsequent iterations until conver-
gence occurs where Dxa¼0 and xnew ¼ xa.

From Proposition 3.1 in [9], if A satisfies the restricted
isometry condition for sparsity K and parameter d, the
bounds for the error in the first iteration can be written as

JxaJ2

ð2þdÞ
rJðAT Aþ IÞ�1xaJ2r

JxaJ2

ð2�dÞ
: ð15Þ

It is therefore crucial to have a good alignment in the first
and subsequent iterations which depends on how close
ATA is to identity and therefore on the restricted isometry
constant. Even when d¼ 0, the norm of the error in the
first iteration is not zero but is perfectly aligned with xa,
therefore in the second iteration actual solution xa will be
recovered exactly. If A satisfies the restricted isometry
condition, the reconstruction will be exact yet the value of
the RIC parameter d below which reconstruction is
guaranteed needs to be determined.

5. Noise and stable recovery

The measurements may be corrupted by noise such
that y¼ Axþe, where e represents the noise vector. For a
stable recovery, measurement noise e and corresponding
signal deviation Dx must be comparable. This can be
shown using the main iterated equation in the CR algo-
rithm x½i� ¼ ðAT AþDÞ�1AT

ðyþeÞ. The deviation in x is given
by Dx¼ ðAT AþDÞ�1AT e. Since ðAT AþDÞ�1 is always non-
singular, the norm of Dx will be comparable to the norm
of measurement noise e ensuring stability.

6. Empirical results and comparison

For comparison, the same presentation style used in
[8] is adopted for simulations. Simulations are performed
for two types of sparse signal x of length 256. The first
type is zero-one sparse signal in which all nonzero entries
are set to one. The second type is Gaussian signal in which
all entries are selected from the standard normal distri-
bution, with zero mean and variance equal to one so that
x�Nð0n�1,In�nÞ. For both signal types, sparsity K is varied
from 1 to 55. For each sparsity level 500 realizations are
conducted. Sparsity K refers to the number of nonzero
entries in x and therefore K ¼ JxJ0. The number of exact
recoveries is plotted against K. The Gaussian sampling
matrix A is a 128�256 matrix whose elements are drawn
from the standard normal distribution. Referring to
Eq. (1), m¼128 and n¼256. For linear programming an
interior point method is used.

Fig. 1 depicts the simulation results for zero-one sparse
signals. CR algorithm is compared to BP-LP and SP
algorithms. CR algorithm outperforms SP algorithm and
have a closer performance to BP-LP method.

Fig. 2 depicts the simulation for Gaussian sparse signals.
CR algorithm is compared to BP-LP and SP methods. Both CR
and SP having similar performances exhibit somewhat
oscillatory behavior as the sparsity level K approaches 55.
Plots are taken from actual simulation data without inter-
polation to demonstrate oscillations.
7. Complexity

The proposed CR algorithm has a complexity of Oðn3Þ,
apparently equal to that of the LP due to the matrix
inversion in step-3 of Algorithm 1. However in simulations
the CR algorithm converges in an average of 10 iterations
and using Gaussian elimination instead of matrix inversion
in step-3 decreases the runtime further. Besides, the
Gaussian elimination procedure terminates earlier than
expected for sparse signals which cause additional decrease
in runtime. Although CR is not as fast as greedy pursuits SP
and CoSaMP, its speed is more closely aligned with them
than the ‘1 minimization by BP-LP.
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8. Conclusion

CR performs better than SP for zero-one type sparse
signals with around equal performance for Gaussian type
signals. Despite its apparent high complexity Oðn3Þ, its
simulation runtimes were far below than expected and
below that of BP-LP perhaps due to much fewer number
of iterations and early termination of the Gaussian elim-
ination for sparse signals. In addition CR does not require
prior sparsity knowledge.
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