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The Exp-function method is shown to be an effective tool to explicitly construct 
rational and multi-wave solutions of completely integrable nonlinear evolution 
equations. The procedure does not require the bilinear representation of the equation. 
The method is straightforward, concise, and its applications to other types of nonlinear 
evolution equations are promising. 
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1. INTRODUCTION 

Applications of nonlinear evolution equations (NEEs) can be seen in many 
areas of nonlinear sciences. Hence, seeking innovative methods to solve and 
analyze these equations has been an interesting research subject over the four 
decades or so. Nowadays, many ingenious techniques are available for obtaining 
exact solutions mainly through analytic studies such as tanh function method [1], 
Adomian decomposition method [2], homotopy analysis method [3], variational 
iteration method [4], homotopy perturbation method [5], first integral method [6], 
Exp-function method [7], (G'/G)-expansion method [8], three-wave method [9], 
multi-exp function method [10] and so forth. In addition, He et al. [11] put forward 
three standard variational iteration algorithms for dealing with differential 
equations, fractional differential equations, integro-differential equations, fractal 
differential equations, fractional/fractal differential-difference equations, as well as 
differential-difference equations arising in applied mathematical sciences. It is 
notable that these methods may not work well to tackle a specific nonlinear problem.  

On the other hand, special types of exact solutions have been of fundamental 
importance to our understanding of physical, chemical and biological phenomena 
modeled by NEEs. Traveling waves of NEEs may be coupled with different 
frequencies and different velocities. Multi-wave solutions are crucial in the sense 
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that they may sometimes be converted into a single soliton of very high energy that 
propagates over large domains of space without dispersion. Therefore, an 
extremely destructive wave may be produced. The tsunami is a good example for 
this kind of phenomena. In fact, multi-wave solutions of completely integrable 
NEEs can be constructed by three distinct methods; the inverse scattering method 
[12], the Hirota bilinear method [13] and the Bäcklund transformation method [14]. 
Though each of these methods has its own features, the Hirota bilinear method is 
quite heuristic and provides multi-wave solutions for a wide class of NEEs. 
Moreover, this method is also useful to analyze the integrable properties of such 
equations. The main point of the Hirota bilinear method is to derive the bilinear 
form of the equation by means of a proper dependent-variable transformation. 

In the recent literature, the elegant method introduced by He et al. [7] has 
been developed by many scientists and become one of the most powerful tools, 
especially in the area of nonlinear differential equations. In the subsequent papers 
[15-25], this technique has been extended for NEEs with variable coefficients, 
multi-dimensional equations, differential-difference equations, coupled NEEs, and 
stochastic equations as well as for n-soliton solutions, double-wave solutions, and 
rational solutions. However, the generalization of this procedure to higher order 
NDDEs to find rational and multi-wave solutions in an effective manner is still an 
interesting and important issue. 

In the present paper, we wish is to show the applicability of the Exp-function 
method to the modified Korteweg de Vries equation (defocusing case) and the 
fourth order Burgers-like equation for rational and multi-wave solutions. The paper 
is organized as follows: In the next section, to make the paper self-contained, we 
summarize the method. In Sections 3 and 4, we analyze our problems. In Section 5, 
we present a brief conclusion. 

2. METHODOLOGY 

In this section, in order to present our results in a straightforward manner, we start 
our study by briefly reviewing the procedure [16-18] for constructing multi-wave 
and rational solutions. Consider a nonlinear partial differential equation for a 
function u  of two real variables, space x  and time t ; 

 ( ), , , , , , 0t x tt tx xxP u u u u u u =… , (1) 

where P  is a polynomial in its arguments and subscripts denoting partial 
derivatives. The Exp-function method is based on the assumption that the solutions 
of Eq. (1) can be expressed in the form 
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where m  and n  are positive integers to be determined by balancing the highest-
order terms in Eq. (1); ia , jb , k  and w  are arbitrary constants to be specified at 
the stage of solving Eq. (1); δ  is the phase shift. To search for rational and multi-
wave solutions to Eq. (1), the ansatz (2) can be modified as follows: 
For a two- wave solution, we set  
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For a three- wave solution, we consider  
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and so on. 
For a rational solution, we take 
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where 1µ  and 2µ  are two embedded constants. We remark that when 1 1µ =  and 

2 0µ = , the ansatz (5) turns out to be the ansatz (2).  

3. THE MODIFIED KORTEWEG DE VRIES EQUATION  

First, we consider the modified Korteweg de Vries equation (defocusing case) 

 26 0t x xxxu u u u− + = , (6) 

where ( , )u u x t= . We assume that Eq. (6) admits a solution of the form 
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which is embedded in (2). Substituting (7) into Eq. (6), we get a relation of the 
form  
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3
1 1 1a kA a w+= , 
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3 3 3
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Thus, solving the system ( )0 1 7,  4iA i i= ≤ ≤ ≠  simultaneously, we obtain the 
solution set 

 3 2 2
1 2 1,  0,  4/w k b b a k= − = = − ,  (9)  

which yields a one-wave solution to Eq. (6) as 
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where k , 1a  and δ  remain arbitrary. In fact, taking 1 02 exp( )a k δ=  into account, 
(10) can be written as  
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where k , δ  and 0δ  are arbitrary constants. Clearly, (11) has a singularity at 0η = . 

3.1. TWO-WAVE SOLUTIONS 

Now, suppose that Eq. (6) admits a solution of the form 
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Clearly, the ansatz (12) is embedded in (3). Substituting (12) into Eq. (6), we 
obtain the relation 
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where ( )12 2,v ξ ξ  is as in (12). Thus, solving the system ( )0 0 , 8ijA i j= ≤ ≤  
simultaneously, we obtain the solution set 
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which gives rise a two- wave solution to Eq. (6) as 
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in which 01a , 10a , 1k , 2k , 1δ , and 2δ  remain arbitrary. However, letting 
( )10 1 012 expa k δ= , ( )01 2 022 expa k δ= , and ( )3
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where 1k , 2k , 01δ , 02δ , 1δ , and 2δ  are arbitrary constants. Clearly, ( )2 ,u x t  has a 
singular behavior for ( )4 , 0v x t = .  

Remark 1 

Due to its complexity, we skip the investigation of ( )3N ≥ -wave solutions for Eq. 
(6). So far, we have observed that the implementation of the Exp-function method 
to Eq. (6) for multi-wave solutions leads to singular solutions, of very little 
physical significance as far as we could verify. 

3.2. RATIONAL SOLUTIONS 

Suppose that Eq. (6) admits a solution of the form 
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By the same procedure, we obtain the solution set of the resultant algebraic system 
as 
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which provide a rational solution to Eq. (6) in the form 
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where 0a , 0b , and 1a−  are as given in (18) and all other involved constants remain 
arbitrary. It is interesting that the solution (19) can be non-singular if 

2
0 1 14 0b b b−− < . 

4. THE FOURTH ORDER BURGERS-LIKE EQUATION 

Next, we consider the fourth order Burgers-like equation 

 2 2 310 4 12 6 4 0t xxxx x xx xxx x xx xu u u u uu uu u u u uα α α α α α+ + + + + + = , (20) 

where α  is a nonzero constant, and ( , )u u x t= . As is well known, the study of 
integrable hierarchies is a significant and interesting topic in wave theory. Equation 
(20) appears to be a member of Burgers hierarchy in applications. Now, we 
suppose that Eq. (20) admits a solution of the form 
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which is embedded in (2). We will omit technical details here because the 
procedure is similar to the scheme used in Section 3. 
Substituting (21) into Eq. (20) and solving the resultant algebraic system for the 
unknowns 1a , 1b , k , and w , we obtain the solution set 
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which yields a one- wave solution to Eq. (20) as 
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where k , 1a , and δ  remain arbitrary. Indeed, setting 1 0exp( )a k δ= , (23) can be 
stated as  
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where k , δ  and 0δ  are arbitrary constants. 

4.1. TWO-WAVE SOLUTIONS 

Assume that Eq. (20) admits a solution of the form 
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It is clear that the ansatz (25) is embedded in (3). Substituting (25) into Eq. (20) 
and solving the resultant algebraic system for the unknowns 10a , 01a , 11a , 10b , 01b , 

11b , 1k , 2k , 1w  and 2w , we get the solution set 
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which gives a two-wave solution to Eq. (20) as 
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where 01a , 10a , 1k , 2k , 1δ , and 2δ  remain arbitrary. However, setting 
( )10 1 01expa k δ= , ( )01 2 02expa k δ= , and ( )4

0 1,2i i i i ik x k t iη α δ δ= − + + = , the 
expression (27) can be formulated as 
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where 1k , 2k , 01δ , 02δ , 1δ , and 2δ  are arbitrary constants. 

4.2. THREE-WAVE SOLUTIONS 

Assume that Eq. (20) admits a solution of the form 
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where ,  1,2,3l l l lk x w t lξ δ= + + = . 
Obviously, the ansatz (29) is embedded in (4). After Substituting (29) into Eq. (20) 
and solving the resultant algebraic system for the unknowns 100a , 010a , 001a , 110a , 

101a , 011a , 111a , 100b , 010b , 001b , 110b , 101b , 011b , 111b , 1k , 2k , 3k , 1w , 2w , and 3w , 
we get the solution set 
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which leads a three-wave solution to Eq. (20) as 
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where 001a , 010a , 100a , 1k , 2k , 3k , 1δ , 2δ , and 3δ  remain arbitrary. By the same 
token, setting ( )100 1 01expa k δ= , ( )010 2 02expa k δ= , ( )001 3 03expa k δ=  and 

( )4
0  1,2,3i i i i ik x k t iη α δ δ= − + + = , the function (31) can be modified as 

 ( ) ( ) ( ) ( )( )3 1 2 3, In 1 exp exp expu x t
x

η η η∂
= + + +
∂

, (32) 

where 1k , 2k , 3k , 01δ , 02δ , 03δ , 1δ , 2δ , and 3δ  are arbitrary constants.  

Remark 2 

It seems that the properties (24), (28), and (32) are general. Thus, we conclude that 
the ( )4N ≥ - wave solution for Eq. (20) can be constructed in a similar way. It is 
also worth to mention here that all class of these solutions seem to be kink-type; for 
example 



9 Rational and multi-wave solutions to some nonlinear physical models 901 

( )1 0u η → −∞ = , ( )1u kη →∞ = . 

4.3. RATIONAL SOLUTIONS 

Suppose that Eq. (20) admits a solution of the form (17). Using the same 
procedure, we obtain the solution set of the resultant algebraic system as 
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which provide a rational solution to Eq. (20) in the form 
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where 0a  and 1a−  are as given in (33) and all other involved constants remain 
arbitrary. The expression (34) represent non-singular solutions if 2

1 1 04 0b b b− − > . 

Remark 3 

It is well known that the Burgers equation  

 t x xxu uu uδ+ = ,  (35) 

can be linearized by the Cole-Hopf transform [26, 27] 

 2 (In ) ,  ( , )xu F F F x tδ= − = , (36) 

where F  satisfies the diffusion/heat equation 

 t xxF Fδ= . (37) 

We observe that all the solutions (24), (28), and (32) of Eq. (20) are of the form of 
a Cole-Hopf transform (36). This fact suggests that even this member of the 
Burgers hierarchy is linearizable via a Cole-Hopf transform. Indeed, substituting 

(In )xu R F=  into Eq. (20), we have 1R =  and  

    2 2 310 4 12 6 4 0t xxxx
t xxxx x xx xxx x xx x

F Fu u u u uu uu u u u u
x F

α
α α α α α α

+∂  + + + + + + = = ∂  
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Evidently, if ( , )F F x t=  solves the linear equation 

 0t xxxxF Fα+ =  (39) 

then (In )xu F=  solves Eq. (20).  
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5. CONCLUSION 

All NEEs can be mainly separated as integrable and non-integrable ones. The 
first type, namely, the integrable ones has infinite number of exact solutions. NEEs 
with some exact solutions or without exact solutions are assumed to be in the class 
of non-integrable ones and they may require specific treatment to obtain their 
solutions due to the form of the equation. From our point of view, there is no single 
best method to find exact solutions of NEEs of both type and each method have its 
merits and deficiencies. Searching exact solutions with multi-velocities and multi-
frequencies for NEEs is an important research area in the applied physical sciences. 
It becomes one of the most exciting and extremely active areas but the progress 
achieved is not adequate.  

As is well known, the Hirota bilinear method [13] is a very powerful method 
which works perfectly in the case of completely integrable systems. However, all 
methods are problem dependant, namely some methods work well with certain 
problems but others not. Hence, it is quite significant to implement some well-
known methods (such as the Exp-function method) in the literature to NEEs which 
are not solved with that method to search possibly new exact solutions or to verify 
the existing solutions with different approach. 

This paper shows that multi-wave solutions, as well as rational solutions, can 
still be constructed straightforwardly using the Exp-function method with the help 
of a computer algebra system such as MATHEMATICA. The main advantage of 
our approach is that the bilinear representation for the equation studied becomes 
superfluous. We observed that, for some problems, the Exp-function method is 
nothing else but a variant of the Hirota bilinear method. We used two different 
kinds of equations to demonstrate the applicability of the Exp-function method. 
The results are tested by back substitution into the original equation; this provides 
an extra measure in the results.  
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