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In chronic myeloid leukemia (CML), epigenetic modifications such as promoter hypermethylation and
inactive histone modification are known mechanisms of drug resistance. In our study, we investigated the
roles of promoter hypermethylation of BIM and BID genes and H3K27me3 histone modification on imatinib
resistance.

We detected higher expression levels of BIM and BID genes and lower expression levels of EZH2, EED2,
SIRT1, and SUZ12 genes in imatinib-resistant K562/IMA-3 cells compared to imatinib-non-resistant K562
cells. While we determined the EZH2 and DNMT enzymes as bounded to the promoter of the BIM gene,
we did not detect hypermethylation of this promoter. We also found the H3K27me3 histone modification
promoter of BIM and BID genes in both cell lines. In conclusion, our results support the notion that DNA
promoter methylation may be formed independently from EZH2-H3K27me3 and pro-apoptotic BIM and

BID genes are not methyllated in the imatinib resistance of CML cells.
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Introduction

Chronic myeloid leukemia (CML) is a clonal myelo-
proliferative disease of hematopoetic stem cells. The
ber-abl oncoprotein which is formed by the reciprocal
translocation of chromosomes 9 and 22 plays a role in
disease pathogenesis." CML shows a biphasic clinic
course with chronic and accelerated phases, followed
by the blastic crisis phase.”® Imatinib mesylate is a
novel synthetic tyrosine kinase inhibitor successfully
used for the treatment of CML patients.* It binds to
the inactive form of Ber-Abl and inhibits its transition
from active to inactive form. While most patients with
chronic phase of the disease can be cured with imani-
tib, resistance against imatinib is the most significant
problem in imatinib treatment especially in patients
with blastic crisis.” In our previous studies, we
showed that mechanisms of imatinib resistance
include changes in the structure and levels of BCR/
ABL gene, inhibition of apoptotic signaling pathways
and aberrant ceramide metabolism.*’ Some of the
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epigenetic modifications are mechanisms of drug
resistance formed independently from Ber-Abl in
CML. DNA methylation and histone modifications
important  epigenetic mechanisms.®’
Methylation of the promoter region can also cause
silencing of the genes.!® Polycomb group proteins
(PcG) are epigenetic regulators consisting of multi-
meric proteins and modified histone proteins.
Polycomb repressive complex 4 (PRC4) is one of the
subgroups of PcG proteins,!' and is expressed
especially in embryonic and cancer cells. PRC4 is com-
prised of embryonic ectoderm development (EED?2),
enhancer of zeste homolog (EZH1), EZH2, stress-
sensing proteinl (SIRT1), and suppressor of zeste 12
(SUZ12) proteins.'*'* EZH2 is a methyltransferase
which adds three methyl groups at the specific lysine
residue on H3 histone proteins."* This modification
is a marker of an inactive chromatin state. In cancer
cells, EZH2-mediated H3K27 trimethylation can
selectively cause DNA methylation and inhibit gene
expression.'>!¢

This study was designed to examine the roles of
epigenetical regulations in imatinib resistance by

are two
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determining the expression levels of BIM and BID
pro-apoptotic genes in imatinib-sensitive and -resistant
cells and examining the mechanisms of epigenetic
regulation through PRC4 protein complex.

Methods

Cell lines

Human K562 CML cells were obtained from German
Collection of Microorganisms and Cell Cultures.
K562 cells were maintained in RPMI1640 medium
supplemented with 100 units/ml penicilin, 100 g/ml
streptomycin (Gibco, Burlington, Canada) and, 10%
foetal bovine serum (Sigma, St Louis, MO, USA)
and incubated at 37°C in a humidified 5% CO, incu-
bator. K562/IMA-3 cells, which were able to grow
in the presence of 3 uM imatinib, were generated
from K562 cells by stepwise increasing concentrations
of imatinib.

Genomic DNA Isolation

Genomic DNA was isolated from K562/IMA-3 and
K562 cells by using QIAMP DNA mini kit (Qiagen,
Hilden, Germany) as described by the manufacturer.
Briefly, 1.5x10%cells/ml were lysed with the
enzyme, and nucleic acids were stabilized. After
adding alcohol, lysates were loaded on to the
QIAamp spin column and wash buffers were used to
remove impurities. Then DNA was eluted in water or
low-salt buffer.

Reverse transcriptase polymerase chain reaction
analysis

Total RNA was extracted with RNeasy Mini kit
(Sigma, St Louis, MO, USA; A.B.D). cDNA was
synthesized from 2 pg of RNA, using oligo (dT)
primers and Revert Aid™ First Strand cDNA
Synthesis Kit (Fermentas, Vilnius, Lithuania) as
described by the manufacturer. Removal of DNA
from RNA samples was achieved by DNase treat-
ment (DNA-free™ kit, Ambion Inc., Ambion, CA,
USA). The primers designed for EED2, SUZI2,
SIRT1, EZH2, BID, and BIM are shown in
Table 1. Polymerase chain reactions (PCRs) were
carried out in a reaction mixture containing 10x
buffer, MgCl, (Fermentas, Vilnius, Lithuania),
dNTP  mixture (MBI  Fermentas, Vilnius,
Lithuania), and Taq polymerase (MBI Fermentas,
Vilnius, Lithuania) using the cycling conditions; 3
minutes at 95°C, 30 seconds at 94°C, 30 seconds at
the annealing temperature, and 3 minutes at 72°C.
PCR products were separated on 1% agarose gel elec-
trophoresis, stained with ethidium bromide and visu-
alized under ultraviolet (UV) light.

Real-time PCR
mRNA levels of EZH2, EED2, SUZ12, SIRT1, BIM,
and BID genes were determined in K562/IMA-3 and
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Table 1. Primer Sequences of Genes for PCR Amplification

Gene PCR

Name Primer base sequences (5’-3’) product

EED2 F:CAGCAATCCAGACCTCTCTGG 109 bp
R:TTCCAGGTGCATTTGGCGTG

EZH2 F:GCTCAAGAGGTTCAGAAGAGC 121bp
R:GCACAGGCTGTATCCTTCGCT

suz12 F:CCTGGAAGTCCTGCTTGTGA 221 bp
R:GGTCAGGATTCAAAGGCACC

SIRT F.:CAGGTTGCGGGAATCCAAAG 141 bp
R:CACCTAGGACATCGAGGAAC

EZH1 F.CCTGTGAGTGGACACCCTT 137 bp
R.TTGGAGAGGGGACCAGGAA

Bim F-TGTGACAAATCAACACAAACCC 230 bp
R:AGTCGTAAGATAACCATTCGTG

Bid F:AGGAGAAGACCATGCTGGTG 129 bp

R:CTCACGTAGGTGCGTAGGTT

F:Forward, R:Reverse

K562 cells by real-time PCR. Expression level of
GAPDH was used as the internal positive control.
PCR was carried out in a reaction mixture containing
Ix Lightcycler-DNA Master SYBR Green I (Roche
Diagnostics, Mannheim, Germany), 0.125pM
primer oligonucleotides and 3.5 mM MgCl, using
the cycling conditions: 5 minutes at 65°C, 30 seconds
at 60°C, and 30 seconds at 72°C (ABI Prism 7700
Sequence Detection System, Applied Biosystems,
Foster City, CA, USA). Each reaction was performed
in triplicates. Comparative Ct (AACt) method was
used for the relative quantification of the target gene
expression. '’

Methylation-specific PCR

Methylation status of the promoter regions of BIM
and BID genes was evaluated by methylation-specific
PCRs (MS-PCR), as described previously (12).
Briefly, 1 pg of genomic DNA was modified by a reac-
tion containing sodium bisulphide under the

Table 2. Primer Sequences of BID and BIM Genes for MS-
PCR Amplification

PCR
Gene Name Primer base sequences (5’-3’) Product
Bim- M AGTATTTTCGGTAAATAATGGGGTC 139 bp
Forward
Bim- M GAATAAATCAAAAACTCCCAACG 139 bp
Reverse
Bim- U GTATTTTTGGTAAATAATGGGGTTG 139 bp
Forward
Bim- U CAAATAAATCAAAAACTCCCAACA 139 bp
Reverse
Bid- M CGTTATAAGGAGGAAGCGGGTAGTC 186 bp
Forward
Bid- M GAACCCTAAACTCCACGCCG 186 bp
Reverse
Bid- U TGTTATAAGGAGGAAGTGGGTAGTT 186 bp
Forward
Bid- U AACAAACCCTAAACTCCACACCA 186 bp
Reverse

M: Methylated, U: Unmethylated



conditions that convert all unmethylated cytosines to
urasil (CpG Genome DNA modification Kkit;
Chemicon, Billerica, MA, USA). After that bisul-

Siireyya et al.

control ‘CpGenome Universal Methylated DNA’
(Millipore, Billerica, MA, USA) was used. PCR
amplification of the BIM gene (10 minutes at 94°C;
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1 minutes at 94°C; 1 minutes at 56°C; 1 minutes at

phide-modified DNA was amplified with primers,
72°C; and 10 minutes at 72°C) was performed with

specific for unmethylated (U) and methylated BIM

and BID genes’ promoter regions. As a positive the primers given in Table 2.
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Figure 1 RT-PCR results of PcG, BID, and BIM genes in K562 and K562/IMA-3 cell lines. (A) RT-PCR results of the BIM gene: (1)
M:50 bp, (2) No DNA, (3) K562 cells, (4) K562/IMA-3 cells, (5) positive control, (6) negative control. (B) RT-PCR results of the EED2
gene: (1) M:50 bp, (2-3) positive control, (4) K-562 cells, (5) K-562/IMA-3 cells, (6) negative control. (C) RT-PCR results of the BID
gene: (1) M:50 bp, (2-4) positive control, (5) K562 cells, (6) K562/IMA-3 cells, (7) negative control. (D) RT-PCR results of the SUZ12
gene: (1) M:50 bp, (2) positive control, (3) negative control, (4) K562 cells, (5) K562/IMA-3 cells, (E) RT-PCR results of SIRT1 gene:
(1) M:50 bp, (2) K562 cells, (3) K562/IMA-3 cells, (4) positive control, (5) negative control. (F) RT-PCR results of the EZH2 gene: (1)
M:50 bp, (2-3) positive control, (4) K562 cells, (5) K562/IMA-3 cells, (6) negative control. (G) RT-PCR results of GAPDH gene: (1)
M:50 bp, (2-3) positive control, (4-5) K-562 cells, (6-7) K562/IMA-3 cells, (8) negative control.
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Chromatin immunoprecipitation

Chromatin immunoprecipitation (ChIP) experiments
were performed according to the procedure of ‘The
Simple ChIP Enzymatic Chromatin I[P Kit
(Magnetic Beads, Cell Signalling, Danvers, MA,
USA). K562 and K562/IMA-3 cells (4x107) were
treated with 1% formaldehye which serves to fix
protein-DNA interactions in the cells. The cells were
then lysed with cell lysis buffer on ice and chromatin
was harvested and fragmented using sonication.
Immunoprecipitation was performed using antibodies
specific to EZH2 (Active Motif, eyalet, Carlsbad, CA,
USA), DNMT]1 (Active Motif), Tri-Methyl-Histone
H3 (Cell Signalling) and ChIP Grade Protein G
Magnetic Beads. After the reversal of protein—-DNA
cross-links, DNA was purified using DNA purification
spin columns provided in the kit. After ChIP
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Figure 2 PcG, BID, and BIM genes expressions were
determined in K562 and K562/IMA-3 cell lines by real-time
RT-PCR.

117bp
BIM

experiments PCR amplification of the BIM gene (5
minutes at 95°C; 30 seconds at 95°C; 30 seconds at
55°C; and 30 seconds at 72°C) was performed with
the primers, sense 5-CTGGTCTGCAGTTTGTTG
GA-3 and antisense 5-GGTGGCTGCAAGAATC
AAGT-3. PCR amplification of the BID gene (5
minutes at 95°C; 30 seconds at 95°C; 30 seconds at
60°C; and 30 seconds at 72°C) was performed with
the primers, sense 5-GGCTTTGTTGTGTCCTCTC
C-3" and antisense 5'-TGTCTGCGGTGCTGGAAA
-3’. H3 Histone was used as a positive control and
amplified with primer sets which are specific to the
human ribosomal protein L30 (RPL 30) gene locus
while normal rabbit IgG was used as a negative
control and amplified with primer sets that were
specific to the mouse RPL 30 gene locus. PCR pro-
ducts were run on 2% agarose gel electrophoresis,
stained with ethidium bromide, and visualized under
UV light.

Results

Expression Levels of EZH2, SUZ12, SIRT1, EED2,
BIM, and BID genes in K562 and K562 /IMA-3
cells

Expression levels of EZH2, SUZ12, SIRT1, EED?2,
BIM, and BID genes were determined both in K562
and in K562/IMA-3 cells with conventional PCR as
shown in Fig. 1. SIRT1 and EED?2 isoform of EED
genes were expressed only in PRC4 subgroup of PcG
protein (12, 13). In this study, it was shown that

184bp
BID

Figure 3 H3K27me3 histone modification on promoter region of BIM and BID genes in K562/IMA-3 cell lines was determined by
ChIP-PCR. (A) (1) negative control, (2) positive control, (3) 2% input DNA, (4) M:50 bp, (5-6) K562/IMA-3 cell lines, (7) no DNA.
(B) (1) M:50 bp, (2) negative control, (3) positive control, (4) 2% input DNA, (5) K562/IMA-3 cell line, (6) no DNA.

184bp
BID

Figure 4 In K562 cell, EZH2 and DNMT1 enzymes were found as bounded to the BID gene promoter region, but in imatinib-
resistant K562/IMA-3 cells these enzymes were not seen as bounded to the BID gene promoter. (1) K562 cells BID (+) control, (2)
K562 cells BID (-) control, (3) K562 BID 2% input DNA, (4) M: 50 bp, (5) K562 cells EZH2 BID, (6) K562 cells Dnmt1 BID, (7) K562
cells H3K27me3 BID, (8) K562/IMA-3 cells BID (+) control, (9) K562/IMA-3 cells BID (-) control, (10) K562/IMA-3 cells BID 2%
input DNA, (11) K562/IMA-3 cells EZH2 BID, (12) K562/IMA-3 cells Dnmt1 BID, (13) no DNA.
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Figure 5 EZH2 and DNMT1 enzymes were determined as bounded to the BIM gene promoter region in both cell lines. (A) (1)
K562 cells BID 2% input DNA, (2) K562 cells Dnmt1 BIM, (3) K562 cells EZH2 BIM, (4) K562 cells H3K27me3 BIM, (5) K562 cells
BIM (+) control, (6) K562 cells BIM (-) control, (7) M: 100 bp. (B) (1) M: 100 bp, (2) K562/IMA-3 cells BIM 2 % input DNA, (3) no DNA,
(4) K562/IMA-3 cells Dnmt1 BIM, (5) K562/IMA-3 cells EZH2 BIM, (6) K562/IMA-3 cells H3K27me3 BIM, (7) K562/IMA-3 cells BIM

(+) control, (8) K562/IMA-3 BIM (-) control.

139bp
BIM

186bp
BID

Figure 6 BIM and BID gene promoter regions are unmethylated in K562 and K562/IMA-3 cell lines. (A) (1) M:50 bp, (2) K562 cells
BIM unmethylated band, (3) K562 cells BIM methylated sample, (4) K562/IMA-3cells BIM unmethylated band, (5) K562/IMA-
3cells BIM methylated sample, (6) peripheral blood sample BIM unmethylated band, (7) peripheral blood sample BIM methylated
sample, (8) (+) control BIM unmethylated band, (9) (+) control BIM methylated band. (B) (1) M:50 bp, (2) unmethylated negative
control, (3) K562 cells BID unmethylated band, (4) K562 /IMA-3 cells BID unmethylated band, (5) unmethylated positive control,
(6), K562 cells BID methylated sample, (7) K562 /IMA-3 cells BID methylated sample, (8) methylated positive control.

PRC4 group proteins are expressed both in K562 and
K562/IMA-3 cells (Fig. 1). In order to confirm con-
ventional PCR results, expression levels of EZH2,
SUZ12, SIRTI1, EED2, BIM, and BID genes were
examined by quantitative real-time PCR. The
average 2~ “*! value indicated that expression levels
of EZH2, SIRTI1, EED2, and SUZI2 genes in
K562/IMA-3 cells were significantly decreased as
compared with the parental-sensitive counterparts,
and normalized to the internal positive control.
Interestingly, expression levels of pro-apoptotic BIM
and BID genes were increased in K562/IMA-3 cells
compared to the parental-sensitive K562 cells (Fig. 2).

PCR results after ChIP experiments

H3K27me3 modification at BIM and BID genes pro-
moters were determined in K562 and K562/IMA-3
cell lines by ChIP analyses (Fig. 3).

EZH2 and DNMTI1 enzymes were found as
bounded to the BID gene promoter region in K562
but not in imatinib-resistant K562/IMA-3 cells. Also
H3K27me3 modification was detected in K562/
IMA-3 cells (Fig. 4).

EZH2 and DNMT1 enzymes were determined as
bounded to the BIM gene promoter region in both
cells (Fig. 5).

BIM and BID gene promoter regions are
unmethyllated in K562 and K562 /IMA-3 cells
Methylation status of the promoter regions of BIM
and BID genes was evaluated by MS-PCRs. Our
results revealed that BIM and BID gene promoter

regions were unmethyllated homozygously in both
cells despite finding DNMT1 bounded to these two
proapoptotic gene promoters (Fig. 6).

Discussion

The aim of this study was to investigate epigenetic
differences of BIM and BID pro-apoptotic genes
between imatinib-resistant and non-resistant CML
cells. For this reason, we determined methylation
status and H3K27me3 modification of BIM and
BID pro-apoptotic genes on both cell lines.
Furthermore, the effects of EZH2 protein which
belongs to PRC4 protein complex on these epigenetic
regulations were also studied.

For this aim we firstly determined the expressions of
PRC4 genes with reverse transcriptase (RT)-PCR in
both cell lines and our RT-PCR results showed that
PRC4 genes, expressed only in embryonic stem/pro-
genitor and cancer cells (12), were expressed in both
imatinib-resistant K562/IMA-3 and parental-sensitive
K562 cells.

To our knowledge, this is the first report determin-
ing the expression levels of EZH2, SUZ12, EED?2,
and SIRT1 genes in CML cells. Higher EZH2
expression was detected in breast cancer patients
especially with metastatic breast cancer, and a corre-
lation was shown with poor prognosis.'® Kuzmichev
et al."® showed that the expressions of PRC4 group
proteins were regulated during cancer development
and cell differentiations. Overexpression of the EZH?2
was studied in lymphomas,20 melanomas,’! renal cell
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carcinomas>>%* and pancreatic tumor cells.>* We also

studied the expression of SUZ12 in both imatinib-
resistant K562/IMA-3 and -non-resistant K562
CML cells. In another study, overexpression of the
SUZ12 was detected in blastic crisis of CML, as com-
pared with the chronic phase CML patients.
Nevertheless, SUZ12 expression was not detected in
bone marrow mononuclear cells obtained from a
normal donor. For this reason, researchers claimed
that SUZI12 could be potentially transformed.?
Expression of SIRT1 was detected in both cell lines
in our study. This enzyme belongs to the sirtuin
family of histone deacetylases, and has been an impor-
tant regulator of cell survival in response to various
cell stresses.”® It is known that SIRT1 plays a critical
role in the initation and development of tumor, drug
resistance, cellular senescence and inhibition of apop-
tosis.””*® In our study, we also determined SUZ12
expressions in blastic phase of cell lines with enhanced
proliferating capacity and resistance to apoptosis. So,
we suggest that the expressions of SUZI12 could con-
tribute to the inhibition of apoptotic process.

On the other hand, we examined the epigenetic
regulation of BIM and BID pro-apoptotic genes that
could play a role in imatinib resistance commonly
observed in blastic phase of CML. We focused on
BIM and BID pro-apoptotic genes since they may
have significant roles in drug resistance, especially in
inhibition of apoptosis, partially. In a study reported
by Kurado et al.,*® it was found that imatinib caused
enhanced BIM expression in K562 and BV173
human leukemia cells. They also showed that BIM
played a critical role in imatinib-induced apoptosis.
McGarvey et al.*® also found that BIM was able to
induce apoptosis in K562 cells.

In our study, we examined the association between
BIM and BID genes methylation and PRC4 protein
complex in imatinib-resistant K562/IMA-3 and
K562 CML cells, and examined whether EZH2 and
DNMTI1 were bound to the BIM and BID promoter
regions and the presence of H3K27me3 modification
in these promoters. It was previously demonstrated
that H3K27me3 modification caused an accumulation
of DNMT]1 enzyme in the promoter of genes.*' For
interrogation of our hypothesis, first we determined
the expression of the PRC4 genes in both imatinib-
resistant K562/IMA-3 and K562 cells with conven-
tional PCR. We also determined that EZH2, EED2,
SUZ12, and SIRT1 genes were lower expressed and
BIM and BID genes were higher expressed in K562/
IMA-3 cells as compared with K562 cells.

Results of CHIP experiments revealed that E2H2
and DNMTT1 enzymes were bounded to the promoter
of the BIM gene in both cell lines. H3K27me3 modifi-
cation in the promoter of the BIM and BID gene was
also detected in both cells while the promoter region of
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BIM and BID genes was detected as homozygously
unmethylated.

E2H2 and DNMT1 enzymes were found to be
bounded to the promoter of the BID gene in K562
cells while they were free in K562/IMA-3 cells.
H3K27me3 modification in the promoter of the BID
gene was determined in both cells. The results of
MS-PCR specific to the BID promoter region demon-
strated that it was homozygously unmethylated in both
cell lines, same as the BIM gene. All these results may
suggest the presence of H3K27me3 modification in the
promoter regions of BIM and BID genes is not suffi-
cient for methylation of these genes. Consistent with
our observations, it was previously shown that BIM
was not methylated in K562 cell; however, low levels
of expression of Bim protein was determined which
may indicate that there may be a different mechanism
regulating the expression of Bim protein.*?

EZH2 histone methyltransferase-regulated
H3K27me3 modification is a hallmark of inactive
histone. It was previously demonstrated that
H3K27me3 modification is a hallmark of binding of
DNMT]1 enzyme to the promoter region of the gene
in primary colon cancer cells and Caco-2 colon
cancer cells.*® Interestingly, McGarvey et al.*° deter-
mined that silencing of MLHI1, pl6, MYTI and
WNTI1 genes via DNA methylation do not need the
EZH2 enzyme. While an association between gene
silencing via PcG proteins and sensitivity to methyl-
ation was detected, PcG proteins were not sufficient
to explain all CpG methylations observed in cancer.
There may be some other factors, rather than the
PcG proteins, having roles in DNA methylation.**
Consistent with our resuts, it was previously shown
that the promoter regions of the silenced genes which
had H3K27me3 modification were unmethylated in
HL-60 and OCI-AML3 leukemia cells.®> All these
findings indicate that the presence of inactive histone
hallmarks like H3K27me3 may sensitize the genes to
DNA methylation but they do not always cause de
novo DNA methylation.*®

Our results suggest that the pro-apoptotic BIM and
BID genes are not methyllated imatinib-resistant
CML cells. These results may also support the
notion that DNA promoter methylation is formed
independently from EZH2-H3K27me3.
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