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In this paper, we consider a forced Burgers equation with time variable coefficients of the
form Ut þ ð _lðtÞ=lðtÞÞU þ UUx ¼ ð1=2lðtÞÞUxx �x2ðtÞx, and obtain an explicit solution of
the general initial value problem in terms of a corresponding second order linear ordinary
differential equation. Special exact solutions such as generalized shock and multi-shock
waves, triangular wave, N-wave and rational type solutions are found and discussed. Then,
we introduce forced Burgers equations with constant damping and an exponentially decay-
ing diffusion coefficient as exactly solvable models. Different type of exact solutions are
obtained for the critical, over and under damping cases, and their behavior is illustrated
explicitly. In particular, the existence of inelastic type of collisions is observed by con-
structing multi-shock wave solutions, and for the rational type solutions the motion of
the pole singularities is described.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The nonlinear diffusion equation, known as Burgers equation (BE) after the extensive work of Burgers [1,2] is an impor-
tant model which appears in various fields of physical science. In hydrodynamics, it is a standard model of turbulence used to
study propagation of nonlinear waves and shock formation [3]. It is used also to describe processes in gas dynamics [4,5],
nonlinear acoustics [6], heat conduction, and plasma physics. In cosmology, the Burgers equation is a good approximation
to understand the formation and distribution of matter at large scales [7].

The standard Burgers equation is of the form Vt þ VVx ¼ mVxx, where V mostly represents the velocity field, t is a time var-
iable, x 2 R is the space variable and m is a constant viscosity or diffusion coefficient. This equation is probably the simplest
nonlinear model admitting direct linearization, and thus being C-integrable in contrast to S-integrable systems which re-
quire spectral transform technics. Indeed, analytic solutions of the Burgers equation can be obtained by the Cole–Hopf trans-
formation, which transforms the nonlinear Burgers equation to a linear heat equation [4,5]. Lately, other methods like,
Hirota’s direct method and Bäcklund transformation [11], hyperbolic function method [8], and homogeneous balance meth-
od [9] were used to construct new exact solutions of the BE.

As known, the main features of the Burgers equation are due to the simultaneous existence of a nonlinear term and a lin-
ear diffusion term. If the diffusion is dominant over nonlinearity, the solution of the BE approaches the solution of the dif-
fusion equation. On the other hand, if the nonlinear term dominates over the diffusion, one may expect formation of shock
discontinuities. An interesting property of the BE appears when a balance occurs between the nonlinear effect and the effects
of dissipative nature. In that case, the system exhibits shock profile solitary wave solutions. Moreover, Burgers equation
posses also multi-shock solitary wave solutions [10,11] and shocks of different amplitude and speed can fuse (merge) to
a single shock, so that completely non-elastic interactions may occur. Another important property of the Burgers equation
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is related with the rational type solutions. Indeed, the zeros of the heat equation solution lead to pole singularities for the
Burgers solution. Choodnovsky brothers [12] and Calogero [13], showed that the motion of these poles corresponds formally
to the motion of one-dimensional particles interacting via simple two-body potentials, such that the corresponding many
body problems are integrable. For recent work on the pole dynamics of the standard Burgers equation one can see [14].

The standard BE as mentioned above is exactly solvable model, however the inhomogeneous and variable parametric Bur-
gers equations, in general, are not integrable and very few exactly solvable models are known. For example, in case
Ut þ UUx ¼ mUxx þ Fðx; tÞ, if the forcing term depends only on time, i.e., Fðx; tÞ ¼ GðtÞ, this equation can be transformed to
a standard Burgers equation, see [15]. The problem with an elastic forcing term Fðx; tÞ ¼ �k2xþ f ðtÞ is discussed and analytic
solutions are obtained in [16]. Later, the problem with Fðx; tÞ ¼ GðtÞx, where GðtÞ is arbitrary, was solved in [17]. In [18], an
invertible transformation between the inhomogeneous BE and the stationary Schrödinger equation was constructed so that
each solution of the stationary Schrödinger equation generated a fully time-dependent solution of the inhomogeneous BE.
Recently, exact solutions were obtained using the Cole–Hopf transformation and the Green’s function approach, see [19].
Transformation properties of a variable-coefficient Burgers equation were discussed in [20]. In [21], a forced Burgers model
with space- and time-dependent coefficients of the form Ut þ aðx; tÞUUx ¼ bðx; tÞUxx þ Fðx; tÞ, was investigated using a gen-
eralized Cole–Hopf transform and symbolic computation. For the significance of the generalized forced Burgers models
and possible applications in various fields one can see again the discussion in [21] and references given there.

In this work, we consider a forced Burgers equation (FBE) with time variable coefficients of the form
Ut þ
_lðtÞ
lðtÞU þ UUx ¼

1
2lðtÞUxx �x2ðtÞx; �1 < x <1 ð1Þ
where CðtÞ ¼ _lðtÞ=lðtÞ is the damping term, DðtÞ ¼ 1=2lðtÞ is the diffusion coefficient, and Fðx; tÞ ¼ �x2ðtÞx is the forcing
term which is linear in the space variable x. In fact, this equation for constant lðtÞ, or under change of variables
t0 ¼

R tds=lðsÞ;vðx; t0Þ ¼ lðtÞUðx; tÞ reduces to forced Burgers equation of type v t0 þ vvx ¼ ð1=2Þvxx þ Gðt0Þx, which was stud-
ied by Eule and Friedrich in [17]. However, although in [17] solution was given for an arbitrary function Gðt0Þ, only the cases
when Gðt0Þ is a constant and the case when it is a stochastic white noise force were discussed.

Motivated by this idea, here we introduce and give explicit exact solutions for forced Burgers equations with different
variable parameters. For this, in Section 2 first we establish the relation between the FBE (1) and the standard BE. As a result,
explicit solution for the IVP of the FBE (1) is found in terms of solutions to the heat equation and a second order linear ODE.
Then, some particular exact solutions such as shock and multi-shock type waves, triangular wave, N-wave and rational type
solutions are given. In Section 3, for comparative reasons, first we recall some solutions of the forced Burgers equation with
constant l and x2. Then, exactly solvable models (1) with positive constant damping and exponentially decaying diffusion
coefficient are considered and different type of exact solutions mentioned in Section 2 are obtained for the critical, under and
over damping cases. We observe generalized traveling wave solutions which speed, steepness, and shock amplitude are
functions of time. Special properties like interaction of shocks in multi-shock wave solutions, and motion of pole singularities
of rational type solutions are described explicitly and illustrated constructively. Section 4 includes brief summary, future
plans and potential fields of applications.

2. Forced Burgers equation with time dependent coefficients

In this section, we obtain relation between solution of the FBE with variable coefficients and the standard Burgers equa-
tion. Then, using Cole–Hopf transform we find an analytic solution of the IVP for the FBE (1) in terms of solution to a cor-
responding second order linear ODE.

Proposition 2.1. If rðtÞ is solution of the IVP for the linear ODE
€r þ
_lðtÞ
lðtÞ

_r þx2ðtÞr ¼ 0; rðt0Þ ¼ r0 – 0; _rðt0Þ ¼ 0; ð2Þ
then the IVP for the FBE with variable coefficients
Ut þ _lðtÞ
lðtÞU þ UUx ¼ 1

2lðtÞUxx �x2ðtÞx;
Uðx; tÞjt¼t0

¼ Uðx; t0Þ; �1 < x <1

(
ð3Þ
has solution in the following forms:
ðaÞ Uðx; tÞ ¼
_rðtÞ
rðtÞ xþ

rðt0Þ
lðtÞrðtÞV gðx; tÞ; sðtÞð Þ; ð4Þ
where
gðx; tÞ ¼ rðt0Þ
rðtÞ x; sðtÞ ¼ r2ðt0Þ

Z t dn
lðnÞr2ðnÞ ; sðt0Þ ¼ 0; ð5Þ
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and the function Vðg; sÞ satisfies the IVP for the standard BE
Vs þ VVg ¼ 1
2 Vgg;

Vðg;0Þ ¼ lðt0ÞUðg; t0Þ:

(
ð6Þ

ðbÞ Uðx; tÞ ¼
_rðtÞ
rðtÞ x�

rðt0Þ
lðtÞrðtÞ

ugðgðx; tÞ; sðtÞÞ
uðgðx; tÞ; sðtÞÞ ; ð7Þ
where g; s are as defined in part (a), and uðg; sÞ satisfies the IVP for the heat equation
us ¼ 1
2 ugg;

uðg;0Þ ¼ exp �
R glðt0ÞUðn; t0Þdn

� �
:

(
ð8Þ
Proof. (a) Using substitution Uðx; tÞ ¼ ½lðtÞ��1½qðtÞxþ sðtÞVðsðtÞx; sðtÞÞ�, one can show that, if the auxiliary functions satisfy
the nonlinear system of ordinary differential equations
_qþ q2

lðtÞ þ lðtÞx2ðtÞ ¼ 0; qðt0Þ ¼ 0; ð9Þ

_s� s2

lðtÞ ¼ 0; sðt0Þ ¼ 0;

_sþ qðtÞ
lðtÞ s ¼ 0; sðt0Þ ¼ 1;
then the IVP (3) for the FBE transforms to the IVP (6) for the standard BE. Also, noticing that Eq. (9) is a nonlinear Riccati
equation, the system is easily solved, and we obtain the functions
qðtÞ ¼ lðtÞ
_rðtÞ
rðtÞ ; sðtÞ ¼ r2ðt0Þ

Z t dn
lðnÞr2ðnÞ ; sðt0Þ ¼ 0; sðtÞ ¼ rðt0Þ

rðtÞ ; ð10Þ
which substituted back give the result (4). Thus, solution of the FBE (3) is explicitly obtained in terms of solution Vðg; sÞ to
the BE (6) and solution rðtÞ of the IVP for the linear ODE (2). Part (b) of the proposition, follows directly from the Cole–Hopf
transformation V ¼ �ug=u, which reduces the IVP (6) for the BE to the IVP (8) for the usual heat equation. h

The solution of the IVP (8) for the heat equation
uðg; sÞ ¼ 1ffiffiffiffiffiffiffiffiffi
2ps
p

Z 1

�1
exp �ðg� nÞ2

2s

" #
uðn;0Þdn;
and Cole–Hopf transformation V ¼ �ug=u, leads to solution of the IVP (6) for the BE
Vðg; sÞ ¼

R1
�1

g�n
s

� �
exp � ðg�nÞ2

2s þ
R nVðn0;0Þdn0

� �h i
dnR1

�1 exp � ðg�nÞ2
2s þ

R nVðn0;0Þdn0
� �h i

dn
:

Therefore, using the above proposition, one can find formal solution of the IVP (3) for the FBE in terms of solution rðtÞ of the
linear ODE (2), that is
Uðx; tÞ ¼
_rðtÞ
rðtÞ xþ

rðt0Þ
lðtÞrðtÞ

	 
 R1�1 rðt0 Þ
rðtÞ x�n

sðtÞ

� �
exp � ðrðt0Þ

rðtÞ x�nÞ2

2sðtÞ þ
R nlðt0ÞUðn0; t0Þdn0

� �	 

dn

R1
�1 exp � ðrðt0 Þ

rðtÞ x�nÞ2

2sðtÞ þ
R nlðt0ÞUðn0; t0Þdn0

� �	 

dn

; ð11Þ
where sðtÞ is as defined in (5), and the time interval on which the solution exists depends on the properties of the auxiliary
functions. Since it is difficult to analyze solution (11) for an arbitrary initial condition, in what follows, we consider particular
problems for which the FBE (3) subject to some localized initial profiles has exact solutions and one can observe explicitly
their behavior. As known, the standard BE (6) has different type of solutions, such as shock solitary waves, similarity, N-wave
and rational function solutions. This suggests us to look for corresponding type of solutions for the FBE with variable coef-
ficients, as follows.

(a) Shock wave solutions. The standard BE (6) has shock solitary wave solution
Vðg; sÞ ¼ c � A tanh A g� csþ c0ð Þ½ �; ð12Þ
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where A; c; c0 are arbitrary real constants. Then, the FBE (3) with initial condition
Uðx; t0Þ ¼
1

lðt0Þ
c � A tanh Axþ c0½ �ð Þ
has generalized shock wave solution
Uðx; tÞ ¼
_rðtÞ
rðtÞ xþ

rðt0Þ
lðtÞrðtÞ c � A tanh A

rðt0Þ
rðtÞ x� csðtÞ þ c0

� �	 
� �
; ð13Þ
where rðtÞ is a solution of the IVP (2) and sðtÞ is given in (5). In particular, when in (13) one has c ¼ c0 ¼ 0, the FBE (3) has
shock type static solution of the form
Uðx; tÞ ¼
_rðtÞ
rðtÞ x�

Arðt0Þ
lðtÞrðtÞ tanh

Arðt0Þ
rðtÞ x

	 

; ð14Þ
corresponding to the initial condition Uðx; t0Þ ¼ �ðA=lðt0ÞÞ tanh½Ax�; �1 < x <1.
Solution (12) of the standard BE (6) is a localized wave of constant amplitude moving with constant speed. However, the
solution (13) of the FBE with variable coefficients is a generalized traveling wave of the form Uðx; tÞ ¼ ~uðx; tÞþ
AðtÞ tanh½BðtÞðx� CðtÞÞ�, where the term ~uðx; tÞ contributes to the wave amplitude, AðtÞ is the shock amplitude, BðtÞ is related
with the steepness of the shock profile, x ¼ CðtÞ describes the motion of the ‘‘center’’ of the profile, and v ¼ _CðtÞ is its velocity.
Accordingly, for the wave solution (13), one can see that the shock amplitude is proportional to 1=lðtÞrðtÞ, and steepness of
the profile is proportional to 1=rðtÞ. Also, the position of the ‘‘center’’ of the wave profile is described by
xðtÞ ¼ ½rðtÞ=rðt0Þ�ðcsðtÞ � c0Þ, where its velocity can be easily found using that vðtÞ ¼ _xðtÞ.
Multi-shock wave solutions. Since the standard BE has multi-shock solitary wave solutions [10,11], it is natural to ask for mul-
ti-shock type solutions for the FBE with variable coefficients. Here, we outline the procedure, and give formal results. Clearly,
the heat Eq. (8), has simple solutions of the form
uiðg; sÞ ¼ exp piðg; sÞ½ �; piðg; sÞ ¼ �aigþ
a2

i

2
sþ p0

i ; ai; p0
i 2 R;
and their linear superposition
uðg; sÞ ¼ exp½p1ðg; sÞ� þ exp½p2ðg; sÞ� þ � � � þ exp½pkðg; sÞ�; i ¼ 1;2; . . . ; k;
is also a solution. By the Cole–Hopf transform V ¼ �ug=u, it follows that the BE (6), has corresponding solutions of the form
Vðg; sÞ ¼ a1 exp½p1ðg; sÞ� þ a2 exp½p2ðg; sÞ� þ � � � þ ak exp½pkðg; sÞ�
exp½p1ðg; sÞ� þ exp½p2ðg; sÞ� þ � � � þ exp½pkðg; sÞ�

:

Therefore, using Proposition 2.1, one obtains that the FBE (3), has generalized multi-shock wave solutions given by
Uðx; tÞ ¼
_rðtÞ
rðtÞ xþ

rðt0Þ
lðtÞrðtÞ

a1 exp½p1ðx; tÞ� þ a2 exp½p2ðx; tÞ� þ � � � þ ak exp½pkðx; tÞ�
exp½p1ðx; tÞ� þ exp½p2ðx; tÞ� þ � � � þ exp½pkðx; tÞ�

	 

;

where
piðx; tÞ ¼ �ai
rðt0Þ
rðtÞ xþ a2

i

2
sðtÞ þ p0

i ; i ¼ 1;2; . . . ; k;
rðtÞ is solution of (2), and sðtÞ is given in (5). For k ¼ 2 and proper choice of constants, one obtains one-shock wave. When
k > 2 one expects formation of multi-shock wave solutions. Indeed, this is the case, and illustrative examples are given in
Section 3.

(b) Triangular wave solution. The BE (6) has triangular wave (similarity) solution,
Vðg; sÞ ¼ 1ffiffiffiffiffiffiffiffiffi
2ps
p ðeA � 1Þ exp½�g2=2s�

1þ 1
2 ðeA � 1Þerfc½g=

ffiffiffiffiffiffi
2s
p
�

 !
; ð15Þ
corresponding to initial condition Vðg;0Þ ¼ AdðgÞ, see [10], where A is a constant, dðgÞ is the Dirac-delta distribution, and
erfc½a� ¼ ð2=

ffiffiffiffi
p
p
Þ
R1

a exp½�n2�dn. Then, the FBE (3) has generalized triangular wave solution of the form
Uðx; tÞ ¼
_rðtÞ
rðtÞ xþ

rðt0Þ
lðtÞrðtÞ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2psðtÞ

p ðeA � 1Þ exp � rðt0Þ
rðtÞ x
� �2


2sðtÞ

	 


1þ 1
2 ðeA � 1Þerfc rðt0Þ

rðtÞ x
. ffiffiffiffiffiffiffiffiffiffiffi

2sðtÞ
ph i

0
BB@

1
CCA; sðtÞ > 0: ð16Þ

(c) N-wave solution. The heat Eq. (8) has solution

uðg; sÞ ¼ 1þ
ffiffiffi
a
s

r
exp½�g2=2s�; s > 0;
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which behaves like delta distribution as s! 0 (a-positive constant). The corresponding N-wave solution of BE (6), see [10], is
Vðg; sÞ ¼ g
s

� � ffiffiffiffiffiffiffiffi
a=s

p
exp½�g2=2s�

1þ
ffiffiffiffiffiffiffiffi
a=s

p
exp½�g2=2s�

; s > 0;
Therefore, generalized N-wave solution of the FBE (3) is of the form
Uðx; tÞ ¼
_rðtÞ
rðtÞ xþ

r2ðt0Þx
lðtÞsðtÞr2ðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a=sðtÞ

p
exp � rðt0Þ

rðtÞ x
� �2

=2sðtÞ
	 


1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a=sðtÞ

p
exp � rðt0Þ

rðtÞ x
� �2

=2sðtÞ
	 


0
BB@

1
CCA; sðtÞ > 0: ð17Þ
Since the behavior of this solution at sðt0Þ ¼ 0 is rather complicated, as an initial profile one can consider a profile at any time
t > t0.

(d) Rational function solutions. Formal solution of the IVP for the heat Eq. (8) can be found also by applying the evolution
operator to the initial condition, that is
uðg; sÞ ¼ exp½ðs=2Þ@2
g�uðg; 0Þ ¼

X1
k¼0

1
k!

s
2

� �k
@2k

g uðg;0Þ:
If the initial condition is umðg;0Þ ¼ gm, then the solution of the heat problem (8) is
umðg; sÞ ¼ exp½ðs=2Þ@2
g�gm ¼ Hmðg; s=2Þ; m ¼ 0;1;2; . . . ;
where Hmðg; s=2Þ are Kampè de Feriet polynomials, defined by
Hmðg; s=2Þ ¼ m!
X½m=2�

k¼0

ðs=2Þk

k!ðm� 2kÞ! g
m�2k; Hmðg;0Þ ¼ gm;
with ½m=2� ¼ m=2 for even m, and ½m=2� ¼ ðm� 1Þ=2 for odd m, see [24]. Using also the relation
@gHmðg; s=2Þ ¼ mHm�1ðg; s=2Þ, it follows that, the BE (6) has rational solutions of the form
Vmðg; sÞ ¼ �
@

@g
lnumðg; sÞ½ � ¼ �mHm�1ðg; s=2Þ

Hmðg; s=2Þ ; m ¼ 1;2;3; . . . ; ð18Þ
or more generally
Vkðg; sÞ ¼ �
@

@g
ln
Xk

m¼0

amumðg; sÞ
 !

¼ �
Pk

m¼1mamHm�1ðg; s=2ÞPk
m¼0amHmðg; s=2Þ

; k ¼ 1;2;3; . . . ; ð19Þ
where am are arbitrary real constants. Therefore, we obtain that the variable coefficient FBE (3) with initial conditions
Umðx; t0Þ ¼ �ðm=lðt0ÞxÞ; m ¼ 1;2;3; . . ., has rational solutions
Umðx; tÞ ¼
_rðtÞ
rðtÞ x�

m
lðtÞ

rðt0Þ
rðtÞ

� � Hm�1
rðt0Þ
rðtÞ x; 1

2 sðtÞ
� �

Hm
rðt0Þ
rðtÞ x; 1

2 sðtÞ
� �

0
@

1
A; ð20Þ
and with more general initial conditions
Ukðx; t0Þ ¼ �
1

lðt0Þ

Pk
m¼1mamxm�1Pk

m¼0amxm

 !
; k ¼ 1;2;3; . . .
it has rational solutions of the form
Ukðx; tÞ ¼
_rðtÞ
rðtÞ x�

1
lðtÞ

rðt0Þ
rðtÞ

� � Pk
m¼1mamHm�1

rðt0Þ
rðtÞ x; 1

2 sðtÞ
� �

Pk
m¼0amHm

rðt0Þ
rðtÞ x; 1

2 sðtÞ
� �

0
@

1
A: ð21Þ
Solutions (20) and (21) can be written also in terms of standard Hermite polynomials HmðyÞ using that
Hmðg; s=2Þ ¼ ð
ffiffiffiffiffiffiffiffi
s=2

p
Þm

im Hm
ig

2
ffiffiffiffiffiffiffiffi
s=2

p
 !

; Hmðg;0Þ ¼ gm; m ¼ 0;1;2; . . . ; ð22Þ
where HmðyÞ, are defined by exp½2yn� n2� ¼
P1

m¼0ðn
m=m!ÞHmðyÞ. Thus, the points where Kampè de Feriet polynomials vanish

can be found in terms of the well known zeros of the Hermite polynomials. For this, we denote by yðlÞm ; l ¼ 1;2; . . . ;m, the
zeros of the Hermite polynomial HmðyÞ, so that for each fixed m, one has HmðyðlÞm Þ ¼ 0 for all l ¼ 1;2; . . . ;m. From relation
(22) it follows that
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Hmðg; s=2Þ ¼ 0 () g ¼ �i2yðlÞm

ffiffiffiffiffiffiffiffi
s=2

p
; l ¼ 1;2; . . . ;m: ð23Þ
Thus, Umðx; tÞ given by (20) has singularities at points where Hm ðrðt0Þ=rðtÞÞx; sðtÞ=2ð Þ ¼ 0, and according to (23), the motion of
these pole singularities is described by
xðlÞm ðtÞ ¼ �i2yðlÞm
rðtÞ
rðt0Þ

ffiffiffiffiffiffiffiffiffi
sðtÞ

2

r
; l ¼ 1;2; . . . ;m: ð24Þ
We note that, for a real-valued solution rðtÞ and sðtÞ > 0; t 2 I, the solution Umðx; tÞ does not have moving singularities on
the real line. It may have real singularity only at x ¼ 0. On the other hand, for some special choice of the coefficients am, the
solutions Ukðx; tÞ of the form (21) may have singularities moving on the real line. Illustrative examples are given in next
section.

3. Exactly solvable Burgers models

3.1. Forced Burgers equations with constant coefficients

Burgers equation with constant coefficients and a forcing term linear in the space variable x
Ut þ UUx ¼
1
2

Uxx �x2
0x; ð25Þ
is a known integrable model and one can see for example [17,23]. For this model, according to Proposition 2.1 one has
lðtÞ ¼ 1; c ¼ 0, and x2ðtÞ ¼ x2

0 – real constant, so that the corresponding IVP for the second order linear ODE is
€rðtÞ þx2
0rðtÞ ¼ 0; rð0Þ ¼ r0 – 0; _rð0Þ ¼ 0: ð26Þ
When, x2
0 ¼ 0, one has rðtÞ ¼ r0;g ¼ x; s ¼ t, and formula (4) gives Uðx; tÞ ¼ Vðx; tÞ, which is a solution of the standard Bur-

gers equation, as expected. Using the approach in previous section, we will recall some particular solutions for the cases
when x2

0 > 0 and x2
0 < 0.

3.1.1. Case x2
0 > 0

In that case the IVP (26) has oscillating solution rðtÞ ¼ r0 cosðx0tÞ and the auxiliary function is sðtÞ ¼ tanðx0tÞ=x0. From
Proposition 2.1, it follows that the forced BE (25) has solutions
Uðx; tÞ ¼ �x0 tanðx0tÞxþ secðx0tÞVðsecðx0tÞx; tanðx0tÞ=x0Þ; ð27Þ
where Vðg; sÞ is a solution of the standard Burgers equation. In what follows, using the discussion in previous section, we will
write explicitly some special solutions of BE (25), and note that, in the limit case x0 ! 0, these solutions Uðx; tÞ approach the
solutions Vðx; tÞ of the standard BE.

(a) Forced Burgers Eq. (25) with initial condition Uðx;0Þ ¼ �A tanhðAxÞ; �1 < x <1, has shock type static wave solution
Uðx; tÞ ¼ �x0 tanðx0tÞx� A secðx0tÞ tanh A secðx0tÞxð Þ; ð28Þ
and with initial condition Uðx; 0Þ ¼ c � A tanh½Axþ c0�;1 < x <1, it has shock wave solution of the form
Uðx; tÞ ¼ �x0 tanðx0tÞxþ secðx0tÞ c � A tanh A secðx0tÞx� c
x0

tanðx0tÞ
� �

þ c0

	 
� �
: ð29Þ
In Fig. 1a, we plot solution (28), and in Fig. 1b the solution (29). Note that, due to the trigonometric functions in Uðx; tÞ, finite
time singularities appear periodically, and they can be interpreted as formation of shock discontinuities.

(b) Forced BE (25) has triangular wave solution
U ¼ �x0 tanðx0tÞxþ secðx0tÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x0

2p tanðx0tÞ

r ðeA � 1Þ exp � ðsecðx0tÞxÞ2
2 tanðx0tÞ=x0

h i
1þ 1

2 ðeA � 1Þerfc secðx0tÞxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 tanðx0tÞ=x0

p
	 


0
BB@

1
CCA;
for t 2 ð0;p=2x0Þ. In general, triangular wave exists on time interval where sðtÞ ¼ tanðx0tÞ=x0 > 0.
(c) N-wave solution can also be considered for BE (25) using formula (17) on time interval where sðtÞ > 0.
(d) Forced BE (25) subject to initial conditions Umðx;0Þ ¼ �m=x; m ¼ 1;2;3; . . ., has rational function solutions of the form
Umðx; tÞ ¼ �x0 tanðx0tÞx� secðx0tÞ mHm�1 secðx0tÞx; tanðx0tÞ=2x0ð Þ
Hm secðx0tÞx; tanðx0tÞ=2x0ð Þ

	 

;

with moving pole singularities xðlÞm ðtÞ ¼ �iyl
m cosðx0tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 tanðx0tÞ=x0

p
; l ¼ 1;2; . . . ;m.
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Fig. 1. (a) Shock type static wave solution Uðx; tÞ given by (28), A ¼ 30; x0 ¼ 1. (b) Shock wave solution Uðx; tÞ given by (29), A ¼ 30; x0 ¼ 1; c ¼ �1; c0 ¼ 0.
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3.1.2. Case x2
0 < 0

When x2
0 ¼ � ~x2; ~x > 0, the BE (25) becomes
0

5

10

U

Fig. 2.
a3 ¼ 10
Ut þ UUx ¼
1
2

Uxx þ ~x2x; ð30Þ
and the corresponding ODE (26) has solution rðtÞ ¼ r0 coshð ~xtÞ, where the auxiliary function is sðtÞ ¼ tanhð ~xtÞ= ~x. Therefore,
solutions of BE (30) are of the form
Uðx; tÞ ¼ ~x tanhð ~xtÞxþ 1
coshð ~xtÞV

x
coshð ~xtÞ ;

tanhð ~xtÞ
~x

� �
; ð31Þ
where Vðg; sÞ is a solution of the standard BE. As in the previous case, we see that in the limit ~x! 0, the following particular
exact solutions Uðx; tÞ approach the corresponding solution Vðx; tÞ of the standard BE.

(a) The forced BE (30) with initial condition Uðx;0Þ ¼ c � A tanh½Ax�; �1 < x <1 has one-shock wave solution
Uðx; tÞ ¼ ~x tanhð ~xtÞxþ 1
coshð ~xtÞ c � A tanh

A
coshð ~xtÞ x� c

sinhð ~xtÞ
~x

� �	 
� �
; ð32Þ
which amplitude depends on time, the center of the wave profile moves according to xðtÞ ¼ c sinhð ~xtÞ= ~x, and its velocity is
vðtÞ ¼ c coshð ~xtÞ. In Fig. 2a, we plot one-shock wave and observe that the shock center moves with increasing velocity
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(a) One-shock wave solution Uðx; tÞ given by (32), A ¼ 15; c ¼ 1; ~x ¼ 1. (b) Two-shock wave solution Uðx; tÞ given by (33), a1 ¼ 1; a2 ¼ 6;
; p0

1 ¼ 0; p0
2 ¼ 5; p0

3 ¼ �5; ~x ¼ 1.
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vðtÞ ¼ coshðtÞ; t > 0, and its amplitude decays with time. Also, one can see that the initial profile is localized in the sense that
Uðx;0Þ approaches constant as x! �1, while Uðx; tÞ ! ~xx when t !1.
In general, BE (30) has multi-shock type solutions of the form
2

4
U

Fig. 3.
0:1 < t
Uðx; tÞ ¼ ~x tanhð ~xtÞxþ 1
coshð ~xtÞ

a1 exp½p1ðx; tÞ� þ a2 exp½p2ðx; tÞ� þ � � � þ ak exp½pkðx; tÞ�
exp½p1ðx; tÞ� þ exp½p2ðx; tÞ� þ � � � þ exp½pkðx; tÞ�

	 

; ð33Þ
where
piðx; tÞ ¼ �
ai

coshð ~xtÞ xþ
a2

i

2 ~x
tanhð ~xtÞ þ p0

i ; i ¼ 1;2; . . . :
In Fig. 2b, we illustrate the fusion of two-shock type solution.
(b) Triangular wave solution of BE (30) is
Uðx; tÞ ¼ ~x tanhð ~xtÞxþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x

p sinhð2 ~xtÞ

s
ðeA � 1Þ exp � ~x

sinhð2 ~xtÞ x
2

h i
1þ 1

2 ðeA � 1Þerfc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~x
sinhð2 ~xtÞ

q
x

h i
0
B@

1
CA;
which corresponds to Dirac-delta initial distribution, see Fig. 3a.
(c) N-wave solution of BE (30) is of the form
Uðx; tÞ ¼ ~x tanhð ~xtÞxþ 2 ~xx
sinhð2 ~xtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a ~x

tanhð ~xtÞ

q
exp � ~x

sinhð2 ~xtÞ x
2

h i
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a ~x

tanhð ~xtÞ

q
exp � ~x

sinhð2 ~xtÞ x
2

h i
2
64

3
75; ð34Þ
and one can see Fig. 3b.
(d) Rational function solutions of BE (30) subject to initial conditions Umðx;0Þ ¼ �m=x; m ¼ 1;2;3; . . ., are of the form
Umðx; tÞ ¼ ~x tanhð ~xtÞxþ 1
coshð ~xtÞ

mHm�1 x= coshð ~xtÞ; tanhð ~xtÞ=2 ~xð Þ
Hm x= coshð ~xtÞ; tanhð ~xtÞ=2 ~xð Þ

� �
: ð35Þ
For each fixed m, the rational solution (35) has pole singularities whose motion in the complex plane is described by
xðlÞm ðtÞ ¼ �iyðlÞm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhð2 ~xtÞ

~x

r
; t > 0; l ¼ 1;2; . . . ;m;
and as ~x! 0 they approach the well known poles xðlÞm ðtÞ ¼ �iyðlÞm

ffiffiffiffiffi
2t
p

of the standard BE.
Finally, we note that for the above particular solutions, one has limt!1Uðx; tÞ ¼ ~xx. Similar result was obtained in [22],
where the long-time asymptotics for solutions of the BE (30) were discussed according to the properties of the initial profile.
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(a) Triangular wave solution Uðx; tÞ on time interval 0:1 < t < 1, with A ¼ 50; ~x ¼ 1. (b) N-wave solution (34) on time interval
< 0:8; a ¼ 15; ~x ¼ 1.
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3.2. Forced Burgers equations with constant damping and exponentially decaying diffusion coefficient

In this part, we consider exactly solvable forced Burgers equations
U

Fig. 4.
t ¼ 0; t
Ut þ cU þ UUx ¼
1
2

e�ctUxx �x2
0x; �1 < x <1; t > 0; ð36Þ
with constant damping CðtÞ ¼ c > 0, exponentially decaying diffusion coefficient DðtÞ ¼ e�ct=2;x2ðtÞ ¼ x2
0 > 0 and

lðtÞ ¼ ect . The corresponding IVP for the linear ODE is then
€r þ c_r þx2
0r ¼ 0; rð0Þ ¼ r0 – 0; _rð0Þ ¼ 0; ð37Þ
and it has three different type of solutions depending on the sign of x2
0 � ðc2=4Þ. In what follows, for each case we discuss

separately the related variable coefficient Burgers equations (36).

3.2.1. Critical damping case
If x2

0 � ðc2=4Þ ¼ 0, the IVP (37) for the linear ODE, has solution
r1ðtÞ ¼ r1ð0Þe�
ct
2 1þ c

2
t

� �
; ð38Þ
and the auxiliary function is s1ðtÞ ¼ t=ð1þ ct=2Þ. Therefore, the BE (36) has solutions of the form
Uðx; tÞ ¼ � c
2

� �2 t
1þ c

2 t
x

 !
þ e�ct=2

1þ c
2 t

 !
V

ect=2x
1þ c

2 t
;

t
1þ c

2 t

 !
; ð39Þ
where Vðg; sÞ satisfies the standard BE.
Clearly, when x0 ! 0, one has also c! 0, and in that case we can see that the following particular solutions Uðx; tÞ ap-

proach solutions Vðx; tÞ of the standard BE.

(a) BE (36) with initial condition Uðx;0Þ ¼ c � A tanh Ax½ � has shock wave solution
Uðx; tÞ ¼ � c
2

� �2 t
1þ c

2 t

 !
xþ e�ct=2

1þ c
2 t

 !
c � A tanh A

ect=2

1þ c
2 t
ðx� cte�ct=2Þ

 !" # !
; ð40Þ
which shock amplitude decays with time eventually going to zero, and its ‘‘center’’ moves with velocity
vðtÞ ¼ cð1� ct=2Þe�ct=2, see Fig. 4. Multi-shock wave solutions of the BE (36), can be found from the general solution
Uðx; tÞ ¼ � c
2

� �2 t
1þ c

2 t

 !
xþ e�ct=2

1þ c
2 t

 !
a1 exp½p1ðx; tÞ� þ � � � þ ak exp½pkðx; tÞ�

exp½p1ðx; tÞ� þ � � � þ exp½pkðx; tÞ�

	 

; ð41Þ
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Critical damping case. (a) One-shock wave solution Uðx; tÞ given by (40), c ¼ 2; A ¼ 4; c ¼ 5; c0 ¼ 0. (b) The profiles of Uðx; tÞ at times
¼ 0:2; t ¼ 0:4.
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where
piðx; tÞ ¼ �ai
ect=2

1þ c
2 t

 !
xþ a2

i

2
t

1þ c
2 t

 !
þ p0

i ; i ¼ 1;2; . . . ; k;
and ai; p0
i are real constants. In Fig. 5 we plot two-shock wave solution Uðx; tÞ, with special choices in (41),

k ¼ 3; c ¼ 2; a1 ¼ 1; p0
1 ¼ 0; a2 ¼ 7; p0

2 ¼ 5; a3 ¼ 15; p0
3 ¼ �4. We observe fusion of the two-shock wave, which shock contribu-

tion eventually goes to zero.
(b) Using again the results in Section 2, one obtains that the BE (36) has generalized triangular wave solution
Uðx; tÞ ¼ � c
2

� �2 t
ð1þ c

2 tÞ

 !
x� e�

c
2t

ð1þ c
2 tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ct=2Þ

2pt

r
ðeA � 1Þ exp �ectx2=2tð1þ ct=2Þ

� �
1þ 1

2 ðeA � 1Þerfc ect=2x=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2tð1þ ct=2Þ

p� �
 !

;

corresponding to Dirac-delta initial profile, see Fig. 6.
(c) BE (36) for the critical damping case has N-wave solution of the form (17) with rðtÞ ¼ r1ðtÞ and sðtÞ ¼ s1ðtÞ. Explicit
form of this generalized N-wave solution is
Uðx; tÞ ¼ � c
2

� �2 t
ð1þ c

2 tÞ

 !
xþ x

tð1þ c
2 tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1þct=2Þ

t

q
exp �ectx2=2tð1þ ct=2Þ

� �
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1þct=2Þ

t

q
exp �ectx2=2tð1þ ct=2Þ½ �

0
B@

1
CA;
and one can see Fig. 7.
(d) Rational solutions of the BE (36) with initial conditions Umðx;0Þ ¼ �mð1=xÞ; m ¼ 1;2; . . . are of the form
Umðx; tÞ ¼ �
c
2

� �2 t
ð1þ c

2 tÞ

 !
x� e�ct=2

ð1þ c
2 tÞ

mHm�1
ect=2

1þc
2t

x; t
2ð1þc

2tÞ

� �
Hm

ect=2

1þc
2t

x; t
2ð1þc

2tÞ

� �
0
B@

1
CA; ð42Þ
and their behavior for m ¼ 1 and m ¼ 2 is illustrated in Fig. 8. According to (24), for each m, the motion of the pole singu-
larities is described by
xðlÞm ðtÞ ¼ �i
ffiffiffi
2
p

yðlÞm e�ct=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð1þ ct=2Þ

p
; l ¼ 1;2; . . . : ð43Þ
Since c > 0 and t > 0, clearly Umðx; tÞ has no moving singularities on the real line. On the other hand, forced BE (36) with
more general initial conditions
Ukðx;0Þ ¼ �
Xk

m¼1

mamxm�1

 !,Xk

m¼0

amxm; k ¼ 1;2; . . . ;
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Fig. 5. Critical damping case. (a) Fusion of the two-shock wave Uðx; tÞ. (b) Profiles of Uðx; tÞ at times t ¼ 0; t ¼ 0:2, and t ¼ 0:6.
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has the following rational solutions
Ukðx; tÞ ¼ �ð
c
2
Þ2 t
ð1þ c

2 tÞ

 !
x� e�ct=2

ð1þ c
2 tÞ

Pk
m¼1mamHm�1

ect=2

1þc
2t

x; t
2ð1þc

2tÞ

� �
Pk

m¼0amHm
ect=2

1þc
2t

x; t
2ð1þc

2tÞ

� �
0
B@

1
CA: ð44Þ
As an example, in Fig. 9 we consider solution U2ðx; tÞ, which has one fixed singularity x ¼ 0 and one moving singularity on the
real line approaching x ¼ 0 as t !1.

At the end of this section, we note that for the above particular solutions one has limt!1Uðx; tÞ ¼ �ðc=2Þx, so that in the
long-time limit the system becomes stable with velocity proportional to the displacement. Here, the limit function�ðc=2Þx is
also a stationary solution for the BE (36).
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3.2.2. Under damping case
If x2

0 � ðc2=4Þ > 0, then the ODE (37) has oscillating solution
r2ðtÞ ¼ r2ð0Þ
x0

X
e�

ct
2 cos½Xt � a�; ð45Þ
where X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 � ðc2=4Þ
q

> 0; a ¼ tan�1ð c
2XÞ, and the auxiliary function is
s2ðtÞ ¼
X
x2

0

tan½Xt � a� þ c
2X

� �
: ð46Þ
Then, BE (36) has solutions of the form
Uðx; tÞ ¼ � c
2
þX tan½Xt � a�

� �
xþ X

x0

e�ct=2

cos½Xt � a�V
X
x0

ect=2x
cos½Xt � a� ;

X
x2

0

tan½Xt � a� þ c
2X

� �� �
; ð47Þ
where Vðg; sÞ satisfies the standard BE.
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When c! 0, one has X! x0 > 0 and a! 0. In that case, it is not difficult to see that the bellow given solutions of the
forced BE (36) with variable coefficients approach the corresponding solutions of the forced BE (25) with constant
coefficients.

(a) BE (36) has shock type static solution
5

0

50

U

Fig. 10
x0 ¼ 1;
Uðx; tÞ ¼ � c
2
þ jXj tan½Xt � a�

� �
x� AX

x0

e�ct=2

cos½Xt � a� tanh
AX
x0

ect=2x
cos½Xt � a�

	 

; ð48Þ
which behavior is illustrated in Fig. 10a, and it has shock wave solution in the form
Uðx; tÞ ¼ � c
2
þX tan½Xt � a�

� �
xþ X

x0

� e�ct=2

cos½Xt � a� c � A tanh A
X
x0

ect=2x
cos½Xt � a� � c

X
x2

0

tan½Xt � a� þ c
2X

� �� �	 
� �
; ð49Þ
which for some particular parameters is plotted in Fig. 10b. Note that the solution wave (49) is broken by shock discontinu-
ities which appear periodically at finite times.
Multi-shock wave solutions are found as
Uðx; tÞ ¼
_r2ðtÞ
r2ðtÞ

xþ e�ct r2ðt0Þ
r2ðtÞ

a1 exp½p1ðx; tÞ� þ a2 exp½p2ðx; tÞ� þ � � � þ ak exp½pkðx; tÞ�
exp½p1ðx; tÞ� þ exp½p2ðx; tÞ� þ � � � þ exp½pkðx; tÞ�

	 

;

where
piðx; tÞ ¼ �ai
r2ðt0Þ
r2ðtÞ

xþ a2
i

2
s2ðtÞ þ p0

i ; i ¼ 1;2; . . . ; k;
r2ðtÞ is given by (45), and s2ðtÞ is given by (46).
(b) BE (36) has generalized triangular wave solution of the form (16) with rðtÞ ¼ r2ðtÞ and sðtÞ ¼ s2ðtÞ on a time interval
where s2ðtÞ > 0.
(c) Generalized N-wave solution of BE (36) for the under damping case can be found using formula (17) on a time interval
where s2ðtÞ > 0.
(d) BE (36) with initial conditions
Ukðx;0Þ ¼ �
Xk

m¼1

mamxm�1

 !,Xk

m¼0

amxm; k ¼ 1;2; . . . ;
has rational function solutions
Ukðx; tÞ ¼
_r2ðtÞ
r2ðtÞ

x� e�ct r2ð0Þ
r2ðtÞ

� � Pk
m¼1mamHm�1

r2ð0Þ
r2ðtÞ

x; 1
2 s2ðtÞ

� �
Pk

m¼0amHm
r2ð0Þ
r2ðtÞ

x; 1
2 s2ðtÞ

� �
0
@

1
A: ð50Þ
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. Under damping case. (a) Shock type static solution Uðx; tÞ given by (48), x0 ¼ 1; c ¼ 1; A ¼ 30. (b) Shock wave solution Uðx; tÞ given by (49),
c ¼ 1; A ¼ 30; c ¼ 0:6.
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Fig. 11. Under damping case. (a) Rational solution U1ðx; tÞ, x0 ¼ 1; c ¼ 1; a0 ¼ 1:5; a1 ¼ 1. (b) Rational solution U2ðx; tÞ, x0 ¼ 1; c ¼ 1;
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In Fig. 11, we plot U1ðx; tÞ and U2ðx; tÞ for some particular choice of the coefficients. In both cases we observe moving
singularities.

3.2.3. Over damping case
When x2

0 � ðc2=4Þ < 0, the IVP (37) has solution
r3ðtÞ ¼ r3ð0Þ
x0

X0
e�

ct
2 sinh½X0t þ b�; ð51Þ
where X0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx2

0 � ðc2=4Þj
q

, and b ¼ coth�1ð c
2X0Þ. Then,
s3ðtÞ ¼ �
X0

x2
0

coth½X0t þ b� � c
2X0

� �
; ð52Þ
and thus BE (36) has solutions of the form
Uðx; tÞ ¼ � c
2
þX0 coth½X0t þ b�

� �
xþ X0e�ct=2

x0 sinh½X0t þ b�

� �
V

X0ect=2x
x0 sinh½X0t þ b�

;� X0

x2
0

coth½X0t þ b� � c
2X0
Þ

� �� �
; ð53Þ
where Vðg; sÞ satisfies the standard BE (6).

(a) Shock and multi-shock wave solutions for the forced BE (36) can be obtained from the general expression
Uðx; tÞ ¼
_r3ðtÞ
r3ðtÞ

xþ e�ct r3ðt0Þ
r3ðtÞ

a1 exp½p1ðx; tÞ� þ a2 exp½p2ðx; tÞ� þ � � � þ ak exp½pkðx; tÞ�
exp½p1ðx; tÞ� þ exp½p2ðx; tÞ� þ � � � þ exp½pkðx; tÞ�

	 

; ð54Þ
where
piðx; tÞ ¼ �ai
r3ðt0Þ
r3ðtÞ

xþ a2
i

2
s3ðtÞ þ p0

i ; i ¼ 1;2; . . . ; k;
and r3ðtÞ is given by (51), s3ðtÞ is given by (52). The behavior of a three-shock wave is illustrated in Fig. 12. We see that
shocks with higher amplitude move faster, at certain time all shocks merge to single one, shock profile becomes steeper with
time and its amplitude eventually goes to zero.

(b) Generalized triangular wave solution of BE (36) is of the form (16) with rðtÞ ¼ r3ðtÞ and sðtÞ ¼ s3ðtÞ; t > 0.
(c) Generalized N-wave solution of BE (36) for the over damping case can be written using formula (17).
(d) The forced BE (36) with initial conditions Umðx; 0Þ ¼ �ðm=xÞ; m ¼ 1;2;3 . . ., has rational type solutions of the form
Umðx; tÞ ¼
_r3ðtÞ
r3ðtÞ

x� e�ctðr3ð0Þ
r3ðtÞ

Þ
mHm�1

r3ð0Þ
r3ðtÞ

x; 1
2 s3ðtÞ

� �
Hm

r3ð0Þ
r3ðtÞ

x; 1
2 s3ðtÞ

� �
0
@

1
A; m ¼ 1;2;3; . . . ;
where r3ðtÞ and s3ðtÞ are given by (51) and (52), respectively.
From the general form of the solution (53), clearly if the function Vðgðx; tÞ; sðtÞÞ, is bounded for t � 1, then the long-time
behavior of Uðx; tÞ is described by limt!1Uðx; tÞ ¼ ð�c=2þX0Þx, and the limiting function is a stationary solution of the BE
(36).
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3.2.4. Variable coefficient case with x2
0 < 0

In the study of damped harmonic oscillator, usually c and x0 are positive parameters leading to the critical, under and the
over damping cases, which we already discussed. However, we can take also x2

0 ¼ � ~x2; ~x > 0; c > 0, and consider the Bur-
gers equation
1

0

10

U

Ut þ cU þ UUx ¼
1
2

e�ctUxx þ ~x2x; �1 < x <1; t > 0: ð55Þ
In that case, we have the IVP €r þ c_r � ~x2r ¼ 0; rð0Þ ¼ r0 – 0; _rð0Þ ¼ 0, which has solution
rðtÞ ¼ r0
~x
~X

e�
ct
2 cosh½~Xt þ ~b�;
where ~X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2 þ ðc2=4Þ

p
, and ~b ¼ tanh�1ðc=2 ~XÞ. Then, BE (55) has solutions of the form,
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Fig. 13. (a) Shock wave solution when ~x ¼ 1; c ¼ 0:4; A ¼ 15; c ¼ 1. (b) Shock wave solution when ~x ¼ 2; c ¼ 0:4; A ¼ 15; c ¼ 1.
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Uðx; tÞ ¼ ð�ðc=2Þ þ ~X tanhð~Xt þ ~bÞÞxþ
~X
~x

e�ct=2

coshð~Xt þ ~bÞ

 !
V

~X
~x

ect=2

coshð~Xt þ ~bÞ

 !
;

~X
~x2 tanh½~Xt þ ~b� � c

2 ~X

� � !
: ð56Þ
Notice that, when c! 0, one has ~X! ~x, and ~b! 0. If Vðg; sÞ is as in the previous cases, then one can see that the solution
(56) of the variable parametric BE (55) approaches the solution (31) of the constant coefficient forced BE (30), which in turn
approaches the standard BE solution, when ~x! 0.

Different type of exact solutions can be found and analyzed following the procedure in Section 2. To illustrate the effect of
increasing the parameter ~x, as an example, we plot shock wave solution for ~x ¼ 1, and for ~x ¼ 2. We observe that in
Fig. 13b, the center of the wave profile moves faster and the shock contribution decays more rapidly to zero, comparing with
the wave in Fig. 13a.
4. Conclusion

In this article, exactly solvable forced Burgers equations with specific time variable coefficients are discussed. In partic-
ular, Burgers equations with constant damping, exponentially decaying diffusion coefficient and a forcing term linear in the
space variable were treated explicitly. For these models we found generalized shock wave solutions which speed, steepness,
and shock amplitude are functions of time. Special properties such as fusion of shocks in traveling wave solutions, and mo-
tion of pole singularities of rational type solutions were observed. In addition, we shortly discussed the limiting case of the
parametric equations, and the long-time behavior of their solutions. Similarly, our results can be used to study variable para-
metric forced Burgers models related with the Sturm–Liouville problems for the classical orthogonal polynomials [25].

We note also that, there are different approaches to study the variable parametric Burgers problems posed in this article.
The one, which we used here, is transforming the inhomogeneous Burgers equation with variable coefficients to a standard
Burgers equation, and then applying Cole–Hopf linearization. Another approach is a direct linearization of the variable para-
metric Burgers equation in the form of a variable parametric parabolic equation, which in turn can be transformed to a stan-
dard heat equation or can be solved using the evolution operator method. These problems are discussed in a forthcoming
article.

As known, the Burgers equation has unique importance in computational physics due to the big number of applications to
turbulence, shock formation, stochastic motion, etc. This is why we think that our solutions could have wide applications to
real physical situations. Here we will mention only few potential fields. One interesting approach is related with quantum
computational physics. A quantum algorithm as a microscopic-scale algorithm for a type-II quantum computer was studied
by modeling the time evolution of a continuous field governed by the nonlinear Burgers equation in one space dimension
[26]. In this case the Burgers equation is derived as an effective field theory governing the behavior of the quantum computer
at its macroscopic scale, where both the lattice cell size and the time step interval become infinitesimal. If Uð2Þ quantum gate
parameters are variable in space, then the Burgers equation with variable parameters, like tunable shear viscosity, will ap-
pear as effective description of quantum computer with control on quantum gates. It will require extension of techniques in
[27] to quantum models with sufficiently many qubits per lattice node.

One of the most interesting applications of Burgers equation with external force is in stochastic processes. It was shown
that the one-dimensional Burgers equation with an elastic forcing term is connected with the Ornstein–Uhlenbeck process
[28]. The study of diffusion driven by the Burgers flow begins from first solving the Burgers equation for a chosen external
force field and it is the place where our solutions could be explored. Next specifying the probability density, and ending with
the corresponding ‘‘passive contaminant’’ concentration dynamics. Then solution of the Burgers equation with the forcing
term, the Burgers velocity field, determines the stochastic Ito equation, where the given forced Burgers velocity field is per-
turbed by the noise term representing a molecular diffusion in the form of the Wiener process. The fluid velocity is consid-
ered as the forward drift of the stochastic process. For the time independent linear force term, the forward drift of the
Markovian diffusion process is a linear function of x. It was proved that the forced Burgers dynamics and the diffusion-con-
vection equation for the concentration of a passive component in a flow, in case of gradient velocity fields is compatible with
the Markovian diffusion process input [29]. Solution of extended Burgers equation for time dependent force, considered in
present paper, generalizes the usual one related with the Ornstein–Uhlenbeck process and depending on choice of the time
depending function it can represent a stationary state or an anomalous spreading. This question is under investigation now.

Another interesting problem is the turbulence as was studied by Polyakov in terms of the Burgers equation, modeling the
Navier–Stokes equation with white noise random force. It was shown that the model exhibits scaling behavior. If in our
forced Burgers equation, x2ðtÞ is a white noise force, then our solutions can be applied to analyze this problem. The advan-
tage is that we can find an analytic solution for the arbitrary time dependent functions. This problem as well as the stretched
structure of the solution, similar to stretched vortices in Navier–Stokes equation, is also under investigation.

As another application in stochastic mechanics, in [30] studying the limit of systems of Brownian particles with electro-
static repulsion when the number of particles increases to infinite, a non-linear stochastic differential equation has been
introduced. Existence and uniqueness of the corresponding nonlinear diffusion process then has been related with real ana-
lyticity of solutions for the holomorphic Burgers equation. Generalization of the Burgers equation and its solution as given in
the present paper could lead to interesting extension of these results.
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In plasma physics, an electrohydrodynamical model in the form of the Burgers equation with external force, describing
the evolution of a local electric field in plasma under the assumption of motionless ions with electric field obeying the Pois-
son equation was proposed [31]. This is the electric analog of the magnetohydrodynamical problem considered by Olsen,
where the external field in Burgers equation is determined by the magnetic field. In more general situation with allowed ions
motion, this will lead to the Burgers equation with external force depending on space and time through electric and mag-
netic fields.

Last application which we mention is related with the study of unsaturated flow, in the presence of a web of plant roots,
which was modeled by Burgers’ equation with a spatially varying sink function [32].

We summarize and conclude by saying that our work was motivated by two main ideas. First one is the big number of
possible applications in real physical problems, as mentioned above. And second one is the exact solvability of our models,
where the explicitly found solutions can provide convenient schemes to develop perturbation theory, test numerical
methods and develop new algorithms necessary for revealing the nature of many nonlinear physical phenomena.
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