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a b s t r a c t 

Two-dimensional impulsive flow of two immiscible fluids is studied within the potential flow theory. Initially 

the fluids of different depths and different densities are at rest and separated with a thin vertical plate. The

plate is withdrawn suddenly and gravity-driven flow of the fluids starts. During the early stage the flow is

described by the linear potential theory. Attention is paid to the motion of the interface between the fluids 

and the singular behaviour of the velocity field at the triple point, where the free surfaces of the fluids and

the interface meet each other. The linear problem is solved by the Fourier series method. Local analysis of

the flow field close to the triple point reveals that the singularity of the flow depends on the ratio of the

fluid densities with a coefficient dependent on both the density ratio and the shape of the flow region. The

flow velocity is also log-singular at the point where the interface meets the bottom. The intensity of this

singularity depends on the density ratio. The latter singularity disappears when the densities of the fluids 

are equal. The Fourier series solution supplemented by the singularity analysis at the corner points resolves 

these initial singularities. Comparisons with solutions obtained through the boundary element method are 

established for validation purposes. The numerical analysis of the problem by the boundary element method 

is carried out and it compares quite well with the Fourier series solution. The singular flow field which leads

to the jet formation at the initial instant has been observed by both methods. The problem of dam-break

flow for the wet-bed case corresponds to the present problem with equal densities of the fluids. Comparisons 

with data available in literature are established in the case of fluids with the same density. 
c © 2013 Elsevier Ltd. All rights reserved. 
. Introduction 

Plane unsteady problem of the gravity-driven flow of two immis- 

ible fluids is considered. Initially the fluids are separated with a thin 

ertical plate and are at rest. The fluid depths are not equal to each 

ther. At the initial time instant, t ′ = 0, the plate is instantly removed. 

he flow of two different fluids driven by the gravity starts suddenly 

see Fig. 1 ). The present study is concerned with the initial stage of the 

ow, during which the fluid displacements are small compared with 

he fluid depths. The problem is studied in the Cartesian coordinate 

ystem ( x ′ , y ′ ). A prime stands for dimensional variables. The line y ′ = 

 corresponds to the rigid bottom. The interval, x ′ = 0, 0 < y ′ < H 

−, 

orresponds to the initial position of the interface between the fluids. 

uantities corresponding to the fluid which is originally on the left 

f the plate with the depth H 

− are denoted by the superscript minus. 

uantities describing the fluid on the right of the plate with the depth 

 

+ are denoted by the superscript plus. Densities of the fluids are ρ−

nd ρ + , correspondingly. The ratio of the densities is denoted by γ = 
* Corresponding author. Tel.: + 90 5323056511. 

E-mail address: oguzyilmaz@iyte.edu.tr (O. Yilmaz). 
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ρ−/ρ + . In the present analysis, H 

+ > H 

− and 0 < γ < ∞ . 

This problem was studied in the past for two identical fluids, γ = 

1, and for γ �= 1 but without the free surfaces of the fluids. The first 

problem is known as a wet-bed dam-break problem [ 1 –4 ] and the 

second as a stratified mixing problem [ 5 ]. 

Both problems have been studied using the nonlinear shallow 

water equations, see Goater and Hogg [ 6 ] and Gill [ 7 ], p. 259, cor- 

respondingly. The shallow water approximation is based on the as- 

sumption that the vertical component of the flow velocity is neg- 

ligible compared to the horizontal components and the pressure is 

hydrostatic. The stratified mixing in a dam-break problem was stud- 

ied in [ 5 ] with the aim of extending the Large-Eddy Simulation (LES) 

method to small-scale mixing problems. A simplified configuration 

similar to that in Fig. 1 with H 

+ = H 

− and rigid upper boundary was 

chosen to provide a test case with well defined initial and bound- 

ary conditions for a complex flow in a rectangular enclosed domain. 

Özg ̈okmen et al. [ 5 ] wrote “When non-hydrostatic pressure is not 

modelled while nonlinearities are (i.e. in a hydrostatic model), the 

wave steepens unabated and may cause an artificial mixing event, 

depending on the turbulence closures employed. Also, the dispersion 

relations for internal waves differ in hydrostatic and non-hydrostatic 

http://dx.doi.org/10.1016/j.apor.2013.04.003
http://www.sciencedirect.com/science/journal/01411187
http://www.elsevier.com/locate/apor
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.apor.2013.04.003&domain=pdf
mailto:oguzyilmaz@iyte.edu.tr
http://dx.doi.org/10.1016/j.apor.2013.04.003
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Fig. 1. Scheme of the gravity-driven flow: (a) initially the fluids are at rest and sepa- 

rated with a vertical plate; (b) the plate is removed and the flow starts at t = 0 + ; (c) 

expected flow of two immiscible fluids with the jet consisting both fluids. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cases. Thus, hydrostatic models not only are unable to correctly rep-

resent the shape of the internal waves and their degeneration into

solitary waves, but they can also fail to represent the wave-induced

boundary mixing.”

The problem of wet-bed dam-break flow is very challenging. Even

for the simplified geometry shown in Fig. 1 , the initial conditions on

the free surfaces of the fluids do not match each other which gives

rise to a singularity of the initial flow at the triple point, where the

free surfaces and the interface meet each other. This singularity and

the resulting jet formed at the corner point shortly after the plate

is withdrawn were discovered by Stansby et al. [ 1 ] for the fluids of

equal densities. Both experimental and numerical studies of this new

phenomenon were conducted in [ 1 ]. It was shown that the initial

flow is singular at the corner point and a mushroom-like jet occurs

just after release. The singularity was not studied. The jet observed

in the experiments was well reproduced by the boundary-element

method described by Cooker et al. [ 8 ]. To start the numerical simula-

tions the singularity was smoothed out with the initial step-like free

surface being approximated by a hyperbolic tangent. The obtained

solutions were used by Lind et al. [ 4 ] (see Section 4.2.2.2 in [4]) to

validate the method of incompressible smoothed particle hydrody-

namics. The mushroom-like jets were also observed in experiments

by Janosi et al. [ 2 ]. Gomez-Gesteira et al. [ 3 ] used these experimen-

tal results to demonstrate the capabilities of the smoothed particle

hydrodynamics (SPH) method to reproduce the observed shapes of

the free surface after the lock release. It is seen that the solution of

the dam-break problem for wet bed case was used to validate some

numerical algorithms. 

The present analysis combines the stratified mixing problem and

the dam-break problem for wet-bed case with focus on the local flow

close to the triple point. The jet formed at this point is of interest in hy-

drodynamics of high-speed ships, where separation of the flow occurs

at the intersection of the boards with the stern plane [ 9 ]. Martinez-

Legazpi [ 9 ] wrote “The difference in height between the separated

stream and the free surface level immediately downstream the stern

induces a transversal velocity component to the separated water mass

that deflects its otherwise stream-like velocity towards the centerline

of the hull. As a result, two symmetrical waves are formed that collide

near the center plane of the wake.” Taking advantage of the slender
nature of the flow, the three-dimensional steady flow was approx-

imated by a two-dimensional unsteady one. Then the flow close to

the stern corresponds to the initial flow in a dam-break problem.

Note that the latter problem differs from that studied by Stansby et

al. [ 1 ] due to different initial conditions of the flow. The corner jets

and resulting waves were studied experimentally, numerically and

theoretically in [ 9 ]. 

Flow singularities at the intersection points between a liquid free

surface and a solid boundary were studied intensively in the past.

Initial stage of impulsive motion of a body piercing the free surface

was analysed in [ 10 , 11 ] for vertical and horizontal impacts of a semi-

submerged circular cylinder, in [ 12 , 13 ] for floating wedge and plate

of zero draft, in [ 14 –16 ] for horizontal impact of a vertical wall. It

was shown that jet is developed at the intersection point with the

jet strength being dependent on the angle between the body surface

and the free surface of the liquid and the direction of the body mo-

tion. The flow in the jet region is nonlinear and self-similar during the

early stage. Little is known about free-surface flows starting suddenly

but with zero velocity. Initial flows generated by an accelerating plate

were studied in [ 15 ] for vertical plate and in [ 16 ] for inclined plate. The

papers [ 15 , 16 ] are relevant to the present study, where the flow also

starts from rest with zero initial velocity. It is interesting to note that

the flow caused by uniformly accelerated vertical plate in [ 15 ] and the

dam-break flow studied in [ 17 ] are locally similar close to the corre-

sponding intersection points. In the present paper, the corresponding

intersection point is at the bottom, where the interface between two

fluids meets the solid boundary. However, there is another point, the

triple point, which makes the problem more complicated than the

problems mentioned above. 

We assume a jet formed at the triple point. The shape of the jet

and its structure can be different from that shown in Fig. 1 c. One may

expect a mushroom-like jet similar to that observed in [ 1 ] for fluids

of equal densities. We expect that locally the jet flow is self-similar

for small times after the flow starts. The structure of the jet should

be investigated. In particular, we need to know portions of the fluids

in the jet. This can explain the gravity-driven mixing of fluids. We

expect that the local flow of immiscible fluids near the triple point

is governed by the global flow. However the global flow depends

weakly on the local one and can be approximately determined on

its own during the early stage. Next, local flow can be recovered in

properly stretched local coordinates and matched to the global flow.

In this paper, we are concerned with the leading order global flow

and matching conditions for the local region near the triple point.

A formal small parameter is introduced to specify that only the ini-

tial stage of the flow is considered. The leading order global flow is

described by a linear boundary value problem, which is obtained by

linearisation of the boundary conditions and imposing them on the

initial undisturbed positions of the boundaries of the fluids. The linear

problem is solved by the Fourier series method and by the method

of boundary element. The obtained velocity field is singular at both

the triple point and intersection point between the interface and the

flat bottom. The singularity of the flow is recovered with the help of

local analysis and the Fourier method. The local analysis of the global

flow at the triple point provides the order of the singularity and the

solution obtained by the Fourier method provides the coefficient of

the singularity. The boundary element method is used to verify the

solution by the Fourier series method for different ratios of the fluid

densities and different depths of the fluids. 

The formulation of the small-time linearised problem is given in

Section 2 . In terms of uniformly valid small-time asymptotic solution

of the fully nonlinear problem, in this paper, we restrict ourselves

to the leading order outer solution. The numerical solution of this

leading-order problem is obtained in Section 3 by the Fourier method.

Local behaviour of the solution close to the triple point is studied in

Section 4 . The coefficient of the singularity is determined by using

the Fourier series solution. The boundary element method is applied
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Fig. 2. Scheme of the linearised problem of two-fluid dam break. 
o the problem in Section 5 . The numerical solutions by the Fourier 

eries method and the method of boundary element are compared 

n Section 6 . Conclusions are drawn and future work is discussed in 

ection 7 . 

. Formulation of the problem 

The fluids are assumed ideal and incompressible. Surface tension 

nd the presence of air are not included. The dam at x ′ = 0 disappears 

nstantly at t ′ = 0. The resulting flow is assumed irrotational and two- 

imensional. We shall determine the liquid flow and the shape of its 

ree surface during the early stage of the process. 

The flow is described by the velocity potentials ϕ ′ ± ( x ′ , y ′ , t ′ ). The 
uids are at rest when t ′ < 0, ϕ ′ ± ( x ′ , y ′ , 0 −) = 0. Initially the pressure

istributions in the fluids are hydrostatic, p ′ + ( x ′ , y ′ , 0 −) = ρ + g ( H 

+ −
 

′ ), where x ′ > 0 and 0 < y ′ < H 

+ , and p ′ −( x ′ , y ′ , 0 −) = ρ−g ( H 

− − y ′ ),
here x ′ < 0 and 0 < y ′ < H 

−. Here ρ ± are the corresponding fluid 

ensities and g is the gravity acceleration. The atmospheric pressure 
s taken as the reference pressure. At the initial time instant, t ′ = 0, the 

all x ′ = 0, 0 < y ′ < H 

+ is instantly removed and the gravity-driven 

ow starts. The part of the liquid boundary, where x ′ = 0 and H 

− < y ′ 
 H 

+ , suddenly becomes free with p ′ + ( x ′ , y ′ , 0 + ) = 0 along it. This
udden change of the pressure must be balanced by the time deriva- 

ive − ρ + ( ∂ ϕ ′ + /∂ t ′ )(0, y ′ , 0 + ) + p ′ + (0, y ′ , 0 −) = 0 which follows

rom the unsteady Bernoulli equation. Note that the initial velocity of 
he flow is zero and the quadratic term in the Bernoulli equation gives 
 negligible contribution for small times. Correspondingly, along x ′ = 

 and H 

− < y ′ < H 

+ , the pressures p ′ + (0, y ′ , 0 −) and p ′ −(0, y ′ , 0 −)
re not equal to each other due to either different depths of the flu- 

ds or their different densities. However at t ′ = 0 + the pressures in 

he fluids must balance each other along the interface between the 

uids. Again, it can be only achieved through the time derivatives 
f the velocity potentials. This observation indicates that the initial 
symptotic solution can be sought in the form 

 

′ ± ( x ′ , y ′ , t ′ ) ∼ t ′ φ′ ± ( x ′ , y ′ ) (1) 

uring the early stage when the displacements of the fluid particles 

re much smaller than the fluid depths, t ′ 
√ 

g/H 

+ � 1. 

It is convenient to introduce non-dimensional variables 

 

′ = H 

+ x , y ′ = H 

+ y , φ′ ± = gH 

+ φ ± , p ′ ± = ρ ± gH 

+ p ± . 

n the non-dimensional variables the solution of the linearised prob- 

em depends on two parameters: density ratio γ = ρ−/ρ + and the 

epth ratio δ = H 

−/ H 

+ . Linearization is a standard procedure as used 

n [ 17 ]; the velocity potentials, the free surfaces and the interface are 

xpanded in a power series with the small non-dimensional parame- 

er epsilon and as epsilon approaches zero we obtain the leading order 

olution. The boundary problems with respect to the new potentials 
± ( x , y ) are obtained by linearisation of the boundary conditions and 

mposing them on the initial undisturbed positions of the boundaries: 

 

2 φ+ = 0 ( x > 0 , 0 < y < 1 ) , (2) 

 

2 φ− = 0 ( x < 0 , 0 < y < δ) , (3) 

+ = 0 ( x > 0 , y = 1 ) , (4) 

− = 0 ( x < 0 , y = δ) , (5) 

+ = 1 − y ( x = 0 , δ < y < 1 ) , (6) 

+ + y − 1 = γφ− + γ ( y − δ) , φ+ 
x = φ−

x ( x = 0 , 0 < y < δ) , (7) 

±
y = 0 ( y = 0 ) , (8) 

± → 0 ( x → ±∞ ) . (9) 

he boundary problem (2) –(9) is depicted in Fig. 2 . 
The conditions (4) and (5) follow from the dynamic boundary con- 

ditions on the initially horizontal parts of the fluid boundaries; con- 

dition (6) states that the dynamic pressure balance the hydrostatic 

pressure on the initially vertical part of the fluid free surface. Con- 

ditions (7) on the interface between the two fluids imply that both 

the pressures in the fluids and the normal velocities of the flows are 

equal to each other on the interface. Condition (8) is applied on the 

bottom of the fluids, and condition (9) means that the fluids are at rest 

in the far field. The boundary problem describes the gravity-driven 

flow of two immiscible fluids during the early stage everywhere in 

the flow domain where the displacements and velocities of the fluid 

particles are finite. Note that the conditions (5) and (6) do not match 

each other at the corner point x = 0, y = δ. Also the conditions (7) 

and (8) do not match each other at the intersection point x = 0, y = 

0. At both points, singularities of the flow are expected within the 

model (2) –(9) . The solution of this problem provides the leading or- 

der flow outside small vicinities of these two points during the early 

stage. The linear solution also provides matching conditions to for- 

mulate the inner problems in these vicinities, as well as sizes of the 

vicinities. 

Once the problem (2) –(9) has been solved, the positions of the fluid 

boundaries in the dimensional variables are given by the following 
formulae 

y ′ ≈ H + + 

1 

2 
gt ′ 2 φ+ 

y 

(
x ′ 

H + 
, 1 

)
( x ′ > 0 ) , y ′ ≈ H − + 

1 

2 
g t ′ 2 φ−

y 

(
x ′ 

H + 
, δ

)
( x ′ < 0 ) , (10) 

x ′ ≈ 1 

2 
gt ′ 2 φ+ 

x 

(
0 , 

y ′ 

H 

+ 

) (
0 < y ′ < H 

+ ) (11) 

during the early stage. The shape of the interface between the two 

fluids is obtained from (11) , where 0 < y ′ < H 

−. 

The problem (2) –(9) is solved below numerically. There are sev- 

eral methods which can be applied to this problem. Analytic function 

theory combined with the Schwarz Christofel conformal mapping is 

one of them [ 9 ]. However, its application to our problem presents 

some difficulties due to the interface between the fluids. The method 

of eigenfunction expansions was used in [ 16 ]. This method being 

applied to our problem would require eigenfunction expansions con- 

structed in local polar coordinates with the origins at the triple point, 

at the top corner point and at the bottom intersection point. The ob- 

tained expansions combined with the Fourier series solutions away 

from the three points could be truncated and the coefficients in the 

five expansions can be determined by the collocation method. In this 

paper more straight forward methods of Fourier series and boundary 

element are used. These methods are supported by the local analysis 

of the flows near the corner points, cross-validated and verified in 

terms of convergence. 
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3. Solution by the Fourier series method 

Separation of variables applied to both flow regions provides the

following series for the velocity potential, 

φ+ = 

∞ ∑ 

n = 0 
c n e 

−μn x cos ( μn y ) , (12)

φ− = 

∞ ∑ 

n = 0 
d n e 

μn x/δcos 
(μn y 

δ

)
, (13)

where μn = (2 n + 1)( π/ 2) and the coefficients c n and d n are to be de-
termined. The potentials (12) and (13) satisfy the Laplace equation

(2) and (3) , the boundary conditions (4) , (5) , (8) and the condition at
infinity (9) . The conditions (6) and (7) serve to calculate the coeffi-
cients c n and d n in (12) and (13) . The boundary conditions (7) at x =
0 provide the following equations: 

∞ ∑ 

n = 0 
c n cos ( μn y ) − 1 + y = γ

∞ ∑ 

n = 0 
d n cos 

( μn y 

δ

)
+ γ ( y − δ) , 0 < y < δ, (14)

−
∞ ∑ 

n = 0 
c n μn cos ( μn y ) = 

∞ ∑ 

n = 0 

μn 

δ
d n cos 

(μn y 

δ

)
, 0 < y < δ, (15)

Multiplying (12) by cos ( μm 

y ) and then integrating the resulting equa-

tion in y from 0 to 1, using the condition (6) and the first condition in

(7) , we obtain the following relation between the coefficients c n and

d n 

c n / 2 − γ

∞ ∑ 

m = 0 
αnm 

d m 

= f n , n = 0 , 1 , · · · , (16)

where 

f n = 

1 

μ2 
n 

[ 1 − γ + γ cos ( μn δ) ] , (17)

αnm 

= −( −1 ) 
m 

μm 

cos ( μn δ) /δ

μ2 
n − μ2 

m 

/δ2 
. (18)

Multiplying (15) by cos ( μm 

y /δ) and then integrating the resulting

equation in y from 0 to δ, we obtain another equation relating the

coefficients c n and d n , 

−
∞ ∑ 

n = 0 
c n μn αnm 

= d m 

μm 

2 
, m = 0 , 1 , . . . . (19)

Now let us truncate the two infinite series in (12) and (13) to N and

M terms respectively, 

φ+ = 

N ∑ 

n = 0 
c n e 

−μn x cos ( μn y ) , 

φ− = 

M ∑ 

n = 0 
d n e 

μn x/δ cos 
(μn y 

δ

)
. 

Combining the truncated linear algebraic Eqs. (16) and (19) we get a

linear system of M + 1 equations for the coefficients d 
 , 

M ∑ 


 = 0 

[ 

μ
 

2 
δ
m 

+ 2 γ

N ∑ 

n = 0 
μn αnm 

αnl 

] 

d 
 = −2 g m 

, m = 0 , 1 , 2 , . . . , M, (20)

where 

g m 

= 

N ∑ 

n = 0 

αnm 

μn 
( 1 − γ + γ cos ( μn δ) ) , 

and δ
 m 

= 1 when 
 = m and δ
 m 

= 0 when 
 �= m . The coefficients c n
are obtained from (16) after solving (20) for d 
 . The numbers M and N

of terms in the truncated series must be big enough to ensure conver-

gence of the numerical solution. Also, these numbers M and N should
relate to each other. But, we still have to decide how many modes

are needed to describe the flow in the two regions. It is suggested by

Dalrymple [ 18 ] and Hudde and Letens [ 19 ] that N > N s = M /δ, where δ

< 1. This is necessary to ensure that similar modes in each region are

matched. In fact, numerical tests suggest that N = 2 N s in (20) . After

calculating the coefficients c n and d n , boundary conditions (6) and (7)

are checked numerically. It is observed that the equality of horizontal

velocities at the interface is the most difficult one to satisfy. So, the

number of modes, M , is determined by that condition. 

4. Local flows at the corner points 

In this section we identify the nature of the flow singularity at the

corner points. It is convenient to rewrite the leading order problem
(2) –(9) in terms complex velocities ω 

+ ( z ) and ω 

−( z ), z = x + iy ,

defined in the semi strips ( x > 0, 0 < y < 1) and ( x < 0, 0 < y < δ)

respectively. Here ω 

+ ( z ) = u + − iv + and ω 

−( z ) = u − − iv − are analytic

in their own regions. The boundary conditions for ω 

+ ( z ) follow from

(4) , (6) and (8) : 

u + = 0 ( y = 1 , x > 0 ) , v + = 0 ( y = 0 , x > 0 ) , v + = −1 ( x = 0 , δ < y < 1 ) , 

and the conditions for ω 

−( z ) from (5) and (8) : 

u − = 0 ( y = δ, x > 0 ) , v − = 0 ( y = 0 , x > 0 ) . 

The conditions (7) at the interface ( x = 0, 0 < y < δ) have the form 

v + + 1 = γ
(
v − + 1 

)
, u + = u −. (21)

Local flow near the triple point (0, δ) is governed by the boundary

conditions on the boundaries which meet each other at that point.

This flow strongly depends on the density ratio γ . Three reference

cases concerning γ are considered: 

1. The liquid on the left is much lighter than the liquid on the right. In

this case, γ � 1 and the flow of the heavier liquid on the right can be

determined in the leading order as γ → 0 without accounting for the

presence of the liquid on the left. The corresponding flow is that of

dam break studied in [ 17 ]. The leading order flow of the lighter liquid

is obtained by imposing the horizontal velocity, given by the solution

of the dam break problem, at the interface. The latter flow is similar

to that studied by King and Needham [ 15 ] for uniformly accelerating

vertical plate but with the acceleration of the plate depending on the

vertical coordinate. The local behaviour of this flow is discovered in

[ 15 ] with log singularity of the vertical velocity of the flow at (0, δ).

The correction to the leading order flow on the right caused by the

presence of the lighter liquid is estimated as O ( γ ) when γ → 0 which

follows from (21) . 

2. Both liquids are of the same density. In this case γ = 1 and the

complex velocities ω 

+ ( z ) and ω 

−( z ) are continuous at the interface

which follows from (21) . Then we can drop the superscripts “ + ”

and “−” from the velocity terms, conditions at the interface (21) and

consider a simple complex velocity ω( z ). The resultant local boundary

value problem for ω( z ) is depicted in Fig. 3 . 

There are many (singular) solutions of this problem, we choose

the least singular one 

u − iv = D 1 ( z − iδ) 
−1 / 3 + it , (22)

where D 1 is a constant which depends on the global solution. The

solution (22) describes the local flow with finite kinetic energy. 

3. The liquid on the left is much heavier than the liquid on the right.

In this case γ � 1 and the flow of the left fluid is that of dam break.

The leading order flow of the lighter liquid on the right is obtained

by imposing the horizontal velocity given by the solution of the dam

break problem at the interface, x = 0, 0 < y < δ. As for the case γ �
1, in the limit as y → 0 + the solution is still similar to that studied

by King and Needham [ 15 ]. However, differently from a classical dam

break problem, boundary conditions of different type are applied on
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Fig. 3. Boundary value problem describing the local flow for γ = 1. 
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he boundary x = 0 for y < δ and for y > δ. Due to the change in

he condition at the triple point x = 0, y = δ, the problem is a mixed 

oundary value problem similar to the one studied in [ 13 ]. It is known 

hat the solution of this problem describes the flow with square root 

ingularity of the velocity at the point where the boundary condition 

hanges its type [ 13 ]. 

The leading order complex velocity ω 

+ ( z ) when γ → ∞ behaves 

t the point (0, δ) as 

 

+ ( z ) ∼ D ∞ 

e iπ/ 4 ( z − iδ) 
−1 / 2 + it ( z → iδ) , (23) 

here D ∞ 

is a constant which depends on the global solution. 

This analysis indicates that the singularity of the flow at the corner 

oint depends on the parameter γ and varies from 0 to −1 / 2 when γ

ncreases from zero to infinity. Assume that 

 

+ ( z ) ∼ D ( z − iδ) 
−α( γ ) , ω 

− ( z ) ∼ E ( z − iδ) 
−α( γ ) 

s | z − i δ| → 0, where the complex valued constants D and E depend 

n the global flow and 0 ≤ α ≤ 1 / 2. In the local polar coordinates z −
 δ = r exp( i θ), we have 

 

+ ( z ) ∼ D r −α exp ( −iαθ) 

(−π

2 
< θ < 

π

2 
, r → 0 

)
, 

 

− ( z ) ∼ E r −α exp ( −iαθ) 

(
−π < θ < 

−π

2 
, r → 0 

)
. (24) 

rom the boundary conditions (5) and (6) we deduce that E exp( i απ) 

s pure imaginary, say, iE R and that D exp ( −i απ/ 2) is real, say, D R . We
onclude that the complex velocities near the corner point behave as 

 

+ ( z ) = u + − iv + ∼ D R r 
−α exp 

(
iα

( π

2 
− θ

)) ( −π

2 
< θ < 

π

2 
, r → 0 

)
, 

 

− ( z ) = u − − iv − ∼ i E R r 
−α exp ( −iα ( π + θ) ) 

(
−π < θ < 

−π

2 
, r → 0 

)
. (25) 

he matching conditions (21) at the interface, θ = −π/ 2, provide 

elations between α and γ and the coefficients E R and D R , 

= 

2 

π
arcsin 

√ 

γ

2 ( γ + 1 ) 
, E R = 

D R √ 

γ ( γ + 1 ) / 2 
. (26) 

t is possible to check by direct calculation that 

( 0 ) = 0 , α ( 1 ) = 

1 

3 
, α ( ∞ ) = 

1 

2 

hich correspond to the results of our analysis of three reference 

ases. It is reasonable to assume that D R < 0. If so, the free surface 

ear the corner point moves outwards the liquid region. When γ → 

, Eq. (26) yield α = O ( 
√ 

γ ), D R = O (1) and E R ∼ E R0 / 
√ 

γ , where the

eal coefficients D R and E R 0 are to be determined. Then formula (25) 

ives 

 

− ( z ) ∼ i 
E R0 √ 

γ
e −α log r exp [ −iα ( π + θ) ] , (27) 
where r → 0 and γ → 0. By using the expansion 

e −α log r = 1 − α log r + O ( γ ) 

as γ → 0 and αlog r → 0, formula (27) can be presented as 

ω 

− ( z ) − i 
E R0 √ 

γ
∼ −i E R0 

√ 

2 

π
log r, 

where the right hand side correctly describes the log singularity stud- 

ied by King and Needham [ 15 ]. When γ = 1, then D R = E R , α = 1 / 3

and the formulas in (25) coincide with (22) where D 1 = D R . When γ

→ ∞ , ω 

−( z ) is not singular at the triple point in the leading order and

ω 

+ ( z ) is square root singular. Indeed, Eq. (26) with D R = O (1) as γ →
∞ provide that E R = O (1 /γ ) and there is no singularity in ω 

−( z ) in the

leading order. 

At the corner point, where the interface meets the bottom, x = 0 

and y = 0, the complex velocities in the leading order as r → 0 behave 
as 

ω + ( z ) ∼ A log z = A ( log r + iθ) 
(

0 ≤ θ ≤ π

2 
, r → 0 

)
, z = re iθ , 

ω − ( z ) ∼ B ( log z − iπ) = B ( log r + iθ − iπ) 
( π

2 
≤ θ ≤ π, r → 0 

)
, (28) 

where A and B are real coefficients. The boundary conditions (8) at 

the bottom are satisfied with the asymptotic solutions (28) . The form 

of these asymptotic formulas is inspired by the solution of the dam- 

break problem [ 17 ], which can be obtained from the present formu- 

lation when γ = 0. Component wise, we find 

u + ∼ A log r, v + ∼ −Aθ, u − ∼ B log r, v + ∼ B ( π − θ) 

near the corner point. At the interface between the two fluids, θ = 

π/ 2 and the matching conditions (21) provide 

B = A, A = 

2 

π

1 − γ

1 + γ
. (29) 

The formulas (29) predict that A = 2 /π when γ = 0, which corre- 

sponds to the result by Korobkin and Yilmaz [ 17 ] (see Eq. (13) ), and 

that there is no singularity of the flow if γ = 1. The interface moves 

to the left if γ < 1 and to the right if γ > 1. Note that the leading 

order behaviour of the velocity field near the bottom point is known 

prior to the numerical analysis of the problem. The situation with the 

triple point (0, δ) is different. In (25) , the power α of the singularity 

is given by (26) but the coefficient E R should be determined by using 

the solution of the global problem (2) –(9) . To determine the coeffi- 

cient E R in the local asymptotic formulae (25) , we assume that the 

solution of the global problem (2) –(9) by the Fourier series method is 

known. Then the coefficients d n , n ≥ 0, are known as solutions of the 

system (20) . Asymptotic behaviour of these coefficients as n → ∞ is 

governed by the singularity of the solution at the triple point, which 

is the strongest singularity of the solution. The second equation in 

(25) makes it possible to decompose the horizontal velocity u −(0, y ) 

at the interface, 0 < y < δ, as 

u − ( 0 , y ) = E R ( δ − y ) 
−α sin 

(απ

2 

)
+ ̃  u − ( 0 , y ) , (30) 

where ˜ u −(0 , y) is log-singular at y = 0 according to (28) and can also 

be singular at the triple point y = δ but this singularity is weaker than 

that of the first term in (30) . Substituting (13) in (30) , multiplying 

both sides by cos ( μm 

y /δ) and integrating the resulting equation in y 
from 0 to δ, we obtain 

1 

2 
d n μn = E R sin 

( απ

2 

) ∫ δ

0 
( δ − y ) 

−α cos 
( μn y 

δ

)
dy + 

∫ δ

0 

˜ u − ( 0 , y ) cos 
( μn y 

δ

)
dy . (31) 

The second integral in (31) decays faster than the first one when 

n → ∞ . Therefore, the leading order asymptotic behaviour of the 

coefficients d n as n → ∞ depends on asymptotic behaviour of the 

first integral in (31) . By algebra we obtain the following asymptotic 

formula for this integral 
∫ δ

( δ − y ) 
−α cos 

( μn y 

δ

)
dy ∼

(
δ

μn 

)1 −α {
sin ( μn ) 

∫ μn sin λ

λα
dλ + O 

(
1 

n 

)}
( n → ∞ ) . 
0 0 
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Fig. 4. Sketch of the domains and of the boundary conditions used for the solution of 

the leading order problem by the boundary element method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Substituting the asymptotic forms of the integrals in (31) we have 

d n μn 

2 
∼ E R ( −1 ) 

n sin 

(απ

2 

)(
δ

μn 

)1 −α

S ( γ ) (32)

for large n , where 

S ( γ ) = 

∫ ∞ 

0 

sin λ

λα
dλ = � ( 1 − α) sin 

(
( 1 − α) π

2 

)

(see p. 439 in [ 20 ]). The formula (32) can be rewritten as 

( −1 ) 
n 
μ2 −α

n d n 

2 δ1 −α sin ( απ/ 2 ) S ( γ ) 
∼ E R ( n → ∞ ) , (33)

where the left-hand side E 

( n ) 
R is known as a function of n once the

system (20) for the coefficients d n has been solved. The asymptotic

formula (33) provides that the coefficient E R in (25) can be calculated

as the limit of E 

( n ) 
R when n → ∞ , where E 

( n ) 
R are obtained by the

Fourier series method. 

5. Solution of the leading order problem by boundary element 

approach 

The solution of the boundary value problem (2) –(9) governing the

leading order velocity potentials is also derived by the boundary el-

ement approach. The boundary element method is used to derive an

alternative solution of the problem (2) –(9) with the aim to verify the

solution by the Fourier series method obtained in Section 3 . The gov-

erning equations are basically the same as those discussed in Section

2 although, for convenience, a finite extension of the fluid domains

is considered now. Hence, the problem is reduced to the solution of

the two-dimensional Laplace equation in two finite domains together

with the boundary conditions of the Neumann and Dirichlet type. As

shown in Fig. 4 , the left and right subdomains are closed by solid

boundaries, positions of which are chosen far enough not to affect the

solution substantially. In the simulations presented in Section 6 , the

boundaries are located at x = −20 and x = + 20 for the left and the

right hand sides, respectively. 

At the interface between the two sub-domains Ω ± both velocity

potentials φ ± (0, y ) and their normal derivatives ∂ φ ± /∂ n ± are to be

determined. Additional relations which couple the solutions in the

two domains are given by conditions (7) rewritten here in a slightly

different form for convenience: 

∂φ−

∂n −
= − ∂φ+ 

∂n + 
, (34)

φ+ − γφ− = γ ( y − δ) − ( y − 1 ) . (35)
 

In order to derive the solutions of the boundary value problems in
the two domains, the corresponding velocity potentials are written
in the form of a boundary integral representation. For the left sub-

domain Ω − we have 

φ− ( x P ) = 

∫ 
∂ Ω−

(
∂φ− ( x Q ) 

∂n Q 
G ( x P − x Q ) − φ− ( x Q ) 

∂G ( x P − x Q ) 

∂n Q 

)
d S Q , (36)

which is valid for any point x P ∈ Ω − and x Q ∈ ∂Ω −. A similar represen-

tation holds for the velocity potential φ + inside the right subdomain

Ω + . In Eq. (36) G ( x ) is the free space Green ’ s function for the Laplace

operator in two dimensions. 

Eq. (36) provides the velocity potential at any internal point, pro-

vided both the velocity potential and its normal derivative are known
along the boundary. As only one of the two data, at most, is available

on different portions of the boundary, in order to derive the other, Eq.
(36) is written in the limit as x P → ∂Ω −

1 

2 
φ− ( x P ) = 

∫ 
∂ Ω−

(
∂φ− ( x Q ) 

∂n Q 
G ( x P − x Q ) − φ− ( x Q ) 

∂G ( x P − x Q ) 

∂n Q 

)
d S Q . (37)

Solution of the above equation is derived numerically by discretiz-

ing the domain boundary into straight line segments with piecewise

constant distributions of both the velocity potential and its normal

derivative. The discretised form of Eq. (37) is 

a i φ
−
i −

N −F ∑ 

j= 1 
φ−

n, j g ij −
N −F + N I ∑ 

j= N −F + 1 
φ−

n, j g ij + 

N −F + N I ∑ 

j= N −F + 1 
φ−

j d ij + 

N −F + N I + N −N ∑ 

j= N −F + N I + 1 
φ−

j d ij 

= e i φ
−
i −

N −F ∑ 

j= 1 
φ−

j d ij + 

N −F + N I + N −N ∑ 

j= N −F + N I + 1 
φ−

n, j g ij , 

(38)

where N 

−
F is the number of segments used to represent the free sur-

face, N I is the number of segments at the interface and N 

−
N is the

number of segments adopted for the discretization of the bottom and

far-field boundaries. In ( 38 ) g ij and d ij denote the influence coeffi-

cients of the segment j on the midpoint of the segment i related to G

and ∂ G /∂ n , respectively. In the above equation the coefficients ( a i , e i )

are (1 / 2, 0) if the velocity potential is unknown on panel i , whereas

they take (0, 1 / 2) if the velocity potential is assigned at that panel.

Eq. ( 38 ) are written at the panel centroids, thus providing a system of

N 

−
F + N I + N 

−
N equations, with N 

−
F + 2 N I + N 

−
N unknowns. 

A similar system of equations is obtained for the right subdomain,

which is 

a i φ
+ 
i + 

N + N ∑ 

j= 1 
φ+ 

j d ij + 

N + N + N I ∑ 

j= N + N + 1 
φ−

n, j ∗ g ij + 

N −N + N I ∑ 

j= N + N + 1 
φ+ 

j d ij −
N + F ∑ 

j= 1 
φ+ 

n, j g ij 

= e i φ
+ 
i + 

N −N ∑ 

j= 1 
φ+ 

n, j g ij −
N −N + N I + N + F ∑ 

j= N + N + N I + 1 
φ−

j d ij , 

(39)

where N 

+ 
F in this case involves the free surface panels lying on both

free surface portions which are the vertical, x = 0, δ < y < 1, and

horizontal, 0 < x < 20, y = 1 ones. The third contribution in the left

hand side of Eq. (39) accounts for condition (34) at the interface. For

this reason, instead of φ+ 
n, j , it appears the term −φ−

n, j ∗ where j * denotes

the same panel as an element of the boundary of the minus subdomain

∂Ω −. With the numbering adopted in the two subdomains, it is j ∗ =
N 

−
F + N I + N 

+ 
N − j . Thanks to the use of that condition already in

the system, when Eq. (39) is written at the centroids of the panels

belonging to the boundary of Ω + , it yields a system of N 

+ 
F + N I + N 

+
N 

equations with N 

+ 
F + 2 N I + N 

+ 
N unknowns. 

In total, Eqs. (38) and (39) provide a system of N 

−
F + N 

+ 
F +

2 N I + N 

−
N + N 

+ 
N algebraic equations for N 

−
F + N 

+ 
F + 3 N I + N 

−
N + N 

+
N 

unknowns, as the relation (34) between the normal derivatives at the

interface have been already exploited. Additional N I equations are

added to the system by enforcing the continuity of the pressure at the

interface given by Eq. (35) , which gives 

φ+ 
i − γφ−

j = γ ( y j − δ) − ( y i − 1 ) , (40)



66 O. Yilmaz et al. / Applied Ocean Research 42 (2013) 60–69 

w

p

A

v

t

fl

p

i

t

w

c

s

r

a

t

T

t

t

t

A

o

t

a

F

ε

a

I

t

a

F

v

I

l

w

i

s

e

s

6

s

F

f

t

t

t

p

i

n

B

T

Fig. 5. Discretization adopted for the case δ = 0.5. Note that different scales have been 

adopted for the horizontal and vertical axes. 
here i and j , although referring to the same panel, differ as the 

anels are ordered in different way for the left and right subdomains. 

s already said, i and j are related by the following relation 

j = N 

−
F + N I + N 

+ 
N − i . 

The solution of the linear system composed by Eqs. (38) –(40) pro- 

ides the boundary values of the potentials and their normal deriva- 

ives and allows one to derive the velocity potential at any point of the 

ow domain by using the boundary integral representation. For the 

urpose of establishing a comparison, the distributions of the veloc- 

ty potentials along the free surface and at the left and right sides of 

he interface are used to compute the tangential velocity components 

hich, together with the normal derivatives of the velocity potential, 

ompletely describe the velocity field. 

A few words are deserved by the discretization adopted for the 

olution of the problem. The discretization is governed by two pa- 

ameters: the minimum panel size a m 

and the growth factor ε. There 

re three regions in the flow domain where the solution is expected 

o have sharp gradients, and where a careful discretization is needed. 

he problematic regions are located near the triple point (0, δ), at 

he bottom (0, 0), and at (0, 1). For the boundary portions arriving at 

hose points, the amplitude of the first panel is set equal to a m 

, and 

he growth factor ε is used to assign the size of the successive panels. 

s the number of panels is necessarily an integer, a small adjustment 

f the panel size can be needed. So, if L is the length to be discretized, 

he number of panel N needed for the discretization is such that 

 m 

+ a m 

ε + a m 

ε2 + · · · + a m 

εN−1 = a m 

1 − εN 

1 − ε
= L . 

rom the above equation we obtain 

N = 1 + 

L  

a m 

( ε − 1 ) 

nd then the number of panels to be adopted is 

N = 

log ( 1 + L  ( ε − 1 ) /a m 

) 

log ε
. 

n order to account for the truncation, the value of the amplitude a m 

o be adopted in the discretization is derived as 

 m 

= L  

ε − 1 

εN − 1 
. 

or the common interface between the two subdomains and for the 

ertical portion of the free surface, both ends have to be refined. 

n this case the boundary portion is split into two parts of the same 

ength, and the above procedure is applied to both portions. At the side 

alls, x = ± 20, ten panels are adopted to discretize the boundaries 

ndependently of the height. In the computations, the minimum panel 

ize is a m 

= 0.00001 and the growth factor is ε = 1.03. In Fig. 5 , an 

xample of the discretization adopted for the case with δ = 0.5 is 

hown. 

. Numerical results 

Computations of the velocity field and of the shapes of the two free 

urface portions and of the interface were performed using both the 

ourier series method (FSM) and boundary element method (BEM) 

or different values of density ratios γ and different depth ratios δ. In 

he computations by BEM, the minimum panel size is a m 

= 10 −5 and 

he growth factor is ε = 1.03. In the computations by FSM, M = 3000 

erms were retained in the system (20) with N equal to the integer 

art of 6000 /δ. It was found that the boundary conditions (7) on the 

nterface are most difficult to satisfy with good accuracy. Such a big 

umber of retained terms in FSM and such a small size of the panels in 

EM were dictated by the interface conditions and required accuracy. 

hree criteria are used to determine the sufficient number of modes 
in FSM: allowed proximity to the triple point along the interface, 

round off errors and the CPU time. The first criterion implies that 

the closer we get to the triple point, the more difficult it becomes 

to satisfy the condition of equality of the horizontal velocities at the 

interface, second equation in (7) . This is expected since the flow near 

the triple point is power-singular (see Section 4 ). The second criterion 

implies that as the number of modes increases, so does the number 

of equations, which leads to the round off error in the numerical 

solution. The third criterion implies the increase of CPU time with the 

increase in number of equations in the system (20) . By considering all 

of this M = 3000 seems to be the optimum value. With this value of 

M , for γ = 1 and δ = 0.5, the relative error in satisfying the boundary 

conditions (7) at y = δ − 0.001 is 3.3% and the CPU time is 1206.512 

s using a computer with 2.2 GHz CPU. Below the numerical results 

are presented for both horizontal and vertical velocities of the flows 

at the interface, the normal velocities of the free boundaries which 

come to the triple point, and for the coefficient E R of the singularity 

of the flow velocity at the triple point. 

Horizontal velocities at the interface φ+ 
x (0 , y), where 0 < y < δ, are 

shown in Fig. 6 for different depth ratios δ. 

Eq. (11) provides that the displacement of the interface is propor- 

tional to its horizontal velocity at each time instant. The horizontal 

velocity profiles computed by FSM and BEM are shown for eight val- 

ues of γ . It is seen that the agreement between the results by these 

two methods is very good, except for the case of γ = 10. We know 

from Section 4 that for very large values of γ the behaviour of the 

fluid on the left is that of dam-break flow at the leading order, which 

can not be recovered from the algebraic system (20) by setting γ = 

∞ . However when γ is small, say 0.01, the dam break flow of the 

right fluid is well recovered by setting γ = 0 in Eqs. (16) and (17) . It 

is seen that the horizontal velocity of the interface is log-singular at 

the bottom except when γ = 1, it tends to −∞ as y → 0 + , when γ

< 1, and to + ∞ when γ > 1. The horizontal velocity tends always 

to minus infinity when the triple point is approached from below. 

This singularity disappears when γ → 0. This implies that the initially 

vertical interface always turns to the left near the triple point, which 

is expected to be the origin of the jet-like flow started from this point, 

and resembles the dam-break flow close to the bottom (see Section 

4 , Eq. (29) ). The flow along the bottom for γ = 1 always directed to 

the left towards the region of smaller depth. 

The vertical velocities at the interface φ−
y (0 , y) and φ+ 

y (0 , y), where 

0 < y < δ, are shown in Fig. 7 for δ = 0.5 and different density ratios 

γ . In this figure only the FSM results are shown since the agreement 

with the BEM results is quite good. 
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Fig. 6. Horizontal velocities φ+ 
x (0 , y) of the interface as functions of the distance y along 

the interface from the bottom for δ = 0.1 (a), 0.5 (b), and 0.75 (c). In each figure, there 

are eight curves computed for γ = 0.01, 0.1, 0.25, 0.5, 1, 2, 4, 10 by the Fourier series 

method (solid lines) and boundary element method (dotted lines). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Vertical velocities φ+ 
y (0 , y) (solid lines) and φ−

y (0 , y) (dotted lines) of the flows 

along the interface as functions of the distance y from the bottom for δ = 0.5 and γ = 

0.01 (a), 1 (b), 4 (c). 

 

 

 

 

 

 

 

 

 

 

For small γ (see Fig. 7 a) the vertical velocity of the fluid on the right

is approximately −1, which follows from Eq. (7) , and the velocity of

the fluid on the left is positive and singular at the triple point as

predicted in [ 15 ]. Fig. 7 b shows that the vertical velocity in the case

of two identical fluids is very small everywhere except a vicinity of

the corner point ( δ, 0). For a heavier fluid on the left ( Fig. 7 c), the

vertical velocity of this fluid on the interface is negative (compare

with Fig. 7 a), and the vertical velocity of the lighter fluid on the right

is positive. Note that the vertical velocity on the free surface x = 0,

δ < y < 1 is negative. This implies that the flows below the triple

point and above this point collide at this point with expected jet flow

started at this point. Different vertical velocities φ−
y (0 , y) and φ+ 

y (0 , y)

at the interface indicate high shear stresses and hence instability of

the flow near the interface. 
Vertical velocities of the initially horizontal free surface y = δ, x <

0, are shown in Fig. 8 for δ = 0.5 and different density ratios γ . 

It is seen that for γ < 1 the vertical velocity is positive. This implies

that the corresponding free surface is deflected upwards where x <

0 and is singular at x = 0. For small γ the motion of the free surface

is that studied in [ 15 ] but for non-uniform speed of the vertical wall.

When γ is moderate, γ = 1, 2 in the figure, the free surface at a

distance from the interface goes down resembling the motion of the

free surface in the dam-break flow, but close to the triple point it goes

upwards indicating formation of the jet at the triple point. Note that

the results by FSM and BEM are different only for γ = 10. 

Horizontal velocities of the vertical free surface x = 0, δ < y < 1

are shown in Fig. 9 for δ = 0.5 and different density ratios γ . 
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Fig. 8. Vertical velocities φ−
y ( x, δ) of the free surface of the liquid on the left for δ = 0.5 

and γ = 0.01, 0.1, 0.25, 0.5, 1, 2, 4, 10 computed by the Fourier series method (solid 

lines) and boundary element method (dotted lines). 

Fig. 9. Horizontal velocities φ+ 
x (0 , y) of the initially vertical free surface of the liquid 

on the right for δ = 0.5 and γ = 0.01, 0.1, 0.25, 0.5, 1, 2, 4, 10 computed by the Fourier 

series method (solid lines) and boundary element method (dotted lines). 
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Fig. 10. The coefficient E 
( n ) 
R obtained from Fourier series analysis. The parameters are 

γ = 1, δ = 0.5. 

Table 1 

The coefficient E R in (25) predicted by the boundary element analysis for δ = 0.5 and γ

= 1. 

y u + E R 

0.498836 −2.785727 −0.586075 

0.499048 −2.986347 −0.587556 

0.499260 −3.258201 −0.589416 

0.499472 −3.667534 −0.592968 

0.499683 −4.311807 −0.587874 

0.499894 −7.403372 −0.699777 

0.500109 −14.658616 −0.699513 

0.500326 −8.435848 −0.580677 

0.500544 −7.231771 −0.590312 

0.500762 −6.434673 −0.587699 

 

It is seen that the horizontal velocity is negative for any γ . For 

mall γ the horizontal velocity is approximately that predicted by the 

am-break solution [ 17 ] with the liquid on the left being disregarded. 

ith increasing γ the horizontal velocity increases as it is seen in the 

gure. This is due to resistance of the fluid on the left for γ < 1 and 

ue to the flow of this fluid to the right when γ > 1. The horizontal 

peed is singular at y = δ for any value of γ > 0. Again, it is worth 

oticing that the results by FSM and BEM differ only for γ = 10. 

The coefficient E R of the singular term in Eq. (30) for the horizontal 

elocity of the interface is calculated as the limit (33) of E 

( n ) 
R when n 

 ∞ . The elements E 

( n ) 
R are plotted in Fig. 10 as a function of n for γ

 1 and δ = 0.5. 

The coefficients d n in (33) are obtained as the solutions of the FSM 

ystem (20) with M = 3000 and N = 12,000. Due to the end effect, 

he values of d n , where n is close to M , are not reliable. Fig. 10 shows

hat E 

( n ) 
R converges to −0.582 as n approaches 2000 but then diverges 

ue to the end effect. A similar result, −0.5877, follows from the 

EM computations summarised in Table 1 . In this table, horizontal 

elocities u + (0, y ) of the liquid free surface, x = 0, δ < y < 1, and

he interface, 0 < y < δ, are shown in the second column for different 

alues of the vertical coordinate y , in the first column, around the 

riple point for δ = 0.5 and γ = 1. Then Eqs. (25) and (26) were used 

o compute approximately the coefficient E R in (25) . 

We can see from Table 1 that the value of E R is around −0.5877 

xcept for the two points which are closest to the triple point (0, δ). 
Assuming that the asymptotic representation of velocities near the 

singular point is correct then we may conclude that the horizontal 

velocities for the closest two points around the singularity are not 

reliable in the numerical analysis. Moreover, the value −0.5877 is in 

very good agreement with the value −0.582 obtained from the Fourier 

series solution. 

To estimate the size a ( t ′ ) of the inner region near the triple point, 

where the linear solution obtained in this paper has to be corrected, 

we note that the velocity potentials ϕ ′ ± ( x ′ , y ′ , t ′ ) in (1) behave as 

ϕ ′ ±
(
x ′ , y ′ , t ′ 

) ∼ t ′ 
(
r ′ 

)1 −α (
r ′ → 0 

)
near the triple point, which follows from the local analysis and Eq. 

(25) . Here r ′ is the distance from the triple point and a ( t ′ ) → 0 as t ′ 

→ 0. In the inner variables with r ′ = a( t ′ ) ̃ r and ̃  r = O (1), we find the

following orders 

ϕ ′ ±t ∼ a 1 −α
(
t ′ 
)
, 

∣∣∇ϕ ′ ±
∣∣2 ∼ t ′ 2 a −2 α

(
t ′ 
)

of the two terms in the Bernoulli equation for the hydrodynamic 

pressure as t ′ → 0. To allow us to describe the jet formation in the 

inner region, these two terms must be of the same order. Then 

a 
(
t ′ 
) = t ′ k , k ( γ ) = 

2 

1 + α ( γ ) 
. 

Therefore, the inner flow close to the triple point is self-similar with 

respect to the variable ̃  r = r ′ t ′−k and nonlinear even for small time. The 

inner flow and the jet formation can be described only numerically. 

The inner problem is not considered in this paper. 

7. Conclusions 

The linear problem of the initial stage of dam break flow of two 

immiscible fluids has been solved by the FSM and the BEM. Com- 

parisons between the results of both methods show good agreement 
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except for the case when γ is very large, say 10, where the Fourier 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

series method has convergence problems. 

It is observed that the horizontal velocity of the interface is log-

singular at the bottom except when γ = 1. The horizontal velocity

tends always to minus infinity when the triple point is approached

from below. This singularity disappears when γ → 0. This implies

that the initially vertical interface always turns to the left near the

triple point, which is expected to be the origin of the jet-like flow

started from this point, and resembles the dam-break flow close to

the bottom. 

It is discovered that the flow singularity at the triple point is a

power singularity, r −α with α being dependent on the density ratio γ .

The higher the value of γ , the more singular the flow. For γ �= 1, the

fluids move in different directions at the interface causing shear stress

and instability [ 21 ]. The jet formation at the triple point is observed

by both methods. Fine details of the flow near the triple point are

described by the inner solution which is nonlinear and self-similar.

The inner problem will be investigated by the methods developed in

[ 13 ]. 
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