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The issue of laminar natural convection and conduction in enclosures divided by a partition

with different thicknesses is investigated numerically. The partition is accepted as conduc-

tive at different thermal conductivity ratio. The cavity is filled with air, and it is heated

differentially from vertical walls while horizontal walls are adiabatic. The problem is solved

for different values of Rayleigh number (103�Ra� 106), thickness ratio of the partition,

and thermal conductivity ratio (0.1�k� 10.0). It is found that both heat transfer and flow

strength strongly depend on the thermal conductivity ratio of the solid material of partition

and Rayleigh numbers.

1. INTRODUCTION

Buoyancy-induced flow and heat transfer in differentially heated enclosures is
important due to wide application areas in engineering. Among these applications,
double pane windows and doors, building materials, heating and cooling of build-
ings, heat exchanges, and solar collectors can be listed.

Conjugate natural convection in enclosures is also encountered in many engin-
eering systems in buildings, thick walled structures, internal combustion engines, and
thick walled pipes. Kaminski and Prakash [1] analyzed the conduction–natural con-
vection problem in an enclosure. Ben Yedder and Bilgen [2] analyzed the turbulent
natural convection and conduction in enclosures bounded by a massive wall. Varol
et al. [3] studied the entropy generation due to conjugate natural convection heat
transfer and fluid flow inside an enclosure bounded by two solid massive walls from
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vertical sides at different thicknesses. The same researchers analyzed the inclination
angle effects on conjugate natural convection in square-cross-sectional inclined enclo-
sures [4]. They observed that inclination angle and other governing parameters were
also used as control parameters for heat and fluid flow. Sanchez et al. [5] carried out
numerical and experimental analyses for conjugate natural convection in a square
cavity heated from below. They used the particle image velocimeter (PIV) technique
to obtain the velocity field inside the enclosure. Similar studies related to conjugate
natural convection [6–9] for different geometry can be found in the literature.

A divider can be a control parameter for natural convection heat and fluid flow
in an enclosure; This is why the partitions are mostly used to control heat transfer
inside the enclosure. Nuclear reactors, wall bricks, and cryogenic storage are some
examples for this application. A study was performed by Turkoglu and Yucel [10]
to investigate natural convection in an enclosure with conducting multiple partitions.
Kahveci [11] investigated natural convection in a partitioned air-filled enclosure
heated with a uniform heat flux using the differential quadrature method. He found
that the average Nusselt number increases with the decrease of thermal resistance of
the partition, and partition thickness has little effect on heat transfer. The similar
geometry was used in his studies under different thermal boundary conditions [12,
13]. Ho and Yih [14] performed a numerical analysis on conjugate natural convec-
tion in air-filled rectangular cavities. Their results indicated that the heat transfer
rate is considerably attenuated in the partitioned cavity compared to the non-
partitioned cavity. Tong and Gerner [15] made a numerical study on natural convec-
tion in partitioned rectangular cavities with a vertical partition and filled with air,
and found that partitioning is an effective method of reducing heat transfer. Kangni
et al. studied conjugate natural convection in enclosures having multiple partitions
with finite thickness [16].

NOMENCLATURE

a thickness of top separator wall

b thickness of bottom separator wall

h dimensional heatfunction, heat transfer

coefficient, W=m2k

H dimensionless heat function

g gravitational acceleration, m=s2

Gr Grash of Number
~ii,~jj cartesian unit vectors

~JJ total heat flux vector

k thermal conductivity ratio, ks = kf
l distance of partition in the x–direction

(L = 2), m

L length of enclosure, m

Nu mean Nusselt number

Nu local Nusselt number

Pr Prandtl number

Ra Rayleigh number

T temperature, K

u, v dimensional velocities, m=s

U, V dimensionless velocities

w height of bottom separator wall

W height of enclosure, m

X, Y dimensionless coordinates

t kinematic viscosity, m2=s

h nondimensional temperature

X nondimensional vorticity

b thermal expansion coefficient, K�1

a thermal diffusivity, m2=s

W nondimensional streamfunction

w dimensional streamfunction

x dimensional vorticity

qcp thermal capacitance

Subscripts

A air

S solid

F fluid

C cold

H hot
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The heatline method can be used to illustrate the path of heat flow [17]. Kaluri
et al. [18] studied natural convection with the heatline method in right-angled tri-
angular enclosures. They investigated aspect-ratio, Pr number, and Rayleigh number
effects on heat and fluid flow inside the enclosure. Dalal and Das [19] used the heat-
line method for a two-dimensional cavity with a wavy right vertical wall. They stud-
ied a wide range of Rayleigh numbers (100-106). Laminar natural convection in a
square cavity with distributed heat sources was studied by Kaluri et al. [20]. They
found that heatlines a suitable guidelines to assemble discrete heat sources. Natural
convection in trapezoidal enclosures with the heatline method was studied by Basak
et al. [21]. Uniformly and nonuniformly heated bottom wall effects on heat and fluid
flow were investigated by the researchers. They found that the average heat transfer
rate does not vary significantly for nonuniform heating of bottom wall. The same
geometry with different boundary conditions was also studied [22]. Mobedi and
Oztop [23] studied conjugate heat transfer in an enclosure with a thick solid ceiling
using the heatline method. They investigated thermal conductivity ratio effects on
heat and fluid flow. Conjugate heat transfer in a square enclosure using the heatline
concept was studied by Deng and Tang [24]. Natural convection in a triangular
enclosure filled with porous media was investigated by Varol et al. [25]. They used
dimensionless heatfunction to visualize the heat transport due to buoyancy forces.
The researchers investigated the same problem with a different application [26].

The main aim of this work is to present the effects of a differentially thickness
changed conductive partition on natural convection heat transfer in an enclosure by
using Bejans’ heatline technique. The cavity is filled with air and it is enclosed in a
square cavity with a hot left wall, cold right wall, and adiabatic horizontal walls.
A detailed literature survey showed that most of the studies on a natural convection
partitioned cavity have been performed by assuming a fixed partition thickness.
Thus, the present study involves application of a partition with variable thickness
and contributes new information to the literature.

2. DEFINITION OF THE PHYSICAL MODEL

The solid model of the considered geometry is shown in Figure 1a. The red and
blue walls indicate the hot and cold walls of the enclosure, respectively. The enclos-
ure is too long and the problem can be reduced into 2-D natural convection heat
transfer by neglecting the end effects. The 2-D square enclosure with height of W
and width of L (W¼L) is shown in Figure 1b. Both side of the partition are filled
with air. The cavity is heated from the left vertical wall and cooled from the right,
while the top and bottom walls are adiabatic. The cavity is divided by a wall with
different thickness and thermal conductivity (kS). The thickness of the half bottom
side of the partition is greater than the upper half. In other words, the thickness
of the bottom wall is different than the upper wall. The ratio b=a, indicates the thick-
ness ratio of the partition where a and b are the thickness of top and bottom separ-
ator walls. The partition is located at the middle of the enclosure (w), and it is not
changed throughout the present study. It should be noted that there is no mixing
between right and left regions of the cavity, and the middle impermeable wall com-
pletely separates the left and right regions. However, heat can be exchanged between
the right and left regions via the middle wall.
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3. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

The studied flow is laminar, incompressible, and steady-state and fluid proper-
ties are assumed to be constant except density. The effect of buoyancy is included via
the well-known Boussinesq’s approximation. As previously mentioned, the depth of
the enclosure is assumed to be long enough so that the airflows may be conceived
with 2-D motion. It is assumed that the walls of the enclosures and partition are
solid and impermeable. The viscous dissipation and radiation effects are neglected.
The gravity acts in a vertical direction. The vorticity-streamfunction approach is
used to determine velocity field in the cavity. For a two-dimensional flow under
the above assumption, the dimensionless form of vorticity and streamfunction can

Figure 1. Views of the studied cavity. a) solid model and b) 2-D model (color figure available online).
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be written as follows.

q2X
qX 2

þ q2X
qY 2

¼ 1

Pr

qW
qY

qX
qX

� qW
qX

qX
qY

� �
�Ra

qh
qX

ð1Þ

q2W
qX 2

þ q2W
qY 2

¼ �X ð2Þ

where W and X are dimensionless streamfunction and vorticity. They are defined as
follows.

W ¼ wPr
t

;X ¼ xðLÞ2Pr
t

ð3Þ

w and xare dimensional streamfunction and vorticity.

u ¼ qw
qy

; v ¼ � qw
qx

ð4Þ

x ¼ qv
qx

� qu
qy

� �
ð5Þ

The energy equation for fluid that moves in the cavity can be written as follows.

q2h
qX 2

þ q2h
qY 2

¼ qW
qY

qh
qX

� qW
qX

qh
qY

ð6Þ

For the partition which separates the cavity into two equal parts, the energy equation
can be written as follows.

q2h
qX 2

þ q2h
qY 2

¼ 0 ð7Þ

The following parameters are used to make the above heat and fluid flow equations
nondimensionalized.

X ¼ x

L
; Y ¼ y

L
;W ¼ wPr

t
;X ¼ xðLÞ2Pr

t
; h ¼ T � TC

TH � TC

Pr ¼ t
a
;Gr ¼ gbL3ðTH � TCÞ

t2
Ra ¼ Gr � Pr

ð8Þ

Equations (1), (2), (6), and (7) are elliptic type partial differential equations, and they
require boundary conditions in order to be solved. Considering Figure 1b, the bound-
ary conditions for these equations can be written as follows.

On the hot wall : W ¼ 0; X ¼ � q2W
qX 2

; h ¼ 1 ð9Þ
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On the cold wall : W ¼ 0; X ¼ � q2W
qX 2

; h ¼ 0 ð10Þ

On adiabatic walls : W ¼ 0; X ¼ � q2W
qY 2

;
qh
qY

¼ 0 ð11Þ

On the right interface and left sides of the partition; i:e:; X ¼ L

2
� e
2

� �
:

k
qh
qX

����
S

¼ qh
qX

����
F

ð12Þ

where e is b for lower and a for upper part of partition. The symbol of k is the thermal
conductivity ratio (ks = kf).

4. HEATFUNCTION

For a two-dimensional steady and incompressible heat and fluid flow without
heat generation, the components of the heat flux vector, containing the diffusion and
convection transport in x and y directions, can be written as follows.

Jx ¼ ðqcpÞ u ðT � TcÞ � k
qT
qx

ð13Þ

Jy ¼ ðqcpÞvðT � TcÞ � k
qT
qy

ð14Þ

where Tc is the reference temperature, and qcp and k are thermal capacitance and

thermal conductivity ratio of fluid. The total heat flux vector,~JJ, is the vectorial
sum of the two heat flux components:

~JJ ¼ Jx~ii þ Jy~jj ð15Þ

The vectors ~ii and ~jj represent Cartesian unit vectors. Application of energy
conservation law on a finite volume in the flow field and considering the heat flux
definition (Eqs. (13) and (14)) yields the energy equation for the fluid flow.

qJx
qx

þ qJy
qy

¼ ðqcpÞ
quT
qx

þ qvT
qy

� �
� k

q2T
qx2

þ q2T
qy2

 !
¼ 0 ð16Þ

By defining h as a continuous scalar function, the dimensional heatfunction can be
written in a differential form [23].

� qh
qx

¼ Jy;
qh
qy

¼ Jx ð17Þ

By substituting Eq. (17) into Eqs. (13) and (14), taking derivatives with respect to y
and x, and subtracting the resulting equations from each other, a partial differential
equation for the heatfunction can be obtained.

q2 h
qx2

þ q2h
qy

¼ ðq cpÞ
quT
qy

� qvT
qx

� �
ð18Þ
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The convection term which appears on the right side of Eq. (18) acts as a source
term. It should be mentioned that the defined heatfunction h includes both the dif-
fusion and convection modes of heat transfer. The solution of Eq. (18) yields the
values of the dimensional heatfunction for the all nodes of a computational domain,
and contour plots of the heatfunction values provide dimensional heatline patterns.
By employing the dimensionless parameters presented by Eq. (11), the dimensionless
heatfunction can be written as follows.

� qH
qX

¼ Vh� qh
qY

ð19Þ

qH
qY

¼ Uh� qh
qX

ð20Þ

where H is the dimensionless heatfunction as follows.

H ¼ h

ðTh � TcÞkf
ð21Þ

By performing the mathematical manipulations similar to the procedure for obtain-
ing Eq. (18) from Eqs. (13) and (14), the following dimensionless heatfunction equa-
tion can be obtained from Eqs. (19) and (20).

q2H
qX 2

þ q2 H
qY 2

¼ qUh
qY

� qVh
qX

� �
ð22Þ

For the solid region, since there is no velocity field and conduction heat transfer
is the only mechanism of heat transfer, the heatfunction equation becomes as follows.

q2H
qX 2

þ q2H
qY 2

¼ 0 ð23Þ

The boundary conditions for the dimensionless heatfunction equation (Eqs. (22) and
(23)) are obtained from the integration of Eqs. (19) and (20) along the considered
boundary. For instance, the following equation can be used to determine the values
of heatfunction at the left wall of the cavity [23].

For X ¼ 0 ; 0 < Y � 1 Hð0;Y Þ ¼ Hð0; 0Þ �
ZY
0

qh
qX

����
X¼0

dY ð24Þ

The same rule can be used for the interface between the solid partition and fluid. For
example, the values of heatfunction for the left lower part of the wall can be obtained
from the following relation.

For Xl ¼
1

2
� 1

2

L

b
; 0 < Y � 1

2
HðXl ;YÞ ¼ HðXl ; 0Þ �

ZY
0

qh
qX

����
X¼l

dY ð25Þ
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The value of heatfunction at the upper and lower adiabatic walls is not changed since
no heat flux exists at the upper and bottom walls. The value of heat flux at the origin
is assumed as zero, H (0, 0)¼ 0.

5. HEAT TRANSFER RELATIONS

5.1. Mean Nusselt Number

The average heat transfer coefficient h can be represented in dimensionless
form by defining a proper Nusselt number. The local Nusselt number is found for
the hot and cold sides of the partition which separates the enclosure.

Nu ¼ qh
qX

����
X¼ðL=2Þ�ðe=2Þ

hotsideð Þ ð26Þ

Nu ¼ qh
qX

����
X¼ðL=2Þþðe=2Þ

coldsideð Þ ð27Þ

The mean Nusselt number of each side can be determined from the following
equation.

Nu ¼
Z1
0

Nu � dy ð28Þ

5.2. Numerical Method

The numerical method used in the present study is based on the finite difference
method. The governing equations (Eqs. (1)–(9)) are discretized, and the set of
algebraic equations are solved using the successive under relaxation (SUR) tech-
nique. A regular grid was used for the whole computational domain. The central dif-
ference method is applied for discretization of equations. The convergence criterion

Figure 2. Grid test at Ra¼ 106 for k¼ 0.1: a) hot side and b) cold side (color figure available online).
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is chosen as 10�4 for all depended variables and 0.1 is taken for the under-relaxation
parameter. In the study, a regular grid is used and the grid dimension was taken as
101� 101. Figures 2a and 2b show the variation of average Nusselt number of the
hot and cold sides of the partition with the number of the grids for an enclosure with
k¼ 0.1 when Ra¼ 106. As seen, the 101� 101 number of grid is sufficient to obtain
accurate results for the problem.

5.3. Validation of Numerical Code

Validation of the present code was performed by considering two different
studies from the available literature by Kaminski and Prakash [1] and Sanchez
et al. [5]. In their work, the cavity is filled with a single viscous fluid and bounded
by single or double walls with finite length and different thermal conductivity. A
comparison between these studies and our code is performed, and the results are
listed in Table 1. As seen from the table, the obtained results show good agreement
with the results reported in the literature.

6. RESULTS AND DISCUSSION

Numerical results for natural convection heat transfer for a divided square
cavity by partition having different thicknesses are described here. As mentioned
above, the governing parameters are Rayleigh numbers, thickness ratio of the par-
tition, and thermal conductivity ratio between solid and the fluid. The results are
shown with streamlines, isotherms, heatlines, and velocity profiles. The heatline
method can be used to illustrate the path of convection heat flow, and streamlines
give an idea of flow pattern. The air is chosen as a working fluid having Pr¼ 0.7.

Streamlines (on the left), isotherms (on the middle), and heatlines (on the right)
at different Rayleigh numbers for b¼ 3a when k¼ 1.0 are presented in Figures 3a–3d.
Figure 3a shows streamline, isotherm, and heatline patterns for Ra¼ 103. The convec-
tion effect is small due to a small value of Rayleigh number, and egg-shaped cells were
formed in the left and right chests with wmin¼�0.19 and wmin¼�0.14, respectively.
These two cells rotate in a clockwise direction. The partition behaves as a forward
facing step (based on flow rotation direction), and the flow follows the step on the left
side due to high velocity. At the right chest, the strength of the flow becomes smaller
due to low interaction between the hot and cold walls. For the whole cavity, the

Table 1. Comparison of the values of mean Nusselt number for the square

cavity with a differentially heated cavity for conjugate hat transfer from

Sanchez et al. [5] and Kaminski and Prakash [1]

Gr k

Nu (Sanchez

et al. [5])

Nu (Kaminski

and Prakash [1]) Nu (present)

105 5 2.078 2.08 2.187

105 25 3.49 3.42 3.394

106 5 2.80 2.87 2.741

106 25 5.91 5.89 5.815
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Figure 3. Streamlines (left), isotherms (middle), and heatlines (right) at different Rayleigh numbers for

b¼ 3a, k¼ 1.0 a) Ra¼ 103, b) Ra¼ 104, c) Ra¼ 105, and d) Ra¼ 106 (color figure available online).
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isotherms are almost parallel to the differentially heated wall, since k¼ 1 and conduc-
tion mode of heat transfer becomes dominant. For the same reason, heatline patterns
are parallel to the horizontal walls, showing almost one-dimensional heat transfer
from hot to the cold plate. At Ra¼ 104, the isotherms become almost diagonal and
they are distorted from the vertical pattern by increasing the Rayleigh number. The
increase of convective effect, increasing the strength of the flow, and the magnitude
of streamfunction values are increased in the right and left regions. The increase of
Rayleigh number from 103 to 104 also changes heatline patterns due to increasing flow
velocity. The path of the heat from the hot to the cold wall is colored by light green.
Heat is transferred from the hot wall to air and the warm air flows up due to a buoy-
ancy effect. Then, it flows horizontally in the top region of the left part of the cavity.
Heat flows downward since the left surface of the partition is colder than circulated
air. Heat of circulated air is transferred to the middle wall and passes through the
middle wall. The air of the right part of the cavity receives heat and it flows up due
to a buoyancy effect. Similarly, air flows parallel in the top region of the left part
and then it moves down and releases heat to the cold wall. As seen from heatline dis-
tribution, two regions exist in the cavity. In the first region, shown in gray, heat is
transferred from the left to the right wall. It is the active region and the continuous
heatline from the left to right wall can be seen. The second region, which is in white,
is the passive region. In this region, heat rotates and a heat vortex occurs. Although
the heatlines in this region is continuous, they do not cross the left and right walls. The
whole of the middle wall is in active regions. The increase of Rayleigh number from
Ra¼ 104 to Ra¼ 105 increases the velocity gradient in the cavity and, therefore, the
magnitude of streamfunction increases. Isotherms in the center of the left and right
parts of the cavity become parallel to the horizontal wall. Heatline is squeezed in
the top regions of the right and left parts. Most of left and right parts are not colored
indicating heat circulation in these regions. It should be mentioned that the difference
between the maximum values of heatfunction increases with an increase of Rayleigh
number, showing the increase of heat transfer from the hot to cold wall. By increasing
Rayleigh number from Ra¼ 104�105, the increase of the difference between the
maximum and minimum heatfunction values can be observed. For high values of
Rayleigh number, heatlines patterns are more squeezed in the top regions and heat
transfer from the left to the right wall increases. As seen, the passive area in which
heat in circulated are also expanded.

Figure 4 shows streamlines (on the left), isotherms (on the middle) and heatlines
(on the right) at different thicknesses of partition for k¼ 10 and Ra¼ 105. In this case,
the thin part is taken as fixed but the thickness of the bottom part is changed. When
the figures are compared, it is observed that the increase of the bottom side of the mid-
dle wall does not have an important influence on streamline, isotherm, and heatline
patterns. As seen from the figure, two circulation cells are formed in each chest of
the enclosure. Both of them rotate in a clockwise direction. The thickness of the par-
tition affects the flow strength. Lower flow strength is formed with higher partition
thickness. In all cases, values of streamfunction become the same at each chest. As
an expected result, the conduction mode of heat transfer becomes effective at the
lower part of the enclosure. Partition thickness is not an effective parameter on hea-
tlines. Heatline patterns in the wall also prove a two-dimensional heat transfer in the
wall, since it is not horizontal. If the heatline patterns and isotherms in the middle wall
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are observed carefully, it can be seen that heatline patterns are perpendicular to the
isotherms since no convection effect exists in the wall.

Figure 5 is presented to observe the effect of the thermal conductivity ratio on
the heat and fluid flow in the cavity. It shows the streamlines, isotherms, and hea-
tlines inside a cavity for different thermal conductivity ratio (k) when b¼ 2a and
Ra¼ 106. The flow strength becomes stronger in the left side than that of the right
side. In this case, the partition becomes an adiabatic wall and heat transportation
from the left to right wall becomes very weak. Thus, values of heatlines become very
low at the right chest for k¼ 0.1. The extreme value of heatlines decreases in the left
side with increasing thermal conductivity due to energy transformation from left to

Figure 4. Streamlines (left), isotherms (middle), and heatlines (right) at different thicknesses of partition

for k¼ 10, Ra¼ 105 a) b¼ 2a, b) b¼ 3a, and c) b¼ 4a (color figure available online).
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right. Isotherms are distributed as parallel to vertical walls inside the partition. In
this case, heatlines inside the partition are parallel to horizontal walls. This indicates
the full conduction heat transfer inside the partition (Figure 5a. Thus, the effects of
the step are identical in both sides of the chests. Flow strength becomes very high
with increasing the thermal of thermal conductivity. Each chest behaves as a separate
cavity for k¼ 10.0.

Variation of velocity profiles is presented for Ra¼ 103(on the left) and
Ra¼ 105(on the right) at the mid-section in a vertical way for different thicknesses
of the partition for different values of thermal conductivities in Figure 6. Velocity
profiles exhibit almost the same behavior for all values of thickness of the partition

Figure 5. Streamlines (left), isotherms (middle), and heatlines (right) for different thermal conductivity

ratios (k) for b¼ 2a, Ra¼ 106. a) k¼ 0.1, b) k¼ 1.0, and k¼ 10.0 (color figure available online).
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at k¼ 0.1 and 1.0. However, the lower values (in the left chest) and higher values (in
the right chest) are obtained for k¼ 10.0. Higher values are obtained for Ra¼ 105.
However, trends for velocity profiles are almost the same in the case of Ra¼ 103.
Nevertheless, the maximum velocity was observed in Ra¼ 105, k¼ 10, and b¼ 4a
(Figure 6c). Variation of Rayleigh number becomes insignificant on locations of
maximum and minimum values of velocity profiles.

Variations of the local Nusselt number on the hot and cold sides of the middle
wall for different thicknessess of the partition are presented in Figures 7 and 8,

Figure 6. Comparison of velocity profiles for Ra¼ 103 (on the left) and Ra¼ 105 (on the right) at the

mid-section in a vertical way for different thicknesses of the partition. a) k¼ 0.1, b) k¼ 1.0, and

c) k¼ 10.0 (color figure available online).
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respectively. These figures are presented to show effects of partition thickness,
Rayleigh number (Ra¼ 103 (on the left) and Ra¼ 105 (on the right), and dimension-
less thermal conductivity values at the mid-section in a vertical way. As seen from the
figures, the variation of the local Nusselt number exhibits different trends for left and
right chests. Variation of thickness of the partition becomes insignificant in the right
chest for k¼ 0.1 for Ra¼ 103 and k¼ 1.0 at Ra¼ 105. Conduction mode of heat
transfer becomes dominant for Ra¼ 103 and k¼ 1.0 for Figure 6b. For Ra¼ 103,
the local Nusselt number in Y direction does not highly change since the conduction
mode of heat transfer is dominant in the region. For the Ra¼ 105, k¼ 10 case, a mini-
mum local Nusselt number occurs at the bottom of the partition and a maximum
forms at the top of the wider partition where Y¼ 0.5. As an expected result, higher
heat transfer is formed in both chests for higher values of Rayleigh number and

Figure 7. Variation of the hot side local Nusselt number for Ra¼ 103 (on the left) and Ra¼ 105 (on the

right) along the hot wall for different thicknesses of the partition. a) k¼ 0.1, b) k¼ 1.0, and c) k¼ 10.0

(color figure available online).
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thermal conductivity ratio. Similarly to the velocity distribution, a maximum local
Nusselt number was observed for the hot side in Ra¼ 105, k¼ 10, and b¼ 4a
(Figure 7c). Figure 8 illustrates the variation of local Nusselt number for the cold side
of the partition. For the cold side, the variation of the local Nusselt number, a higher
value was seen in k¼ 0.1 due to higher heat transfer in the cold side and lower con-
ductivity ratio.

Figure 9 shows variation of the mean Nusselt number at the hot side of the par-
tition as a function of the Rayleigh number at different parameters of conductivity
ratio and thickness of partition for the hot and cold sides, respectively. The mean
Nusselt numbers for both the hot and cold sides increase with increasing Rayleigh
numbers due to increasing kinetic energy with incoming energy into the system.
Higher heat transfer values are obtained at higher conductivity ratio k¼ 10

Figure 8. Variation of the cold side local Nusselt number for Ra¼ 103 (on the left) and Ra¼ 105 (on the

right) along the cold wall for different thicknesses of the partition a) k¼ 0.1, b) k¼ 1.0, and c) k¼ 10.0

(color figure available online).
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(Figures 9a–9c). It is shown in the figure, the heat transfer regime is conduction for
k¼ 0.1, since the mean Nusselt number is not changed with Rayleigh number. The
change of partition thickness at the lower region does not have an important effect

Figure 9. Variation of mean Nusselt number with Rayleigh number at different conductivity ratio (k) for

the hot side a) b¼ 2a, b) b¼ 3a, and c) b¼ 4a (color figure available online).
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on the average Nusselt number of the partition. Figure 10 shows the change of mean
Nusselt number of the partition cold side with Rayleigh number for different values of
thermal conductivity ratio and partition thickness. For k¼ 0.1, a uniform distribution
is observed for the mean Nusselt number at the cold side since no motion of fluid

Figure 10. Variation of mean Nusselt number with Rayleigh number at different conductivity ratio (k) for

the cold side. a) k¼ 0.1, b) k¼ 1, and c) k¼ 10 (color figure available online).
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exists in the right region. By increasing thermal conductivity ratio from 0.1 to 1, air
motion in the right cavity increases and thus the transfer of heat from the partition to
the cold wall is improved. That is why the mean Nusselt number of the cold side of the
partition increases particularly for high values of Rayleigh number. Further increase
in thermal conductivity ratio from 1 to 10 also enhances the heat transfer rate
(Figure 10c). The interesting point is that the change of the partition thickness at
the lower region of the cavity does not have any effect on the heat transfer rate
through the cavity. As shown in the figure, the study is important for higher Rayleigh
numbers and for lower thermal conductivity ratio. It shows us that there is an optimal
result for both flow and geometrical parameters. Future work can be extended for
further parameters, such as partition location and different working fluids.

7. CONCLUSION

A numerical study has been performed to analyze the natural convection
heat transfer, fluid flow, and heatline visualization in a gradually divided square
enclosure. Important findings from the studied work are listed as follows:

. Thickness ratio is important for higher Rayleigh numbers.

. Thermal conductivity ratio plays an important role on heat transfer and distri-
bution of temperature, velocity, and heatline. Mean Nusselt number increases
with Rayleigh number and thermal conductivity ratio. It increases 100% with
thermal conductivity ratio.

. For lower thermal conductivity, heat transfer becomes almost the same, but
higher heat transfer is obtained with increasing thickness ratio.

. The partition behaves as backward or forward facing step flow in a vertical wall
according to flow rotating motion. The change of thickness ratio from 2 to 4 does
not influence streamlines, isotherms, and heatline patterns in the cavity.

. For low values of Rayleigh number, heat flows horizontally due to domination of
conduction heat transfer. By increasing the Rayleigh number, heatline patterns
are distorted and convection influences heatline patterns both in the right and left
parts of the cavity.

. Heatline patterns and isotherms are perpendicular to each other in the partition
since no convection exists.

. The heatline method shows the path of heat flow in the partition and understand-
ing of the mechanism of heat transfer in the cavity becomes easier. The continu-
ation of the heat transfer path from the left to right parts can be seen by using
heatline patterns.
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