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Zero-energy states of graphene triangular quantum dots in a magnetic field
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We present a tight-binding theory of triangular graphene quantum dots (TGQD) with zigzag edge and broken
sublattice symmetry in an external magnetic field. The lateral size quantization opens an energy gap, and broken
sublattice symmetry results in a shell of degenerate states at the Fermi level. We derive a semianalytical form for
zero-energy states in a magnetic field and show that the shell remains degenerate in a magnetic field, in analogy
to the zeroth Landau level of bulk graphene. The magnetic field closes the energy gap and leads to the crossing of
valence and conduction states with the zero-energy states, modulating the degeneracy of the shell. The closing of
the gap with increasing magnetic field is present in all graphene quantum dot structures investigated irrespective
of shape and edge termination.
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I. INTRODUCTION

Graphene currently attracts considerable attention due to
remarkable electronic and mechanical properties.1–11 When
graphene is reduced to graphene nanostructures, new effects
related to size-quantization and edges appear.11–13 Consider-
able experimental effort has been made aiming at producing
graphene nanostructures with desired shape and edges.14–32

Among graphene nanostructures, nanoribbons and quantum
dots are of particular interest. In graphene quantum dots,
a size-dependent energy gap opens,33–35 and its magnitude
is determined by shape and edge termination. In graphene
quantum dots with zigzag-type edges, edge states with energy
in the vicinity of the Fermi energy appear.5,33,36–46 These
edge states have significant effects on low-energy electronic
properties such as a decrease of the energy gap compared to
structures with armchair termination or, when combined with
broken sublattice symmetry, a creation of the degenerate shell
of zero-energy states in the middle of the energy gap.33,40–49

It was shown that the degenerate shell survives when various
types of disorder are present in the system.44–47

The influence of an external magnetic field on the elec-
tronic properties of the graphene quantum dots was also
studied.18,34,50–63 The magnetic field plays the role of a
tunable external parameter allowing to change electronic
properties in a controllable way. Graphene quantum dots
and rings with circular, square, hexagonal, triangular, and
rhombus-shaped shapes with zigzag and armchair edges
were investigated.18,53–55,57–61 Triangular graphene quantum
dots with reconstructed edges, consisting of a succession
of pentagons and heptagons, were also considered.62 The
comparison between the tight-binding and the continuum
model, the Dirac-Weyl equation, was analyzed for graphene
quantum dots with different type of edges: zigzag, armchair,
and infinite-mass boundary conditions.59–61 For a circular
dot, good qualitative agreement between experiment and
the analytical model with infinite-mass boundary condi-
tions was obtained.18,52 Magneto-optical properties were also
theoretically investigated.34,59 The absorption spectra differ
for hexagonal structures with armchair and zigzag edges due
to the different level structures and the oscillator strengths.
A fast reduction of the energy gap with increasing magnetic

field in zigzag hexagon in comparison with zigzag triangle was
noted.59,60

In this work, we present a tight-binding theory of triangular
graphene quantum dots (TGQD) with zigzag edge and broken
sublattice symmetry in an external magnetic field. The lateral
size quantization opens an energy gap and broken sublattice
symmetry results in a shell of degenerate states at the Fermi
level. Building on our previous work,45 we derive here a
semianalytical form for zero-energy states in a magnetic field
and show that the shell remains degenerate at all magnetic
fields perpendicular to the plane of the TGQD, in analogy to
the zeroth Landau level of bulk graphene. However, we find
that the magnetic field closes the energy gap and leads to the
crossing of valence and conduction states with the zero-energy
states, modulating the degeneracy of the shell. The closing of
the gap with increasing magnetic field is present in all graphene
quantum dot structures investigated irrespective of shape and
edge termination.

The paper is organized as follows. In Sec. II, we present a
brief outline of the tight-binding model with an incorporation
of a perpendicular magnetic field. The analysis of the evolution
of the energy spectra of TGQD, a derivation of the analytical
form for eigenfunctions corresponding to zero-energy states,
and a prediction of crossings of valence and conduction states
with the zero-energy Fermi level E = 0 are included in Sec. III.
In Sec. IV, the energy gap in a magnetic field for GQDs
with different shapes and edge termination is considered. The
conclusions are presented in Sec. V.

II. MODEL

We describe graphene quantum dots using the nearest-
neighbor tight-binding model, which has been successfully
used to describe graphene1 and applied to other graphene
materials such as nanotubes, nanoribbons, and quantum
dots.33,36,39–42,45,64 A perpendicular magnetic field can be
incorporated by using Peierls substitution.65 The Hamiltonian
reads

HTB = t
∑

〈i,j〉,σ
(eiϕij a

†
iσ bjσ + e−iϕij b

†
jσ aiσ ), (1)
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where t is hopping integral, a
†
iσ (b†iσ ) and aiσ (biσ ) are creation

and annihilation operators on a site i corresponding to
sublattice A(B) of bipartite honeycomb lattice, 〈i,j 〉 indicate
summation over nearest neighbors, and σ is the spin index. The
hopping integral between nearest neighbors is t = −2.8 eV.11

Under symmetric gauge, the vector potential is A =
Bz/2(−y,x,0) and

ϕij = 2π
e

hc

∫ rj

ri

Adl = 2π
Bz

2φ0
(xiyj − xjyi) (2)

corresponds to a phase accumulated by an electron going from
site i to j , which is equal to a magnetic flux going through the
area S = xiyj −xj yi

2 spanned by vectors ri and rj , and φ0 = hc
e

is the magnetic flux quantum. The evolution of the energy
spectrum in a magnetic field will be shown in units of the
magnetic flux threading one benzene ring, φ/φ0 = BzS0/φ0,
where S0 = 3

√
3a2

0/2 is the benzene ring area with a0 =
1.42 Å.

III. ZIGZAG TRIANGULAR QUANTUM DOT IN A
MAGNETIC FIELD

A. The evolution of the energy spectrum

We focus here on the effect of the magnetic field on the
electronic properties of TGQDs quantum dots with broken
sublattice symmetry. We illustrate the energy spectrum and
its evolution with increasing magnetic field on a TGQD with
N = 97 carbon atoms. Figure 1 shows the energy spectrum
and its evolution in the magnetic field obtained by numerical
diagonalization of Hamiltonian (1).

At B = 0, there are Ndeg = 7 degenerate states at zero-
energy or Fermi level. The number of states is equal to the
difference between the number of A and B atoms.45 The states
belonging to the degenerate shell are primarily localized at the
edge of the triangle and are entirely localized on one sublattice,
say A, as shown in Fig. 2(c).

The evolution of the energy spectrum as a function of the
magnetic field is shown on the right-hand side of Fig. 1. The
spectrum is symmetric with respect to E = 0 due to electron-
hole symmetry. This symmetry is broken when hoppings to
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FIG. 1. (Left) Energy spectrum of triangular graphene quantum
dot with N = 97 atoms and Ndeg = 7 degenerate zero-energy states
in the absence of a magnetic field. (Right) Evolution of the spectrum
from the left in a magnetic flux. The degenerate zero-energy shell is
immune to the magnetic field. The states from the conduction and
valence bands, labeled by I and II, respectively, cross at φ/φ0 =
1/(Ndeg + 2) � 0.11 (Bz � 4342 T), closing the energy gap.
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FIG. 2. The evolution of electronic densities in a magnetic field
of the lowest state from the conduction band labeled by I , (a) and
(b), and the degenerate shell of Ndeg = 7 energy levels (the sum of
electronic densities of all Ndeg = 7 degenerate states), (c) and (d).
The radius of gray circles is proportional to the electronic probability
density on a given site. (a) The state I for φ/φ0 � 0.01 (Bz � 395 T)
is mostly localized in the center of the dot and with increasing
magnetic field starts to occupy also edges, shown for φ/φ0 � 0.08
(Bz � 3158 T) in (b). (c) The degenerate states for φ/φ0 � 0.01 are
strongly localized on edges and for φ/φ0 � 0.08 move slightly to the
center of the triangle, shown in (d).

the second nearest neighbors in Hamiltonian (1) are included.
The highest valence state and the lowest conduction state
with E = ±1.57 eV, which in the absence of the magnetic
field are each doubly degenerate, split in the presence of a
magnetic field. The state labeled by II from the valence band
increases and the state labeled by I from the conduction band
decreases its energy with increasing magnetic field, closing
the energy gap. These states reach the Fermi level (E = 0)
at φ/φ0 � 0.11 (in fact, exactly at φ/φ0 = 1/9 as we will
demonstrate later) corresponding to Bz � 4342 T. Although
this value of magnetic field is too large to be achieved in
laboratories, smaller and more realistic values of magnetic
field values are involved for larger structures as we will show
in Sec. III C. However, in order to develop our theory of
graphene structures under magnetic field, small structures will
also be investigated for pedagogical and academic purposes.

The explanation of why the energy gap closes in a magnetic
field can be found by considering Dirac fermions in bulk
graphene.3,4 We focus on one of two Fermi points, say K point.
Following Refs. 66 and 67, the energy spectrum of the Dirac
Hamiltonian in the presence of a magnetic field is given by

En = ±
√

2h̄vF eBz|n|/c, (3)

where vF is Fermi velocity, c is the speed of light, and n is the
Landau level index. The ± sign corresponds to electron (hole)
Landau levels. A unique property of the energy spectrum is the
existence of the n = 0 Landau level with energy E = 0, con-
stant for all magnetic fields. When the magnetic field is applied
to graphene quantum dots, discrete energy levels evolve into
the degenerate Landau levels for Dirac fermions. Thus some
levels have to evolve into the zeroth Landau level, closing the
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energy gap as shown in Fig. 1. Another feature of the zeroth
Landau level is that the wave functions are localized on only
one sublattice, similar to the zero-energy states in TGQD.45

We note in Fig. 1 that the zero-energy degenerate shell is
immune to the magnetic field as is the n = 0 Landau level. This
is certainly different from electronic states in semiconductor
quantum dots where a ∼B2 dependence is observed.68

These comments are now illustrated by examining wave
functions of a TGQD in a magnetic field. We investigate
the evolution of the probability density of the wave function
corresponding to state I, bottom of the conduction band, from
Fig. 1, and the total probability density of the zero-energy
degenerate shell in a magnetic field. For state I, probability
densities at low and high magnetic field values are shown
in Figs. 2(a) and 2(b), respectively. We note that due to the
electron-hole symmetry, an identical evolution for the state
II from Fig. 1 (not shown here) occurs. The eigenfunctions
of states with energy −|E| and +|E| differ only by a sign
of a coefficient on sublattice B indicated by filled circles in
Fig. 2, giving identical electronic densities. For φ/φ0 � 0.01
(Bz � 395 T), Fig. 2(a), the state I is mostly localized at the
center of the dot. With increasing magnetic field, it starts to
occupy the edge sites, shown for φ/φ0 � 0.08 (Bz � 3158 T).
We note that for arbitrary magnetic field this state is equally
shared over two sublattices, i.e., has 50% sublattice content. In
Figs. 2(c) and 2(d), the evolution of the total electronic density
of the degenerate zero-energy shell is shown. The electronic
density of the degenerate shell is obtained by summing over
all Ndeg = 7 states. Initially, degenerate states are strongly
localized on edges, shown in Fig. 2(c) for φ/φ0 � 0.01. When
the magnetic field increases, these states move slightly towards
the center of the triangle, shown in Fig. 2(d) for φ/φ0 � 0.08.
We note that even in the presence of an external magnetic field
states from the degenerate shell are still localized on only one
type of atoms, sublattice A, indicated by open circles in Fig. 2.

B. Analytical solution for zero-energy states

Figure 1 shows that the zero-energy states obtained by
numerical diagonalization of the tight-binding Hamiltonian
are immune to external magnetic fields. We will now prove
this analytically. Our first goal is to show the existence of and
find an expression for zero-energy eigenstates in the presence
of a magnetic field. The zero-energy states, if they exist, must
be solutions of the singular eigenvalue problem

HTB� = 0, (4)

where the Hamiltonian HTB is given by Eq. (1). There is
no coupling between two sublattices and the solution can be
written separately for A and B types of atoms. We first focus
on sublattice A with an eigenfunction given by

|�A〉 =
∑

j

Cja
†
j |0〉 =

∑
j

Cj

∣∣φA
j

〉
, (5)

where Cj are expansion coefficients of eigenstates written in
a basis of pz orbitals φA

j localized on A-type site j for either
spin state omitted in what follows.

According to Eq. (4), the coefficients Cj corresponding to
one type of orbitals localized around the second type site i

Cl

Ci

Cj Ck

ijie ilie

ikie

Cl

CkCj

jlie klie

FIG. 3. (Color online) (Left) phase changes going from B-type
site i to three nearest neighbors A-type sites j , k, and l. The sum
of three A-type coefficients multiplied by the corresponding phase
changes must vanish for zero-energy states. (Right) Phase changes
going from A-type site k to j , and l to j . A coefficient from the
bottom, Cl , can be expressed as a sum of coefficients from an upper
row, Cj and Ck , multiplied by the corresponding phase change.

obey

t
∑
〈i,j〉

Cje
iϕij = 0, (6)

where the summation is over the j th nearest neighbors of an
atom i. In other words, the sum of coefficients multiplied by
a phase eiϕji gained by going from one type site i to the other
type site j around each site i must vanish. For the ith B-type
site plotted on the left in Fig. 3, Eq. (6) gives

Cje
iϕij + Cke

iϕik + Cle
iϕil = 0, (7)

where phases ϕij ,ϕik,ϕil are given by Eq. (2). Using the fact
that ϕik = −ϕki for arbitrary i and k, Eq. (7) can be written as

Cl = −(Cje
−iϕjl + Cke

−iϕkl ), (8)

where ϕjl = ϕji + ϕil and ϕkl = ϕki + ϕil correspond to phase
changes going from A-type sites k to j , and l to j , respectively,
through B-type site i (see the right part in Fig. 3). Thus, in
analogy with the zero magnetic field case,45 a coefficient from
a given row can be expressed as a sum of two coefficients from
an upper lying row, Cj and Ck on the right in Fig. 3. The effect
of the magnetic field is incorporated in the extra phase gained
by going from a given site from an upper row of atoms to a
lower one. For a reason that will become clear later, instead
of using indices i, each A-type site will be labeled by two
integer numbers, i = {n,m}. The first index, n, corresponds
to an atom number in a given row counted from left to right,
and the second one, m, corresponds to the row number. Let
us illustrate our methodology on a hexagonal benzene ring
with three auxiliary A-type atoms with indices C0,0, C2,0, and
C0,2, shown in Fig. 4(a). Equation (8) can be used to obtain
coefficients C0,1 from C0,0 and C1,0, and C1,1 from C1,0 and
C2,0. Next, using C0,1 and C1,0, one obtains coefficient C0,2,

C0,2 = C0,0e
−iϕ1 + C1,0(e−iϕ2 + e−iϕ3 ) + C2,0e

−iϕ4 , (9)

with phase changes ϕi , i = 1,2,3,4, shown as black arrows in
Fig. 4(a). The paths related to phase changes ϕi go through
intermediate atomic sites, e.g., for ϕ1, the path goes from
a site C0,0 to C0,1 through an intermediate B-type atomic
site, and next from a site C0,1 to C0,2 through connecting
B-type atomic site. According to Eq. (9) and Fig. 4(a), there
is one path connecting C0,0 and C0,2, one connecting C2,0 and
C0,2, but there are two paths around a hexagonal benzene ring
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FIG. 4. (Color online) (a) A hexagonal benzene ring with three
auxiliary corner atoms added. Each A-type site is described by two
numbers {n,m}. Black arrows indicate phase changes related to the
paths going from an upper row of atoms, with indices {n,0}, to an atom
from in the bottom, C0,2. (b) Triangular zigzag graphene quantum dot
with Ned = 2 atoms on one edge. There is one path going from site
C0,0 to C0,3, and three paths going from site C1,0 to C0,3. The number
of paths connecting a site {n,m} with a site from the top {n + j,0}
can be described by a binomial coefficient Npath(n,m,n + j ) = ( m

j ),
0 � j � m.

connecting coefficients C1,0 and C0,2. We have shown that the
coefficient in the bottom, C0,2, can be expressed as a linear
combination of coefficients from the top row, Cn,0. We will
now demonstrate that all coefficients in arbitrary size triangles
can be expressed in terms of coefficients Cn,0.

In Fig. 4(b), a small triangle with Ned = 2 atoms on the one
edge is plotted. Three auxiliary atoms with coefficients C0,0,
C3,0, and C0,3 were added. The total number of atoms is N =
16. In a similar way to the procedure used to obtain Eq. (9),
a coefficient C0,3 can be expressed as a sum of coefficients
from the top. Here, from coefficients C0,0 and C3,0 to C0,3

there is only one path for each coefficient, and three paths for
each coefficient connecting C1,0 to C0,3, and C2,0 to C0,3. For
transparency, only for the first two coefficients from the left
(C0,0 and C1,0) paths are plotted in Fig. 4(b). The number of
paths from a given site in the upper row of atoms to lower lying
atomic sites corresponds to numbers from a Pascal triangle,
{1,2,1} for coefficient C0,2, shown in Fig. 4(a), and {1,3,3,1}
for coefficient C0,3, shown for the first two coefficients from
the left in Fig. 4(b). The number of paths connecting a site
{n,m} with a site from the top {n + j,0} can be described
by a binomial coefficient Npath(n,m,n + j ) = ( m

j ), 0 � j �
m. The general form for an arbitrary coefficient expressed in
coefficients from the top row can be written as

Cn,m = (−)m
m∑

j=0

(m

j )∑
i=1

Cn+j,0e
−iϕn+j (i), (10)

where two numbers n and m satisfy the condition 0 < n,m <

Ned + 1, and ϕn+j (i) is a path-dependent phase change from
a site {n + j,0} to {n,m}. One can note that in the absence of
a magnetic field, ϕn+j (i) = 0 and Eq. (10) reduces to Eq. (2)
from Ref. 45.

The summation over all possible paths in Eq. (10) is not
practical. We now show a way of reducing the number of
paths to only one. We use the fact that a phase change

corresponding to a closed path around a hexagon is by
definition ϕc = 2πφ/φ0. The sum of two exponential terms
standing next to coefficient C1,0 in Eq. (9) can be written as

e−iϕ2 + e−iϕ3 = (ei(ϕ3−ϕ2) + 1)e−iϕ3 = (e2πi
φ

φ0 + 1)e−iϕ3 ,

(11)

where ϕ3 − ϕ2 = 2πφ/φ0 is a closed path around a single
hexagon, see Fig. 4(a). Similarly, for three exponential terms
corresponding to paths connecting C10 and C03, shown in
Fig. 4(b), one can write

e−iϕ′
2 + e−iϕ′

3 + e−iϕ′
4 = (ei(ϕ4′−ϕ2′ ) + ei(ϕ4′ −ϕ3′ ) + 1)e−iϕ4′

= (e2πi(2 φ

φ0
) + e

2πi
φ

φ0 + 1)e−iϕ4′ ,

(12)

where (ϕ4′ − ϕ2′) circles two hexagons and (ϕ4′ − ϕ3′ ) only
one, see Fig. 4(b). Note that phases ϕ3 in Eq. (11) and ϕ4′ in
Eq. (12) correspond to the rightmost paths for given initial and

final sites. The sum of exponential terms of type e
2πi(j φ

φ0
) with

j integer in Eqs. (11) and (12) forms geometric series, which
can be written as

k∑
j=0

e
2πi(j φ

φ0
) = 1 − e

2πi(k+1) φ

φ0

1 − e
2πi

φ

φ0

, (13)

with k determined by the number of encircled benzene rings,
and k + 1 = ( m

j ) is a number of paths connecting site {n + j,0}
to {n,m}, k = 1 in Eq. (11) and k = 2 in Eq. (12), see Fig. 4.
Using Eq. (13), the number of paths in Eq. (10) can be reduced
to only one. Equation (10) can be written as

Cn,m = (−)m
m∑

j=0

Cn+j,0
1 − e

2πi(m

j )
φ

φ0

1 − e
2πi

φ

φ0

e−iϕn+j , (14)

where ϕn+j is the phase corresponding to the rightmost path
connecting site {n + j,0} and {n,m}. The coefficients Cn,m for
all A-type atoms in the triangle are expressed as a linear combi-
nation of coefficients corresponding to atoms on one edge, i.e.,
Cj,0. There are Ned + 2 coefficients in an upper row of atoms,
Cj,0, with 0 < j < Ned + 1, which gives Ned + 2 independent
solutions. Applying three boundary conditions corresponding
to auxiliary atoms, C0,0 = CNed+1,0 = C0,Ned+1 = 0, leaves
only Ned − 1 solutions, which corresponds to the number of
zero-energy states, similar to the result obtained in the absence
of a magnetic field in Ref. 45. We note that the solutions given
by Eq. (14) are smooth functions of magnetic field, and exist for
any value of φ. Thus they do not include zero-energy solutions
corresponding to the crossing of conduction and valence states
with E = 0, e.g., for φ/φ0 � 0.11 for the triangular dot with
Ned = 8 and N = 97 atoms, see Fig. 1. We investigate this
issue by analyzing B-type atoms.

C. Prediction of crossings of valence and
conduction states with E = 0

We consider the solution of Eq. (4) corresponding to a wave
function localized only on B-type atoms. In Fig. 5, the same
structures as in Fig. 4 without auxiliary corner atoms are shown
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FIG. 5. (Color online) (a) A hexagonal benzene ring with coeffi-
cients Ci assigned to each B-type site. Black arrows indicate phase
changes related to the paths going from one B-type site to another.
(b) Triangular zigzag graphene quantum dot with Ned = 2 atoms
on one edge. Black arrows indicate phase changes related to the
paths going from one B-type site to another along triangular three
edges. White arrows indicate phase changes related to the paths going
through the center.

with coefficients assigned to B-type atoms. For simplicity, only
one index for each coefficient is used. According to Eq. (6),
for the benzene ring plotted in Fig. 5(a), we can write

C2 = −C1e
−iϕ12 , (15)

C3 = −C2e
−iϕ23 , (16)

C1 = −C3e
−iϕ31 , (17)

where phase changes from site i to j , ϕij , are indicated in
Fig. 5(a). Equation (15) can be substituted into Eq. (16), and,
next, Eq. (16) into Eq. (17), giving

C1 = C1(−1)3e−i(ϕ12+ϕ23+ϕ31), (18)

which is satisfied for arbitrary C1. Equation (18) leads to the
following condition:

ϕ12 + ϕ23 + ϕ31 + π = 2πk, (19)

with k = 0,±1,±2, . . . . A phase change in Eq. (19) corre-
sponds to a closed path around a single hexagon, ϕ12 + ϕ23 +
ϕ31 = 2πφ/φ0. A condition for the crossing of valence and
conduction states with E = 0 is

φ/φ0 = k − 1/2. (20)

In order to confirm the validity of Eq. (20), we show the energy
spectrum of a benzene ring as a function of a magnetic field
in Fig. 6(a). The crossing of energy levels at E = 0 occurs for
φ/φ0 = 1/2, in agreement with Eq. (20).

We carry out a similar derivation for a triangular zigzag
graphene quantum dot with N = 13 carbon atoms and Ned = 2
atoms on one edge, shown in Fig. 5(b). A coefficient from the
left upper corner, C1, determines a coefficient C2,

C2 = −C1e
−iϕ12 . (21)

Next, a coefficient C3 can be determined by a coefficient C2,

C3 = −C2e
−iϕ23 , (22)
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FIG. 6. Energy spectrum as a function of magnetic flux for (a)
a hexagonal benzene ring and (b) a triangular graphene quantum
dot with Ned = 2 atoms on one edge and a total of N = 13 atoms.
A crossing of conduction and valence states with E = 0 occurs for
(a) φ/φ0 = 1/2 and (b) φ/φ0 = 1/3 and φ/φ0 = 2/3.

and combining with Eq. (21) gives

C3 = (−1)2C1e
−i(ϕ12+ϕ23) = (−1)2C1e

−iϕ13 . (23)

Going in this way along the three edges of the triangle, a closed
loop, shown with black arrows in Fig. 5(b), can be created. In
the case of Ned = 2 shown in Fig. 5(b), one goes through all
B-type coefficients, while in larger triangles one goes only
through outer coefficients. Thus all outer B-type coefficients
can be expressed by one chosen coefficient, C1 in this case.
The loop from Fig. 5(b) can be written as

C1 = (−1)6C1e
−i(ϕ16+ϕ61) = C1e

6πi−2πi(3φ/φ0), (24)

where the phase change ϕ16 = ∑5
i ϕi,i+1, and we used a fact

that the total phase change corresponds to a closed loop around
three benzene rings, ϕ16 + ϕ61 = 2π (3φ/φ0). Equation (24)
gives a condition

2kπ = 6π − 6πφ/φ0, (25)

and finally,

φ/φ0 = 3 − k

3
(26)

with k = 0,±1,±2, . . . . Equation (26) can be extended to
different size triangles. The number of benzene rings in a
triangle is Nb = Ned(Ned + 1)/2, and Eq. (26) can be written
as

φ/φ0 = 3Ned − 2k

Ned(Ned + 1)
. (27)

For the triangle with Ned = 2, Eq. (26) predicts crossings
for φ/φ0 = 0,±1/3,±2/3,1, . . ., but according to Fig. 6(b),
there are no crossings for φ/φ0 = 0 and φ/φ0 = 1. This is
related to an extra condition in the center of the triangle for
the coefficients C2, C4, and C6. Phase changes between these
coefficients are indicated by white arrows in Fig. 5(b). We can
write

C6 = −(C2e
−iϕ26 + C4e

−iϕ46 ) (28)

and also

C6 = −C1e
−i(−ϕ61) = −C1e

iϕ61 ,
(29)

C2 = −C1e
−iϕ12 , C4 = (−1)3C1e

−iϕ14 ,
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where the phase change ϕ14 = ∑3
i ϕi,i+1. Combining Eqs. (28)

and (29), we get

−C1e
iϕ61 = −[−C1e

−i(ϕ12+ϕ26) + (−1)3C1e
−i(ϕ14+ϕ46)], (30)

which gives

−1 = e−i(ϕ12+ϕ26+ϕ61) + e−i(ϕ14+ϕ46+ϕ61). (31)

With the help of Fig. 5(b), we can notice that ϕ12 + ϕ26 +
ϕ61 = 2πφ/φ0 and ϕ14 + ϕ46 + ϕ61 = 2π (2φ/φ0). Thus we
can write

1 + e−2πiφ/φ0 + e−2πi(2φ/φ0) = 0 (32)

or, using a sum of geometric series,

1 − e−2πi(3φ/φ0)

1 − e−2πiφ/φ0
= 0. (33)

Equation (33) gives a solution for −2π (3φ/φ0) = 2πk, where
k is an integer, and finally, φ/φ0 = −k/3, but with an
extra condition φ/φ0 �= l, with l = 0,±1,±2, . . . due to a
denominator. This is in agreement with Fig. 6(b). We note
that for all triangles, the prediction of crossings of conduction
and valence states with E = 0 given by Eq. (27) has to be
supported by extra conditions from equations for coefficients
from the center of the triangle. For example, for the triangle
with Ned = 8, the first crossing occurs for φ/φ0 = 1/9, while
the incomplete condition given by Eq. (27) predicts the
first crossing for φ/φ0 = 1/36, and the fourth crossing for
φ/φ0 = 1/9.

An interesting prediction of Eq. (27) is that the zero-energy
crossing values of φ/φ0 should scale as ∼1/Ned for large
Ned. In order to check numerically the size dependence of
the position of the first crossing, in Fig. 7, we show the
energy gap as a function of φ/φ0 for different Ned obtained by
diagonalization of the tight-binding Hamiltonian. Strikingly,
we find that the first crossing always occurs at φ/φ0 =
1/(Ned + 1) for all the values of Ned that we have looked at.
This is consistent with Eq. (27) with k = Ned. Extrapolating
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FIG. 7. (Color online) Energy spectrum as a function of magnetic
flux for different sizes of triangular zigzag quantum dots, showing
that first zero-energy crossing occurs at φ/φ0 = 1/(Ned + 1).
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this result to larger structures, it would take a magnetic field
value of ∼10 T for a quantum dot with Ned = 4000 to reach
the first zero-energy crossing.

However, for large quantum dots (Ned > 100, or linear
size L > 25 nm), it becomes increasingly difficult to pinpoint
numerically the position of the zero-energy crossing due
to smallness of the energy gap around the crossing and
numerical accuracy. Another quantity of interest is the width at
half-maximum (WHM) of the flux dependence of the energy
gap. In Fig. 8, we plot the WHM as a function of Ned. Unlike
the first crossing point, which scales as N−1

ed , the WHM scales
as ∼N−2

ed for large Ned, thus much faster. In Fig. 8, the
largest structure that we looked at has N = 161 601 atoms
(Ned = 401, L = 98.6 nm) for which the WHM occurs at a
magnetic field value of B = 1.97 T.

IV. SHAPE AND EDGE DEPENDENCE OF THE ENERGY
GAP IN A MAGNETIC FIELD

We discussed above the magnetic field closing of the energy
gap in triangular graphene quantum dots. In Fig. 9, we analyze
the evolution of the energy gap in graphene quantum dots with
different shapes and edges in a perpendicular magnetic field.
The energy gaps as a function of a magnetic field obtained by
diagonalizing the Hamiltonian given by Eq. (1) are shown for
three different types of quantum dots: zigzag triangle, zigzag
hexagon, and armchair hexagon. All three structures have sim-
ilar sizes, consisting of N � 600 atoms with area S � 14 nm2.
The energy gap corresponds to the difference between the
energy of the lowest state from the empty conduction states
and the highest state from the doubly occupied valence
states. In the absence of magnetic field, the zigzag triangular
graphene quantum dot has a significantly larger gap then for
hexagonal armchair and zigzag dots as discussed in Ref. 35.
The functional form of the gap closure of different types of
structures has significant differences as well, as seen in Fig. 9.
When the magnetic field increases, the energy gap closes
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FIG. 9. (Color online) The energy gap as function of the magnetic
flux for triangular zigzag quantum dot with N = 622 atoms (solid
line), hexagonal armchair quantum dot with N = 546 atoms (dashed
line), and hexagonal zigzag quantum dot with N = 600 atoms (dot-
dashed line).

for all structures. Although the hexagonal zigzag structure
has slightly smaller size, the gap decays faster showing a
different behavior than the ∼N−2

ed scaling shown earlier for
the triangular zigzag structure. Moreover, after reaching a
plateau close to zero (∼10−8), the hexagonal zigzag quantum
dot shows no more structures, i.e., no zero-energy crossings,

unlike the two other quantum dots. We note that for the
hexagonal zigzag structure the gap comes from closure of the
edgelike states (which have finite energies unlike the triangular
zigzag structure). This shows that the zero crossings are
characteristics of bulklike states. We note that the differences
between the curves seen in Fig. 9 are mainly due to shape and
edge effects as we have checked the results for different sizes
of quantum dots.

V. CONCLUSIONS

The electronic properties of triangular graphene quantum
dots with zigzag edges and broken sublattice symmetry in
the presence of perpendicular external magnetic field were
described. It was shown that the degenerate shell of zero-
energy states in the middle of the energy gap is immune to the
magnetic field in analogy to the n = 0 Landau level of bulk
graphene. An analytical solution for zero-energy states in the
magnetic field was derived. The energy gap was shown to close
with increasing magnetic field, reaching zero at special values
of the magnetic field. The gap closing was found independent
of quantum dot size, shape, and edge termination.
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