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A structural element is proposed, made of a row of rigid voussoirs joined by a passing through cable.
When the cable is tensioned, the ensemble acquires stiffness and, for appropriate contact profiles of
the voussoirs, the response of the element under applied loads is governed by the same equations of
Euler’s elastica or, in equivalent terms, of a non-linear spline. Releasing the connecting cable, the struc-
ture is loosened and can be closely packed. With this system one can reproduce, at least in principle, any
desired profile in the “stiff” configuration, and construct free form foldable surfaces of any shape.

© 2013 Published by Elsevier Ltd.

1. Introduction

The proposed structural system belongs to the class of kinetic
structures, and in particular aims at meeting the recent demands
for mobile solutions capable of achieving different-in-type equilib-
rium configurations.

The demand for transforming spaces is pushing researchers to
revise and improve the kinematic structures built in the past.
The category wider constructed are line-supported structures
(large roofs of stadiums and theaters [1]), that use a minor number
of joints and members, but usually they are very heavy and do not
allow to obtain complex surfaces. Between these Hoberman, inside
the Adaptive Building Initiative, suggested rigid panels, variously
connected through hinges or sliding joints [2]. The proposed solu-
tions, however, are a juxtaposition of modules, each of which oper-
ates isolated, they are not self-supporting and must therefore be
used in fixed facades or roofs. Because of this, they are actually un-
able to architectonically transform a whole space.

Major of research regards point-supported structures made of
bars. Calatrava designed simple kinematic chain structures [3]
and conceived symmetrical solids made of bars [4]. Others are
modular scissor-like structures as those introduced by Pinero [5],
deployable tensegrity grids researched by Motro [6] and symmet-
rical assemblies of over constrained mechanisms [7,8].
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To stabilize the structure in the final configuration, further rods
can be temporarily added. Kokawa used cables that run along spe-
cific lines of the articulated mechanism: once tensioned, they block
the mechanism itself, eliminating the degrees of freedom [9]. Re-
cently, the opportunity to use a snap-trough effect (first introduced
by Zeigler [10]) has been studied: some modules have incompati-
bilities with the length of the structural components, so that, while
moving, the bars instantaneously pass from an equilibrium config-
uration to another, significantly distant from the former [11]. In or-
der to obtain a better control of the structural movement,
especially for space applications, Pellegrino creatively uses or com-
bines complaints, cables, pistons, achieving systems which can be
controlled by one motor [12].

Although of great aesthetic value, all the aforementioned appli-
cations have only two configurations, typically open/closed or ex-
tended/compact. They have to be designed to achieve the specific
shape of a planar surface, barrel vault, a platonic solid, or to
approximate a sphere. When instead a few topical configurations
are desired, more degrees of freedom have to be controlled. For
example, Inoue and his colleagues have developed a flexible truss,
called Variable Geometry Truss — VGT. This is a beam with some
piston actuators and hinges: by controlling the lengths of extend-
able rods, it is possible to partially fold the beam’s pieces and thus
obtain curved shapes [13]. Within this class, the most studied
examples are the scissors-like structures. These are formed essen-
tially by a basic modulus composed of two cross bars connected by
an intermediate pivot. Assembled together in 2D or 3D arrange-
ments, they can form various shapes by maintaining a single de-
gree of freedom. If one or more hinges are added, the number of
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degrees of freedom is augmented, so that the resulting mechanism
can achieve different in type configurations [14].

The scissor-like structures involve just revolute joints, but their
number is so large that it represents a major drawback. Moreover,
they provide a discontinuous (zigzag) profile, so that any cover sur-
face (usually formed by a flexible soft membrane) has to follow the
resulting articulated shape. This aspect can penalize the use of ri-
gid panels, which perform better than soft coatings for the organi-
zation of the interior space. Some solutions employing hard panels
have been attempted [15], but the panels have to be divided into
very small pieces and they lose compactness in the closed
configuration.

The structure here proposed is a linear system composed of ri-
gid voussoirs, stiffened by a tensioned cable passing through
sheaths obtained by drilling the voussoirs in longitudinal direction.
Simply varying the location and profile of the sheaths inside the
voussoirs, it is possible, at least in principle, to approximate any
curvature. Remarkably, the bending stiffness of the resulting sys-
tem turns out to be proportional to the tensile force in the cable
and to the curvature of the borders of the adjacent voussoirs. The
range of configurations that the system can achieve is therefore
much wider than the solutions presented above. Moreover, by sim-
ply varying the tensile force in the cable (pulling or releasing the
cable), it is possible to change the stiffness of the system, thus
obtaining diverse equilibrium configurations under the same ap-
plied loads. Moreover, for example in the case of low-rise arches,
the decrease of the bending stiffness may trigger a snap-through
instability, thus allowing for large movements of the system at
the price of little variations of the tensile force in the cable.

With respect to the drawbacks previously mentioned for the
other types of movable structures, the system is self-supporting.
Moreover, the profile of the flexible beams is a continuous polygo-
nal surface. Consequently, it easily fits to support a cover made of
panels, be they a simple concertina or, where appropriate, panels
hinged in both directions.

Hereinafter the characteristics and potentiality of the proposed
system are detailed. The organization of the text is the following. In
Section 2 the mechanical properties of the system (elastic stiffness
and stress) are analyzed in the simplest case of a straight row of
circular voussoirs. Analogies are evidenced in Section 3 with Eu-
ler's elastica and with spline curves. Extensions to lenticular-
shaped voussoirs and/or curved assemblies are studied in Section 4.
Possible applications are considered in Section 5 and discussed in
the concluding chapter.

2. The proposed structural system

The load-bearing element of the proposed structural system is a
flexible one-dimensional modulus, composed of a series of vouss-
oirs connected by a tensioned cable. The cable is inserted into
sheaths that run inside the voussoirs, where it is supposed to slide
with negligible friction. When the cable is tensioned, the voussoirs
are brought into contact one another: the higher the tensile force
in the cable, the stiffer the composite system becomes. The princi-
ple is that of a Bowden cable. It is also similar to the technique used
in segmental construction of un-bonded post-tensioned concrete,
where the various segments are dry-connected by the force trans-
mitted by steel tendons.

In the simplest case, one may suppose that the voussoirs are cir-
cular disks put into contact at their borders. Suppose that, in each
voussoir, the cable passes through a diameter of the disk. If the
cable is tensioned and fixed at the ends of the row, clearly the sys-
tem assumes a straight configuration, of the type thin-line-drawn
in the background of Fig. 1. If the system is deformed by an exter-
nal action (applied loads), the sheaths become no longer aligned, so
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Fig. 1. Longitudinal section view of the system in the deformed state. In the
background, the reference straight configuration.

that the cable is strained because its length changes. At least as a
first order approximation, suppose that the voussoirs are rigid,
each one with the same radius R. Denoting with ¢; the angle that,
after the deformation, is formed by the ith disk of the row and the
next one i + 1 (Fig. 2), then the length of the cable locally increases
of the quantity 6;, which is given by

0i = 2[R — Rcos(p;/2)]. (2.1)
Supposing that ¢; is small, using Taylor’s expansion one has
_ AN EYAS

5 72R{1 -1 +§(7) 7R(7> . (2.2)

Let then Lq represent the unstrained length of the cable. Then, if
the row is composed of n voussoirs, after the first tensioning (that
puts the disks into contact) the length of the cable is 2nR and its
initial strain is & =(2Rn/Ly — 1), with 2Rn/Ly > 1. Consequently,
the total elongation 4q of the cable is given by

Ag = L[)SO =2Rn — Lo. (23)
Denoting with A. and E. the cross sectional area and the Young’s

modulus of the cable, respectively, then Ty = A. E. & represents the
pre-tension force, and we have equivalently

To
Ao =1L EA (2.4)
The elastic strain energy initially stored in the cable then reads
1 ECAC 2
Uo =5 == (40)" (2:5)

On the other hand, after the deformation (Fig. 2b and c) the
strain energy in the cable results

U= 1“ <A0+Z§> . (2.6)

We make the assumption that the cable is initially strongly ten-
sioned, and that the rotations ¢; after the deformation are moder-
ate (infinitesimal deformation), so that §; << 4. Then, the increase
in strain energy due to the deformation can be simplified in the
form

AU=U-Upy =

1EA
2

<Ao " 23) B (4o

But, recalling (2.2) and (2.4), one can write

(Za) =To (ia) :%RTO (2(%)2). (2.8)
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Fig. 2. Longitudinal section view of: (a) cylindrical voussoirs (disks) in the straight reference configuration; (b) voussoirs in the deformed (bent) state and (c) geometry of the

deformed state.

Referring back to Fig. 2c, denote with p; the “discrete” radius of cur-
vature and with y;=1/p; the corresponding “discrete” curvature,
such that

2R
pi; = pi2tan(@;/2) = 2R = @; ~ o = 2Ry;. (2.9)
Then, using (2.9), the expression (2.8) can be conveniently re-
written in the form

1 n-1 n-1
AU = 4RTy (Z(zRXi)z> =R’T, (ZXZ) .

i=1

(2.10)

This latest expression can be simplified further under the
hypothesis that n>> 1, so that the discrete system can be consid-
ered in a continuum approximation. Introduced, as represented in
Fig. 1, the reference system (x,y), such that the interval
—R < x < (2n — 1)R denotes the reference (rectilinear) configura-
tion of the assembly, the “discrete” set of curvatures y;
i=1,...,n—1, can be approximated by a continuous function
x = x(x). This is the curvature of the continuous description of
the polygonal line defined by the contact points of the disks, in
the limit R — 0. In other words, one has

ngl/m xdxi=1,... . n-1. (2.11)
2R 2(i-1)R
Then, (2.10) reads
n-1 , -2(n-1)R 5 dx
AU =RTo( Y (Ry))* | ~RTo / Ry 55
i1 JOo
1 2(n-1)R
= RTy / 2X)dx. (2.12)
0

Indicating with I' the undeformed rectilinear reference config-
uration of the assembly, i.e., the segment comprised between the
centers of the first and last disks of the row, coinciding with the
interval 0 < x <2 (n— 1)R in Fig. 1, the increase of strain energy
AU due to a deformation with curvature y = y(x) thus results to be

1 2 2
AU:ER TO/FX (x)dx. (2.13)

One can thus consider the minimization problem for the func-
tional (2.13) under boundary conditions that affect in general the
displacement or the rotation of the first and last disk of the row.
In particular, one can either prescribe the displacement of the cen-
ter of the disk and/or its rotation (geometric boundary conditions)
or, as an alternative, prescribe the force acting at the disk center
and/or the applied moment (natural boundary conditions). More-
over, the minimization should be performed under the constraint
that the length of the deformed system is equal to the final length
of the cable. However, because of the assumptions that the cable is
initially strongly tensioned and that the deformation is infinitesi-
mal, i.e., §; < 4p in (2.6), the tensile force in the cable remains al-
most constant and the variation of its length negligible after the

deformation. Consequently, in agreement with the principal
hypotheses of the model, the minimization of (2.13) may be per-
formed under the constraint that the length of the chain remains
fixed (first-order approximation).

One of the most noteworthy features of the system just de-
scribed is that it becomes loose when the cable is released. It is
then a system that can be conveniently packaged and shipped be-
cause it would be sufficient just to tension the cable to let the
assembly recover the bending stiffness associated with (2.13).

3. Analogies with elastica and splines

The form (2.13) of the strain energy functional has noteworthy
similarities with the energy of Euler’s elastica, and with the func-
tional to be minimized in the variational characterization of non-
linear spline curves.

3.1. Euler’s elastica

Let us denote with I' the undistorted natural reference configu-
ration of a thin beam. If one assumes, according to the celebrated
Bernoulli’s hypothesis that the effects of the normal and shearing
forces are negligible with respect to bending, the curvature of the
deflection curve becomes proportional to the bending moment
and the elastic energy takes the form [16]

U:/F%Elxz(s)ds, (3.1)

where x(s) is the curvature of the deflection curve at the abscissa s,
defined following the length of the curve, while EI is the bending
stiffness, equal to the product between the Young’s modulus E of
the material and the moment of inertia I of the cross sectional area
of the beam. Minimization of the total energy functional under the
constraint that the length of the elastica is prescribed, furnishes the
variational characterization of the problem, for which existence of a
solution can be proved [17].

Remarkably, comparing (2.13) with (3.1), one can see that Ty
has an effect on the stiffness of the cabled system, according to
the formal equivalence

El = R’T,. (3.2)

Fig. 3 represents the free body diagram of the two disks showed
in Fig. 2b: clearly the radius R contributes to the overall stiffness of
the assembly. In fact, for the same value of the radius of curvature
pi, the higher is R, the greater is the arm a of the internal couple
formed by the tensile force Ty in the cable and the contact force be-
tween the disks at the contact points.

Obviously, the stiffness is proportional to the tensile pre-
tension force Ty. According to (3.2), one can thus tune the stiffness
of the system according to the desire application, by simply vary-
ing this parameter.

The cable-stiffened system reaches and maintains a configura-
tion that minimizes its potential energy under the action of
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Fig. 3. Internal couple formed by the tensile force Ty in the cable and the contact
reaction force between the disks.

external forces, which depends upon the boundary conditions at
the extremities. These are in terms of displacement and rotation,
i.e., the usual conditions for the elastica. The mathematical charac-
terization of the elastica through the variational approach has been
the subject of extensive research. For the existence and regularity
theorems under the most various boundary and load conditions
the reader is referred to [18] as a comprehensive review.

Because of this analogy, the structural assembly discussed in
Section 2 has been referred to as the cable-stiffened elastica.

3.2. Spline curves

Mathematical splines take their name from the Draftman’s
spline, a flexible lath used traditionally to enable a smooth curve
to be drawn through plotted points on a drawing. This class of
curves is characterized by the condition that the integral of the
square of the curvature with respect to arc length should attain a
minimum, under the condition that the curve passes through, or
has prescribed tangent, at a certain set of points and the length
of the curve is prescribed. Since the Euler-Lagrange equations
associated with their variational problem are non-linear, such
curves are sometimes referred to as “non-linear splines” [19]. This
minimization is associated with the optimality condition usually
referred to as “smoothest curve”. From a formal point of view,
the functional to be minimized coincides with (3.1) apart from
the irrelevant multiplying constant EI. In other words, the de-
formed elastica geometrically coincides with the non-linear spline
curve under the same boundary conditions.

This analogy is of importance for the design stage of structures
employing the system, because there are computer programs that
automatically can draw splines passing through a certain set of
points with prescribed tangents.

More precisely, most computer programs approximate the non-
linear spline with a smooth curve usually represented by a set of
cubic polynomials. These are called “piecewise cubic splines”.
From a variational point of view, a cubic spline is derived by min-
imization of a functional where the curvature is approximated by
the second derivative. If y(x), x € (xo,X,) represents the equation
of the spline, this is equivalent to the well-known approximation
in the technical theory of elastic beams, that is

% = y'(x). (33)

If no constraint about the length of the spline is added, the min-
imization problem

)
min / &Y ax, (3.4)
YX) Jx, dx
would prescribe that y(x) is a cubic function. Imposing the condi-

tions that the curve passes through a given set of points and end-
point constraints and that it is smooth, the cubic spline as pointed

A(X) =

out by Holladay (1957) admits a unique solution [20]. For each
one of the n pieces comprised between two consecutive nodes (x;-
_1,¥i_1) and (x;, y:), i=1,...,n, there are four unknowns to describe
the cubic polynomial, and in total 2(n — 1) continuity conditions,
2(n — 1) smoothness conditions and four boundary conditions, i.e.,
continuity: y(x;) =y(x/) =y, i=1,...,n—1;
smoothness: y'(x;) =y'(x),y"(x7) =y"(x}),i=1,...,n—1;

boundary: y(xo) = Yo, ¥(Xu) =¥n, ¥ (X0) = ¥4, ¥ (Xn) = ¥p-

This procedure, which gives the curve with minimal average
curvature passing through the prescribed points, may be used for
a practical, preliminary, design-approach to the elastica. However,
it should be noticed that here usually the length of the elastica is
not prescribed, so that one has to check, a posteriori, that the length
equals that of the cable-stiffened system.

4. More elaborated forms of the cable stiffened elastica

The cable-stiffened system represented in Fig. 1 is just one
example. Many other possible forms, associated with different-
in-type mechanical properties, can be obtained by simply using
voussoirs of more elaborated shape, rather than simple disks. The
number of possibilities is practically infinite, and hereafter a few
examples are presented.

4.1. Lenticular voussoirs

Suppose now that the voussoirs are symmetric lenses, i.e.,
biconvex shaped figures comprised between two circular arcs with
equal radii, joined at their endpoints. As showed in Fig. 4a, let 22
represent the thickness of each lens and let R denote the radius
of its profiles. Suppose then that the row, initially straight, is de-
formed by an external action, as represented in Fig. 4b. The rele-
vant geometric parameters, analogously to Fig. 1c, are
represented in Fig. 4c.

The treatment is similar to that of Section 2. Maintaining the
same notation, the quantity ¢; is again given by (2.1) and (2.2),
whereas 4g takes the same form (2.4). The final expressions 2.5,
2.6, and 2.7 remain valid. One thus finds that the increase in strain
energy due to the deformation, analogously to (2.8), reads

n—1
AU = 4RT, (Z«pi)z)- (4.1)

i=1

Referring to Fig. 4c, denote again with p; the “discrete” radius of
curvature and with y;=1/p; the corresponding “discrete” curva-
ture, such that

2

Pip; = pi2tan(e,;/2) =24 = ¢, ~— =22, (4.2)

1
Reasoning as before to obtain (2.10), one finds from (4.1) that
n-1 n—-1
AU = %RTO (Z(zzx,.f) = J2RT, (Zﬁ). (4.3)
i-1 i=1
In the continuum approximation one may write
1 2i}.
}(,-2:—/ rx)dx,i=1,...,n—1, (4.4)
22 2(i-1)i

so that (4.3) can be re-written in the form

n—1 ) ) 2(n—-1)4 de
AU =RTo( Sz | ~RTo /O w5

i=1

2(n-1)4
= 1ART0 / 22 (x)dx = 1 JRT, / 22(x)dx, (4.5)
2 0 2 r
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(b)

Fig. 4. Longitudinal section view of: (a) lenticular voussoirs in the straight reference configuration; (b) voussoirs in the deformed (bent) state and (c) geometry of the

deformed state.

having again indicated with I the undeformed rectilinear reference
configuration 0 < x < 2 (n — 1)A for an assembly analogous to that
of Fig. 1.

In conclusion, the form of the strain energy is perfectly analo-
gous to that of (2.13), with the only exception that the term R? is
substituted by AR. In general, the total length of the chain is a de-
sign datum, whereas the number n of voussoirs is governed by con-
struction requirements. It follows that the length 4 is the assigned
length. Therefore, it can be seen from (4.5) that the higher the ra-
dius R of the profiles in contact, the stiffer the assembly results.

4.2. Curved assembly

The tensioning of the cable brings the voussoirs into contact,
tangent one other, but there is only one configuration that is asso-
ciated with the minimal length of the cable under the hypothesis
that voussoirs are non-deformable. Such configuration depends
upon the shape of the voussoirs only: if they are properly designed,
in principle the reference configuration (no external load applied)
can reproduce any arbitrary curve. In the following, it will be
shown how to construct a cable stiffened elastica that, when the
cable is tensioned, forms an arbitrary planar curve. The voussoirs
are assumed to be symmetric and to have convex contact profiles,
which at first may be assumed to be circular. They have to be de-
signed so to be tangent each other in the tensioned configuration.

Suppose that the reference configuration has to reproduce a
project curve, a priori prescribed by the designer, like the one rep-
resented in Fig. 5. At first, an assembly formed by n equal disks of
radius R; is explained. The first step is to approximate the curve
with a polyline formed by segments of length 2R;: a series of cir-
cumferences of radius 2R; are drawn, the first centered and one
end of the curve, the followings each centered on the intersection
point between the previous one and the curve (Fig. 5b). The points
connecting all the centers of the circumferences of radius 2R; are
the knots of the approximating polyline. The disk-shaped voussoirs
are posed in the obtained knots, and being their radius R;, then they
do not intersect instead are tangent to each other (Fig. 5¢).

Of course, the smaller R;, the closer is the approximation be-
tween the polyline and the project curve. Fig. 6a shows the approx-
imating polyline of a target curve that is obtained with disks of
radius R; (construction circumferences of radius 2R;); Fig. 6b shows
the same target curve, approximated by a polyline composed of
disks of radius 3R;, constructed using circumferences of radius
6R;; Fig. 6¢c compares the project curves and the polylines so ob-
tained. Where the curvature of the project curve is large (small),
one should use small (large) disks to achieve a better
approximation.

The sheaths hosting the cable have to be located in the contact
points of the disk, orthogonally to the common tangent line.
Although, at least in principle, any placement with the aforemen-
tioned property is acceptable, the sheath profile should reproduce,

( a) intersecting circles for construction

2R;

(b)

‘approximating polyline

(c) tangent circles
/" defining the voussoirs

>

1

Fig. 5. Curved cable stiffened elastica. Project curve (a), approximating polyline (b),
circular voussoirs that approximate the project curve (c).

as much as possible the approximating polyline of the project
curve, with smooth fillets in proximity of the contact point in order
to avoid cutting edges.

Once the approximating polyline has been defined, it is possible
to use lenticular voussoirs, instead of circular disks. To do so, one
can maintain the same contact points, but enlarge the radius of
curvature of contact profiles. The geometric construction is re-
ported in Fig. 7.

The form of the strain energy for the system becomes particu-
larly simple provided that the initial curvature is small. Let the
assembly be composed of n lenticular voussoirs, of the type repre-
sented in Fig. 7, and suppose that the initial configuration of the
cable approximately follows the polyline mentioned in Fig. 6. Be-
cause of the initial curvature, the length of the cable passing
through the voussoirs may vary from one another (Fig. 7). If the ini-
tial curvature is small such parameter is almost constant, but we
shall keep the distinction and indicate, in general, with 2/;
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Fig. 6. The dimension and number of voussoirs influences the approximation of the
target curve. The radius of the disks in (b) is three times that in (a). The project
curve and the two approximating polylines are juxtaposed in (c).

i=1,...,n, the length of the sheath inside the ith voussoir. A curvi-
linear abscissa s is defined, with the origin at the center of first
voussoir, measuring the length of the cable up to the center of
the last voussoir, so that 0 < s < Z}: (% + Zic1)- The contact pro-
files are supposed to be all arcs of circle of radius R.

The relevant geometric parameters are represented in Fig. 8. We
indicate with p?,i=1,...,n — 1, the initial radii of curvature, defined
as the distance of the segments i and i+ 1 of the cable reference-
polyline from the point of intersection of the lines orthogonal to
them and passing through their midpoints (that is, coinciding with
the axes of voussoirs i and i + 1). Analogously, let ¢%,i=1,..,n — 1,
represent the angle formed by segments i and i + 1 of the cable ref-
erence-polyline.

Suppose now that, after the deformation, the initial angle ¢? is
varied of the quantity Ag; i=1..n — 1, with Ap; = ¢? = 1. Then,
the length of the cable comprised between the ith and the
(i+ 1)th voussoir locally increases of the quantity J; given by

tangent line

8 = 2R[1 — cos(A¢,/2)] = R(Ag’ ")2 +0(Ap,)*,
n—1. (4.6)

Let then Lo represent again the unstrained length of the cable and
let, as before, Ty, E. and A; be, respectively, the initial axial force
in the cable, its elastic modulus and cross sectional area. If L is
the total length of the reference polyline (Fig. 7), i.e., the length of
the sheaths hosting the cable, under the hypothesis that friction is
negligible and voussoirs are rigid, the total elongation Aq of the
cable due to prestressing is again given by (2.4). The elastic strain
energy initially stored in the cable is analogous to (2.5). After the
deformation, the strain energy maintains the same form (2.6). Rea-
soning as in (2.7) and (2.8), one eventually finds

AU =T, (ia) . (4.7)
i=1

Now, observing Fig. 8, one has, up to infinitesimals of higher
order

hitdi = PP = pi(@) + Ay),i=1,...,n—1, (4.8)
so that
1 1 11y, .
Ap; = (ﬁ*ﬁ)ﬂ?(ﬂ? = <E7PTO> (4i + Zip1),1
=0,....,n—1. (4.9)

Therefore, using (4.6), one has from (4.7) that

AU =T, <n21:5i> = %RTO <§(A§Di)2> :
i1

i=1

(4.10)

Introduced the “discrete” curvatures y;=1/p; and y? =1/p?,
this expression becomes

n—

1
[(Zi + Zis1) (i — X?)]z}- (4.11)
1

i=

1
AU = 4RT0{

Passing to a continuum approximation, for n > 1, let yo = xo(s) and
x = x(s) represent the curvature of the continuous (smooth)
description of the polygonal line (Figs. 6 and 7) before and after
the deformation, respectively. Denoting with I'; the length of the
continuous curve comprised between the centers of the ith and

circular voussoir
lenticular voussoir

project curve

approximate polyline

Fig. 7. Geometric construction for a curved cable-stiffened elastica with lenticular voussoirs.
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2Ni+1

2\i

(a)

(i + 1)th voussoir, the relationship between discrete and approxi-
mate curvatures is given by

/ [(s) = to(Pds,i=1,...n—1. (4.12)

1
2
=" = 55

Then, (4.11) can be re-written in the form

n—1
AU = 4 RTo (Z(ii + Zit1) / [x(s) — Xo(s)]2d5>

(4.13)

where / represents a suitable weighted mean of the various 4,
i=1,...,n. But if the initial curvature is small, then the parameters
/; do not sensibly vary one-another, so that in general one might re-
place /. with the arithmetic mean of the various /; i =1,...,n. Denot-
ing with I' = (J/7 I'; the continuous reference configuration of the
assembly, then (4.13) reduces to
AU = %ZRTO / [(5) — 7(5))2ds. (4.14)
r

In practice, the final expression of the strain energy is analogous
to that corresponding to that of an elastica with small initial curva-
ture. Here, the bending stiffness (EI) is provided by the product
JRT,, similarly to the case of Section 4.1.

When the initial curvature cannot be considered small, the
treatment follows the same steps just exposed, but the resulting

expressions are much more complicated and go beyond the scope
of this paper.

5. Possible applications

This section collects just a few possible applications of the
cable-stiffened elastica.

Apil2

2 2N+

Apil2

(b)

Fig. 8. Undeformed and deformed state of a curved cable-stiffened elastica with lenticular voussoirs.

5.1. Beams

The simplest application consists in a straight beam. As shown
in Fig. 9, the beam axis is divided into segments (polyline approx-
imation), each one corresponding with the location of the single
voussoir. At first, circular disks may be chosen. It is not necessary
to maintain the whole circular shape, but the voussoirs can be
cut up to a height H, sufficient to maintain into contact the circular
profiles under the most severe deformation, according with the
estimated deflection. The excessive material can thus be removed,
and the longitudinal profile of the voussoirs will have four sides,
two parallel to the axis (here rectilinear), and two arc-shaped. Once
fixed the number of voussoirs and the tensile force in the cable,
substantial increase of stiffness can be obtained by enlarging the
radius of curvature of the contact profiles (lens-shaped voussoirs),
as per (4.5). Again, these can be cut up to the height H. However,
for the same overall deflection of the beam, the larger the radius,
the higher is the height H that is needed to maintain the voussoirs
into contact. Therefore, left aside any structural problem associ-
ated with Herzian contact pressure, which will be the subject of
further work, a compromise has to be reached between the height
and the radius of the constituent elements.

The response of the assembly is that of a beam whose cross-sec-
tional inertial stiffness EI is given by (3.2).

5.2. Arches

If the design curve is a circular arch, in the reference state the
curvature is constant. The approximating polyline has equally-
spaced vertexes and the voussoirs can be made identical. Note
however (Fig. 10c) that the sheaths do not pass through the center
of the voussoirs, but have to remain slightly not-symmetric accord-
ing to the construction of Fig. 7, recalling somehow the trapezoidal
shape of the voussoirs in a stone arch. Following (4.14), the arch
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Fig. 9. In clockwise order. The generation of a polyline from the target curve, here rectilinear; the design of voussoirs of increasing height. A consistent increase of stiffness

can be obtained by increasing the radius R of curvature of the contact profiles.

results stiffer by increasing the radius of the contact profile. The
structural analysis of the arch is identical, in the continuum
approximation, to that of a curved beam whose stiffness EI is equal
to (3.2).

5.3. Free-form curve

With the same construction of Fig. 7, the cable-stiffened elastica
can assume a free form curve. An example is represented in Fig. 11.
The number of elements and their axial length are first decided.
Then, circles delimiting the voussoir-profiles are designed as previ-
ously described. It is pointed out that their centers in general do
not lay upon the curve, but move in direction opposite to the cur-
vature. As a consequence, the drilling direction forming the sheaths
is no more diametric, but is a chord whose length is inversely pro-
portional to the local curvature. It could be observed that, due to
the a priori fixed axial length of the elements, the final configura-
tion of the system may not fully comply with the project one.
The mismatch, negligible in size, could be partially hidden by shap-
ing the intrados and extrados of the voussoirs according to the off-
set of the project curve.

5.4. Convertible forms

A primary use of this system is for movable structures. When
there is no tension at all, the assembly is as loose as a no-tensioned
cable, and can be easily rolled and transported. After tensioning the
overall stiffness can be tuned up, by simply changing the tensile
force Ty in the cable. The mutual interaction and the shaping of
the voussoirs let the system achieve and maintain the desired
profile.

Without external loads, the cable stiffened Elastica achieves a
configuration that depends upon the boundary conditions at the
end-points only. Once external loads are applied, the system
reaches the equilibrium state of a thin rod with bending stiffness
El under the same load and boundary conditions.

The ends points may act as control points to govern the move-
ment of the whole system, but one could also think of handling
more points along the curve. More elaborated movements can be
obtained if the cable is fixed at an intermediate voussoir, so that
the cable on the left-hand-side and the right-hand-side parts can
be pulled at different tensile forces. To illustrate, assume as the
starting profile that shown in Fig. 12a, obtained by properly shap-
ing the voussoirs. Suppose that the cable had been fixed at the
voussoir corresponding to point C and that, after reaching the con-
figuration of Fig. 12a, the position and the rotation of voussoir C is

(a)

Fig. 10. An arch (a) and the corresponding cable stiffened assembly (b). Being the
curvature constant in the reference state, the voussoirs can all be identical one-
another (c).

held by an additional constraint. Then, one may leave unchanged
the configuration on left-hand-side of C, but slack the cable on
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project curve

intersecting circles
for construction

approximating polyline

CIRCULAR VOUSSOIRS

first arcs

first arc sides

second arcs

first and second
arc sides

second arcs

first, second and
third arc sides

fourth arcs

arc sides of the
VOussoirs

FREE FORM CABLE STIFFENED ELASTICA
WITH HIGH VOUSSOIRS

Fig. 11. In descending order. A free form curve, its approximation through a polyline of n segments and the corresponding cable-stiffened elastica made of circular voussoirs.
The system becomes stiffer if the radius of the contact profiles is increased: they can be arcs cut from tangent circles of increased diameter. Images show the design sequence
of four series of construction circles, tangent each other in every series and centered on the vertexes of the polyline. The lower image is the stiffened cable so achieved.

the other side (Fig. 12b). Depending on the length of the cable, the
slack part can be constrained at another voussoir D, which acts as a
new control point (Fig. 12c¢) and then tensioned again. One can
eventually change the structural profile by moving (translate and
rotate) the control points, or by varying the tensile force in each
independent part of the cable.

This operation can be iterated by fixing the cable at a few inter-
mediate voussoirs. It is not difficult to think of a device that allows
tensioning the cable comprised between any two intermediate

constrained voussoirs: devices of this type are already used, e.g.,
in the segmental construction of post-tensioned prestressed con-
crete beams. In this way, any desired shape can be virtually ob-
tained and controlled.

5.5. Surfaces

Various elements can be combined to form the skeleton
that sustains a covering membrane. The arrangement of the
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Fig. 12. Separation of the cable stiffened elastica into parts by a control points.

Fig. 13. A series of straight cable-stiffened-elasticae can form the skeleton
supporting a membrane having the shape of developable surfaces.

sub-structure depends upon the target surface and the type of
covering material. In the simplest case, the skeleton is formed by
non-intersecting, independent cable-stiffened elasticae, the one
adjacent to the other. This arrangement can fit, for example, the
case of a fixed boundary and a developable surface (Fig. 13).
Notice that the bending stiffness of each element may be con-
trolled by simply pulling or releasing the cables, so that an active
control of the cable tension can produce a “pulsing” facade or roof,
adding the time-variable to the space variations.

The skeleton for surfaces with double curvature can be obtained
with intersecting elements, as shown in Fig. 14a and b. If the whole
system is foldable, other problems would be related to the folding
process, especially the folding directions and the behavior of the
covering with respect to the skeleton, but this goes beyond the
scope of this work. In any case, the key point is that elements
should intersect one another. This is simply achieved using special
voussoirs at the intersection points, with crossing holes where the
cables can smoothly pass-through with no mutual interaction, of
the type shown in Fig. 14c.

(c)

Fig. 14. To obtain complex surfaces, like a geodesic vault (a) or a sphere (b), the
cable stiffened elasticae should intersect one another. Special voussoirs (c) need to
be used at the intersection points.

6. Discussion and conclusions

The mechanical properties of the cable stiffened elastica here
presented are governed, as the name suggests, by the same equa-
tions of Euler’s elastica, interpreting the curve assumed by a thin
beam under large bending deformation. Remarkably, the bending
stiffness of the system is directly proportional to the tensile force
in the passing through rope, in a way similar to a Bowden cable.
By controlling such force, one can obtain a structure that can
change its equilibrium configurations according to design
purposes.

The concept can thus be used in a wide range of applications for
the design of kinetic structures. From the simple profiles of a beam
or of an arch, to complex profiles, the most various curves can be
reproduced. Moreover, if the disposition of more elements on a
spatial grid is studied, then foldable free-form surfaces can be ob-
tained, for roofs or facades that can change their shape. Since the
unique properties of the system allow achieving a proper form of
expression, we may refer to it as the Elastica for Transformable
Architecture (ETA).

The ETA is self-supporting and its stiffness can be tuned by sim-
ply pulling or releasing a cable, which is invisible because it runs
inside the voussoirs. Moreover, different from other types of mech-
anisms, the profile of the ETA can also be controlled just by its end
points: once the dead and live loads are assigned, the structure can
achieve different profiles changing its boundary conditions. The
ETA concept thus allows describing a pulsing interior volume, ame-
nable of achieving completely different configurations.

From a construction point of view, perhaps the more interesting
feature of the ETA is that it is a mechanism composed of rigid ele-
ments, but with no internal joints. This favors the durability and
the construction. The voussoirs can be made all of the same shape
and differ only in the drilling direction of the sheaths, so that man-
ufacturing is simplified.

How to tension and release the cable has not been explicitly
considered here, but could be done with servo-hydraulic control
systems, with electric engines or using materials, such as
shape-memory alloys, that can vary their length according to the
environmental temperature. Using these, one could also conceive
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microscopic devices for bio-medical applications, where opening is
triggered by the body temperature.

However, it cannot be forgotten that the system can be easily
dismissed at occurrence. Its packaging is simple and fast because
the size of the voussoirs is extremely small and to loosen the struc-
ture it is sufficient to release one cable. Therefore, temporary
shields for first-aid recovery of people could be conceived, as they
could be shipped and readily mounted in situ in the case of an
exceptional event, such as an earthquake or a flooding. Military
applications as well as aerospace engineering applications (anten-
nas, space cabins or containers) can also be considered due to sim-
plicity in unfolding.

Many aspects, however, still need to be defined. To describe an
architectural volume, a cover surface is necessary. Although here
not investigated, the relating characteristics of the structure can
be pointed out. The ETA forms a profile almost continuous and
the position of the points connecting the cover can be chosen
according to the desired curvature. Both the lower and upper pro-
file of the rigid voussoirs need not to be straight, but may be prop-
erly carved to obtain a smooth intrados and extrados. Their
relatively little size with respect to the size of the structure allows
an easy cover with a membrane, and could facilitate the use of rigid
panels.

The proper definition of the state of stress inside the voussoirs
due to Hertzian contact, as well as the stress concentration in the
cable due to contact with the sheaths, are important issues that
necessitate of an accurate mechanical design before bringing the
theory into practice. In any case, construction of this device is ele-
mentary because it is based upon elementary concepts.
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