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Abstract— In this study, we present a robust backstepping
approach for the control problem of the variable speed wind
turbine with permanent magnet synchronous generator. Specifi-
cally to overcome the negative effects of parametric uncertainty,
of both mechanical and electrical sub–systems, a differentiable
robust controller has been proposed. The proposed methodology
ensures the generator velocity tracking error to uniformly
approach a small bound where practical tracking is achieved.
Stability of the overall system is ensured by Lyapunov–based
analysis techniques. Simulation studies are presented to illus-
trate the feasibility and efficiency of the proposed controller.

I. INTRODUCTION

When compared to the other sources of energy used for

electricity generation, wind is free and plentiful in supply,

therefore is attractive in terms of cost and energy security.

Owing to these and its reduced environmental problems,

electrical energy generation from wind power is a growing

sector in the electricity production industry. Among other

types of wind turbines, variable speed wind turbines maxi-

mize the energy capture by operating the turbine at the peak

of the power coefficient. The main aim of variable speed

wind turbines is to follow wind velocity variations in low

and moderate speeds to maximize aerodynamic efficiency,

so have the potential to maximize energy generation. How-

ever the quality of power generation and output regulation

strongly depends on the control technique employed [1]. That

is the effectiveness and reliability of the wind power genera-

tion changes depending on the control strategy, and to make

wind power truly cost–effective and reliable for variable

speed wind turbines, use of advanced control techniques are

imperative. To increase the efficiency, model based control

design approaches can be applied. One drawback, however,

is that mechanical and electrical parameter values of wind

turbines are usually not truly available. Especially in practical

applications, uncertainties limit the efficient energy capture

of a wind turbine. In the literature, different control strategies

have been proposed for variable speed wind turbines [1], [2],

[3], [4], [5], [6], [7]. In [1], Muldaji et al. evaluated a variable

speed, stall–regulated strategy which eliminates the need for

ancillary aerodynamic control systems. In [2], a cascade

structure nonlinear controller has been proposed, however

the proposed mechanism did not account for parametric
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uncertainties of the system. In [4], Song et al. presented

two nonlinear controllers, one of them being an exact model

knowledge controller and the other one is an adaptive con-

troller for the rotor velocity tracking. However the proposed

adaptive controller scheme could only compensate for the

uncertainties in the mechanical sub–system and required the

exact knowledge of electrical sub–system parameters. In [5]

and [6], the results in [4] was extended to compensate for the

uncertainties of both electrical and mechanical sub–systems.

In [6], the issues of external disturbances and modelling

errors were also addressed.

In this paper, we have extended our previous results given

in [5] and [6] to a more sophisticated variable speed wind

turbine model, and present a novel robust backstepping

approach for the control problem of the variable speed

wind turbine with permanent magnet synchronous generator.

Specifically to overcome the negative effects of parametric

uncertainty, of both mechanical and electrical sub–systems, a

differentiable robust controller has been proposed. The pro-

posed methodology ensures the generator velocity tracking

error to uniformly approach a small bound where practi-

cal tracking is achieved. Simulation studies are presented

to illustrate the feasibility and efficiency of the proposed

controller.

The rest of the paper is organized as follows. In Section

II, the model of the wind turbine used in this study, and the

problem statement are given. The error system development

and the robust backstepping controller design scheme are

presented in Section III. The stability and boundedness of

the closed–loop system are investigated in Section IV. While

the simulation studies and concluding remarks are given in

Sections V and VI, respectively.

II. DYNAMICAL MODEL

The mathematical equations describing the dynamics of

a variable speed wind turbine with permanent magnet sy-

chronous generator in d − q coordinates is assumed to have

the following form [8]

Ld

did
dt

= −Rsid − Lqiqωg + kgλmωg − vd (1)

Lq

diq
dt

= Ldidωg − Rsiq − vq (2)

J
dωg

dt
= −1.5P 2

4
λmid − BP

2
ωg +

P

2
Tm (3)

where the first equation is for the mechanical sub–system,

and the last two equations represent electrical sub–system

dynamics. Specifically, vd (t), vq (t) ∈ R, and id (t), iq (t) ∈
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R are the general d − q terminal voltages and currents,

respectively, Rs ∈ R is the stator resistance, Ld, Lq ∈ R are

the d− and q− axes inductances, respectively, λm ∈ R is the

permanent magnet flux, kg ∈ R is the generator coefficient,

Tm (t) ∈ R is the input mechanical torque of the wind

turbine, ωg (t) ∈ R is the generator velocity, P ∈ R is the

number of poles, J ∈ R is the rotor moment of inertia,

B ∈ R is the friction and windage coefficient.

Our control objective is to ensure that the generator veloc-

ity, ωg (t), tracks a smooth reference velocity profile, denoted

by ωd (t) ∈ R, generated according to the operational modes

of the wind turbine, despite the lack of exact knowledge of

both the mechanical and electrical sub–system parameters of

(1), (2) and (3).

III. ERROR SYSTEM DEVELOPMENT

To quantify the control objective, we define error signals,

denoted by e (t), z1 (t), z2 (t) ∈ R, as follows

e , ωd − ωg (4)

z1 , id,ref − id (5)

z2 , iq,ref − iq (6)

where id,ref (t), iq,ref (t) ∈ R are reference signals that will

be designed subsequently. After taking the time derivative

of the tracking error term in (4), premultiplying with J , and

then utilizing (3), we obtain

Jė = Jω̇d +
BP

2
ωg +

1.5P 2

4
λmid − P

2
Tm. (7)

The above expression can be rewritten in the following

simpler form

Jė = Y φ + f + φmid (8)

where f (t) , −P
2 Tm ∈ R contains smooth time–varying

uncertainties, φm , 1.5P 2

4 λm ∈ R is an uncertain constant

parameter, Y (t) ,
[

ω̇d ωg

]
∈ R

1×2 contains time–

varying functions and φ ,
[

J BP
2

]T ∈ R
2 contains

uncertain constant parameters. Based on the definition of

Y (·), its desired form is defined as Yd (t) ,
[

ω̇d ωd

]
∈

R
1×2. After adding and substracting Ydφ to the right–hand–

side of the open–loop mechanical sub–system dynamics, the

following expression can be obtained

Jė = F + χ + φ̃mid + φ̂mid,ref − φ̂mz1 (9)

where φ̂m ∈ R is the best–guess estimate (nominal value) of

φm, φ̃m , φm − φ̂m ∈ R is the estimation error, and F (t),
χ (t) ∈ R are defined as

F , Ydφ + f (10)

χ , (Y − Yd) φ. (11)

Based on the subsequent stability analysis, reference signals

id,ref (t) and iq,ref (t) are designed as

id,ref =
−1

φ̂m

{
Ydφ̂ + f̂ +

(
ke + knρ2

1

)
e + vR1

}
(12)

iq,ref = 0 (13)

where ke, kn ∈ R are positive control gains, φ̂, φ̂m, f̂ ∈
R are the constant best–guess estimates of the unknown

parameters φ, φm, and f , respectively, the positive bounding

function ρ1 (e) ∈ R is designed to satisfy

ρ1 ≥ |χ| (14)

and vR1 (t) ∈ R is a robust term designed in the following

form [9]

vR1 =
eρ2

2,s

‖e‖m ρ2,m + ǫ1
(15)

where ǫ1 ∈ R is a positive constant, and ρ2 (|e|) ∈ R is a

positive bounding function that is designed to satisfy

ρ2 (|e|) ≥
∣∣∣F̃

∣∣∣ (16)

where F̃ (t) , F −Ydφ̂− f̂ ∈ R. In (15), ρ2,s , ρ2 (‖e‖s) ∈
R and ρ2,m , ρ2 (‖e‖m) ∈ R are auxiliary positive bounding

functions where the notations ‖e‖s and ‖e‖m are used to

define the following functions

‖e‖s ,
√

e2 + σ , ‖e‖m ,
√

e2 + σ −
√

σ (17)

where σ ∈ R is a small, positive constant. Note that, based on

the definitions in (17), the following inequalities are always

satisfied

‖e‖s ≥ |e| ≥ ‖e‖m (18)

ρ2 (‖e‖s) ≥ ρ2 (|e|) ≥ ρ2 (‖e‖m) . (19)

Remark 1: The backstepping procedure requires that the

auxiliary control in (12) be differentiable; hence, the robust

control term in (15) was defined with the functions given by

(17) to ensure differentiability.

After inserting id,ref (t) back into the open–loop mechan-

ical sub–system dynamics, we obtain

Jė = −kee− knρ2
1e + χ− φ̂mz1 + F̃ + φ̃mid − vR1. (20)

Note that the term φ̃mid can be upper bounded as

ρ3 |z1| ≥
∣∣∣φ̃mid

∣∣∣ (21)

where ρ3 (t) ∈ R is a positive bounding function. The back-

stepping design also requires the dynamics of the auxiliary

error signals z1 (t) and z2 (t). To obtain the dynamics for

z1 (t), first the derivative of (5) is taken, and then the time

derivative of (12) is inserted and the resulting expression is

multiplied with Ld to obtain

Ldż1 =
−Ld

φ̂m

{
Ẏdφ̂ +

1

J

(
ke + 2knρ1e

∂

∂e
ρ1 + knρ2

1

+
∂

∂e
vR1

)
× (Y φ + f + φmid)

}

+Rsid + Lqiqωg + vd − kgλmωg (22)

which can be rewritten in the following manner

Ldż1 = W1θ1 + f1 + vd (23)
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where W1(·)θ1 ∈ R contains the linearly parametrizable

terms with W (t) ∈ R
1×6 and θ1 ∈ R

6 containing time–

varying functions and uncertain constant parameters, respec-

tively, and f1 (t) ∈ R contains the time–varying uncertain-

ties, and are explicitly defined as follows

W1θ1 =
−Ld

φ̂m

{
Ẏdφ̂ +

1

J

(
ke + 2knρ1e

∂

∂e
ρ1 + knρ2

1

+
∂

∂e
vR1

)
× (Y φ + φmid)

}

+Rsid + Lqiqωg − kgλmωg (24)

f1 =
−Ld

φ̂m

1

J

(
ke + 2knρ1e

∂

∂e
ρ1 + knρ2

1 +
∂

∂e
vR1

)
f.

(25)

Based on the subsequent stability analysis, we design vd (t)
in the form

vd = −
(
k1 + knρ2

3

)
z1 − W1θ̂1 + φ̂me − vR2 (26)

where θ̂1 ∈ R
6×1 is the constant best–guess estimate of the

unknown parameter vector θ1, vR2 (t) ∈ R is an additional

robust control term, k1 ∈ R is a positive constant control

gain, and ρ3 (·) was introduced in (21). In (26), the robust

term vR2 (t) has been introduced to compensate for the

mismatch between the actual and estimated parameters and

is explicitly designed as follows

vR2 =
z1ρ

2
4

|z1| ρ4 + ǫ2
(27)

where ǫ2 ∈ R is a positive constant, and ρ4 (t) ∈ R is a

positive bounding function designed to satisfy

ρ4 ≥
∣∣∣W1θ̃1

∣∣∣ + |f1| (28)

where θ̃1 , θ1−θ̂1 ∈ R
6×1 is the parameter estimation error.

After substituting (26) into (22), the closed–loop dynamics

for z1 (t) is obtained to have the following form

Ldż1 = −k1z1 − knρ2
3z1 + W1θ̃1 + f1 + φ̂me − vR2. (29)

Similarly, the dynamics of z2 (t) can be obtained to have the

following form

Lq ż2 = −Ldidωg + Rsiq + vq. (30)

After defining W2 (t) ,
[
−idωg iq

]
∈ R

1×2 which

contains time–varying functions, and θ2 ,
[

Ld Rs

]T ∈
R

2 which contains uncertain constant parameters, the right–

hand–side of (30) can be rewritten as

Lq ż2 = W2θ2 + vq. (31)

Similar to the design of vd (t), the voltage input vq (t) is

designed in the following form

vq = −k2z2 − W2θ̂2 − vR3 (32)

where k2 ∈ R is a positive constant control gain, θ̂2 ∈ R
2×1

is the constant best–guess estimate of the unknown parameter

vector θ2, and vR3 (t) ∈ R is an additional robust control

term introduced to compensate for the mismatch between

the actual and estimated parameters and is explicitly defined

as follows

vR3 =
z2ρ

2
5

|z2| ρ5 + ǫ3
(33)

where ǫ3 ∈ R is a positive constant, and ρ5 (t) ∈ R is a

positive bounding function that is designed to satisfy

ρ5 ≥
∣∣∣W2θ̃2

∣∣∣ (34)

where θ̃2 , θ2 − θ̂2 ∈ R
2 is the parameter estimation error.

Substituting (32) into (30), the closed–loop dynamics for

z2 (t) is obtained to have the following form

Lq ż2 = −k2z2 + W2θ̃2 − vR3. (35)

IV. STABILITY ANALYSIS

Forming the closed–loop error dynamics for the signals

e (t), z1 (t), and z2 (t), we are now ready to state the

following theorem.

Theorem 1: The robust controller given by (26), (32)

and the auxiliary control inputs (12), (13) with the robust

terms (15), (27), and (33) guarantees uniformly ultimately

boundedness of the generator velocity tracking error signal

e (t) in the sense that

‖e(t)‖ ≤
√

a

b
‖x(0)‖2

exp (−βt) +
2ǫ

bβ
(1 − exp (−βt))

(36)

where x ,
[

e z1 z2

]T ∈ R
3×1 is the combined error

signal, and a, b, β, ǫ ∈ R are positive constants defined as

a , max {J, Ld, Lq} (37)

b , min {J, Ld, Lq} (38)

β ,
2min

{(
ke − 1

4kn

)
, k1, k2

}

max {J, Ld, Lq}
(39)

ǫ , ǫ1 + ǫ2 + ǫ3 +
1

4kn

(40)

where ǫ1, ǫ2, ǫ3 , ke, k1, k2, and kn were previously defined.

Proof: We start our proof by defining the following

non–negative scalar function

V ,
1

2
Je2 +

1

2
Ldz

2
1 +

1

2
Lqz

2
2 (41)

which can be lower and upper bounded in the following from

1

2
min {J, Ld, Lq} ‖x‖2 ≤ V ≤ 1

2
max {J, Ld, Lq} ‖x‖2

.

(42)
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Taking the time derivative of (41) along (20), (29) and (35),

and then cancelling common terms, we obtain

V̇ = −kee
2 − k1z

2
1 − k2z

2
2

+
[
χ − knρ2

1e
]
e

+
[
F̃ − vR1

]
e

+
[
φ̃mide − knρ2

3z
2
1

]

+

[
W1θ̃1 + f1 −

z1ρ
2
4

|z1| ρ4 + ǫ2

]
z1

+

[
W2θ̃2 −

z2ρ
2
5

|z2| ρ5 + ǫ3

]
z2. (43)

It should be noted that, the
[
F̃ − vR1

]
e term can be upper

bounded as [9]

[
F̃ − vR1

]
e ≤ ρ2 |e| −

e2ρ2
2,s

‖e‖m ρ2,m + ǫ1

≤ ρ2 |e| −
e2ρ2

2

|e| ρ2 + ǫ1

≤ ǫ1
|e| ρ2

|e| ρ2 + ǫ1
≤ ǫ1. (44)

After using (14), (16), (21), (28), and (34), we can upper

bound the right–hand–side of (43) as follows

V̇ ≤ −kee
2 − k1z

2
1 − k2z

2
2

+
[
ρ1 |e| − knρ2

1e
2
]

+
[
ρ3 |z1| |e| − knρ2

3z
2
1

]

+

[
ρ4 |z1| −

z2
1ρ2

4

|z1| ρ4 + ǫ2

]

+

[
ρ5 |z2| −

z2
2ρ2

5

|z2| ρ5 + ǫ3

]
+ ǫ1. (45)

After adding and subtracting 1
4kn

and then completing the

squares of the first and second bracketed terms of (45), we

can further upper bound (45) as

V̇ ≤ −min

{(
ke −

1

4kn

)
, k1, k2

}
‖x‖2

+

[
ρ4 |z1| −

z2
1ρ2

4

|z1| ρ4 + ǫ2

]

+

[
ρ5 |z2| −

z2
2ρ2

5

|z2| ρ5 + ǫ3

]
+

1

4kn

+ ǫ1 (46)

where we used

ρ3 |z1| |e| − knρ2
3z

2
1 ≤ e2

4kn

. (47)

The bracketed terms in (46) can be manipulated as follows

ρi+3 |zi| −
ρ2

i+3z
2
i

ρi+3 |zi| + ǫi+1
= ǫi+1

ρi+3 |zi|
ρi+3 |zi| + ǫi+1

≤ ǫi+1

(48)

eqnarray where i ∈ {1, 2}. Hence, we can use (48) to place

an upper bound on the right–hand–side of (46) as shown

below

V̇ ≤ −min

{(
ke −

1

4kn

)
, k1, k2

}
‖x‖2

+ ǫ (49)

where ǫ was previously defined in (40). From the upper

bound on V (t) given in (42), we can further upper bound

V̇ (t) in (49) as shown below

V̇ ≤ −βV + ǫ (50)

where β was previously defined in (39). The differential

inequality of (50) can now be solved to yield [9]

V (t) ≤ V (0) exp (−βt) +
ǫ

β
(1 − exp (−βt)) . (51)

After applying the bounds of (42) to (51), we obtain the

following upper bound for x(t)

‖x(t)‖ ≤
√

a

b
‖x(0)‖2

exp (−βt) +
2ǫ

bβ
(1 − exp (−βt))

(52)

where a, b were previously defined in (37), (38), respectively.

Based on (52) and the definition of x (t), we can show that

the generator velocity tracking error e(t) can be bounded as

given by (36) [10]. Due to the boundedness of e (t), z1 (t),
and z2 (t), standard signal chasing arguments can be utilized

to show that all the signals in the closed–loop systems in

(20), (29) and (35) are bounded.

V. SIMULATION RESULTS

To demonstrate the performance of the proposed robust

controller, two different simulation studies were performed

similar to that of [4]. For the first simulation, the reference

generator velocity ωd (t) was selected as

ωd (t) = 2 + sin (t) (53)

and for the second one, a more realistic reference generator

velocity was selected as

ωd (t) =





0, u (k) < uc,

xm

(
1 + sin

(
π
2

(u(k)−s1)
d1

))
, u (k) < ur,

xm, u (k) < uF ,

xm

(
1 + sin

(
π
2

(u(k)−s2)
d2

))
, u (k) < us,

0, u (k) > us

(54)

with

s1 = uc+ur

2 , d1 = ur−uc

2 ,
s2 = uF +ur

2 , d2 = ur−uF

2 ,
us = 21.3 m/ sec, xm = 4.1 rad/ sec,

uc = 4.3m/ sec ur = 7.7m/ sec uF = 17.9m/ sec .
(55)

where that the parameter xm is specified according to the

allowable generator velocity. The system parameters used in

the simulations were

Ld = 0.002, Lq = 0.002, Rs = 0.18, kg = 100, (56)

J = 0.48, B = 0.001, λ = 0.8, p = 8.

For both simulations, the best–guess estimates of the param-

eters were set to 80% of the actual values and controller

gains were chosen as

ke = 0.01, kn = 1000, k1 = 0.001, k2 = 35,

ρ1 = 1.4, ρ2 = 7.1, ρ3 = 13.1, ρ4 = 30, ρ5 = 10,(57)

ε1 = 0.001, ε2 = 0.001, ε3 = 0.00001.
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The results of the simulations are presented through Fig-

ures 1–4. For the first simulation, the desired and actual shaft

velocity profiles and the tracking errors are given in Figure

1, and the control inputs vd(t) and vq(t) are given in Figure

2. Similarly, the results of second simulation, where a more

realistic desired velocity profile was preferred, are given in

Figures 3 and 4, respectively. From Figures 1 and 3, it is

clear that tracking objective was met.

VI. CONCLUSIONS

In this paper, we have presented a robust backstepping

controller scheme for the variable speed wind turbines with

permanent magnet synchronous generators. The proposed

method achieved practical tracking of the generator velocity

error despite the parametric uncertainty on both mechanical

and electrical sub–systems. That is, the generator velocity

tracking error was driven, uniformly, to approach to a small

bound. The boundedness of the system states and stability of

the closed–loop system were guaranteed via Lyapunov–based

techniques. Simulation studies were presented to illustrate

the performance and feasibility of the proposed method.
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Fig. 4. (First Simulation) Voltages applied to the generator: (Top) vd (t),
(Bottom) vq (t)
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