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This paper deals with the so-called Exp-function method for studying a particular nonlinear partial differen-
tial equation (PDE): the (2 + 1)-dimensional Boiti–Leon–Pempinelli equation. The method is constructive
and can be carried out in a computer with the aid of a computer algebra system. The obtained generalized
solitary wave solutions contain more arbitrary parameters compared with the earlier works, and thus, they
are wider. This means that our method is effective and powerful for constructing exact and explicit analytic
solutions to nonlinear PDEs.
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1. Introduction

Many fundamental problems in nonlinear sciences are described by nonlinear partial differential
equations (NPDEs). It is also believed that many problems of future technologies will be described
in the same way. Physical problems and the increasing availability of technology (including com-
puter algebra systems such as MATHEMATICA, MAPLE, or MATLAB) have motivated the
development of many analytic methods for finding exact and explicit solutions of such equations.
Thus, in the last four decades or so, many different methods have been presented in the open
literature to look for exact solutions of these equations. To mention some, Darboux transforma-
tion [33], Hirota bilinear method [27], inverse scattering transformation [2], symmetry method
[9], Weierstrass function method [43], Jacobi elliptic function method [29], Sine–Cosine func-
tion [40], Tanh–Coth function [32], F-expansion method [1], homotopy perturbation method
[15,16,23], variational iteration method [14,22,38], Adomian decomposition method [3,17,18],
(G′/G)-expansion method [4,6,7,35,36,39], and so forth. However, most of the methods have
some restrictions for application purposes.
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748 İ. Aslan

Since the nonlinear phenomena is so complex, it is still an open problem to find more powerful
techniques to deduce more new exact solutions to the nonlinear equations of modelling problems.
Recently, He and Wu [25] introduced the so-called Exp-function method, a relatively new method.
The Exp-function ‘method’ consists of trying rational combinations of exponential functions as
an ‘ansatz’ to find exact solutions of the ordinary differential equation (ODE) for travelling waves
of the original equation. It can be used as an alternative method for obtaining approximate and
analytic solutions of many NPDEs. The Exp-function method was found to be one of the most
effective methods to search for exact solutions of NPDEs [5,24,26,34,42]. It has been successfully
extended by the authors [19,45] to study some nonlinear equations with variable coefficients.
Moreover, being less restrictive and concise, it is modified by the researchers [12,13,46,47] to
analyse some special nonlinear differential-difference equations.

In this paper, we consider the following (2 + 1)-dimensional Boiti–Leon–Pempinelli (BLP)
equation [8] {

uty − (u2 − ux)xy − 2vxxx = 0,

vt − vxx − 2uvx = 0,
(1)

and apply the Exp-function method to the BLP equation to construct new and interesting exact
solutions. The integrability of Equation (1) was shown in [8]. In [21], it was also observed that
Equation (1) was Hamiltonian. Both Boiti et al. and Garagash [8,21] derived Bäcklund trans-
formation for Equation (1). The fact that the sine-Gordon equation or the sinh-Gordon equation
can be derived from the BLP equation by a certain transformation was pointed out in [21]. A
great deal of research work has been invested in the literature for the study of BLP equation.
To mention some, Weiss [41] has shown that the BLP system to be solvable in terms of a com-
muting set of nonlinear Hamiltonian ordinary differential equations, which are related to the
fixed points of the Bäcklund transformation for this system. Yurov [44] studied the Darboux and
Laplace transformations for the BLP equation, as well as demonstrated that it can be reduced to
the Burgers (and anti-Burgers) equation in a one-dimensional limit. By using a further extended
tanh method, Lü and Zhang [31] constructed explicit exact solutions for the BLP equation. Huang
and Zhang [28] obtained several types of exact travelling wave solutions to the BLP equation by
implementing an improved projective Riccati equation method. Based on the variable separation
solution and by selecting appropriate multi-valued functions, Dai and Ni [10] investigated novel
interactions between a special bell-like semi-foldon and a special peakon-like semi-foldon for the
BLP equation. Inspired by the extended tanh function method and the direct method of symmetry
reduction, Lü [30] presented a Burgers equation-based constructive method for solving NPDEs
and had taken the BLP equation as an example to illustrate the algorithm. By giving some types
of general solutions of a first-order nonlinear ODE with six degree and presenting a new general-
ized algebra method to find more exact solutions of NPDEs, Ren et al. [37] obtained many types
of solutions for the BLP equation. The extended tanh method has been successfully applied to
the BLP equation by Feng et al. [20] to search for exact and explicit solutions. Recently, a new
mapping method is used by Dai and Wang [11] to obtain the variable separation solutions (with
two arbitrary functions) of the BLP equation, and so forth.

2. The Exp-function method

To begin with, suppose that we have a NPDE for u(x, y, t) in the form

P(u, ut , ux, uy, utt , utx, uty, uxx, uxy, uyy, . . .) = 0, (2)

where P is a polynomial in its arguments. We summarize the algorithm as follows:
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Step 1 By taking u(x, y, t) = U(ζ ), ζ = kx + my + wt , where k, m, and w are arbitrary non-
zero constants, look for travelling wave solutions of Equation (2) and transform it to the
ODE

Q(U, U ′, U ′′, . . .) = 0, (3)

where the prime denotes derivative with respect to ζ .
Step 2 Integrate Equation (3), if possible, term by term one or more times. This yields constant(s)

of integration. The integration constant(s) can be set to zero for simplicity.
Step 3 Suppose the solution U(ζ ) of Equation (3) can be expressed in the form

U(ζ ) = ac exp(cζ ) + · · · + a−d exp(−dζ )

bp exp(pζ ) + · · · + b−q exp(−qζ )
, (4)

where c, d, p, and q are unknown positive integers to be determined, ai and bj are unknown
constants.

Step 4 Determine the highest order nonlinear term and the linear term of highest order in Equation
(3) and express them in terms of Equation (4). Then, in the resulting terms, balance the
highest order Exp-function to determine c and p, and the lowest order Exp-function to
determine d and q.

Step 5 Substitute Equation (4) into Equation (3) and equate the coefficients of exp (nζ ) to zero,
and obtain a system of algebraic equations for ai , bj , k, m, and w. Then, to determine these
constants, solve the system with the aid of a computer algebra system.

Step 6 Substitute the values solved in Step 5 into expression (4) and find the travelling wave
solutions of Equation (2). Then, it is necessary to substitute them into the original Equation
(2) to assure the correctness of the solutions.

3. Solutions to the BLP equation by the Exp-function method

To seek for the travelling wave solutions to the BLP equation (1), we first make the transformation
u(x, y, t) = U(ζ ), v(x, y, t) = V (ζ ), ζ = kx + my + wt , where k, m, and w are constants to be
determined later. Then, we get the system of ODEs

wmU ′′ = km(U 2 − kU ′)′′ + 2k3V ′′′,

wV ′ = k2V ′′ + 2kUV ′,
(5)

where the prime denotes derivative with respect to ζ . By integrating the first equation in Equation
(5) twice and setting the constants of integration to zero, we get

V = m

2k
U + m

2k3

∫
(wU − kU 2) dζ. (6)

Moreover, substituting Equation (6) into the second equation of Equation (5), we obtain

k4U ′′ − 2k2U 3 + 3kwU 2 − w2U = 0. (7)

Now, we consider the ansatz

U(ζ ) = ac exp(cζ ) + · · · + a−d exp(−dζ )

bp exp(pζ ) + · · · + b−q exp(−qζ )
(8)
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for the solution of Equation (7) and balance the terms U ′′ and U 3. By a simple calculation, we
have

U ′′ = k1 exp[(c + 3p)ζ ] + · · ·
k2 exp[4pζ ] + · · · (9)

and

U 3 = k3 exp[3cζ ] + · · ·
k4 exp[3pζ ] + · · · = k3 exp[(3c + p)ζ ] + · · ·

k4 exp[4pζ ] + · · · , (10)

where kis are determined coefficients for simplicity. Balancing highest order of Exp-function in
Equations (9) and (10), we have

c + 3p = 3c + p, (11)

which leads to the result

p = c. (12)

Similarly, from the ansatz (8), we have

U ′′ = · · · + l1 exp[−(d + 3q)ζ ]
· · · + l2 exp[−4qζ ] (13)

and

U 3 = · · · + l3 exp[−3dζ ]
· · · + l4 exp[−3qζ ] = · · · + l3 exp[−(3d + q)ζ ]

· · · + l4 exp[−4qζ ] , (14)

where lis are determined coefficients for simplicity. Balancing lowest order of Exp-function in
Equations (13) and (14), we have

−(d + 3q) = −(3d + q), (15)

which leads to the result

q = d. (16)

We can freely choose the values of c and d in general. However, the final solution does not strongly
depend on the values of c and d [18,38].

Case 1. p = c = 1, d = q = 1.
In this case, the solution of Equation (7) can be expressed as

U(ζ ) = a1 exp(ζ ) + a0 + a−1 exp(−ζ )

b1 exp(ζ ) + b0 + b−1 exp(−ζ )
. (17)

We take b1 = 1 in Equation (17) for simplicity. Then, substituting Equation (17) into Equation
(7), we have

1

A
[C0 +C1 exp(ζ )+C2 exp(2ζ )+C3 exp(3ζ ) + C4 exp(4ζ ) + C5 exp(5ζ ) + C6 exp(6ζ )] = 0,

(18)
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where

A = (exp (2ζ ) + b−1 + b0 exp(ζ ))3,

C0 = −2k2a3
−1 + 3kwa2

−1b−1 − w2a−1b
2
−1,

C1 = −6k2a2
−1a0 + 6kwa−1a0b−1 + k4a0b

2
−1 − w2a0b

2
−1 + 3kwa2

−1b0

− k4a−1b−1b0 − 2w2a−1b−1b0,

C2 = 3kwa2
−1 − 6k2a−1a

2
0 − 6k2a2

−1a1 − 4k4a−1b−1 − 2w2a−1b−1 + 3kwa2
0b−1

+ 6kwa−1a1b−1 + 4k4a1b
2
−1 − w2a1b

2
−1 + 6kwa−1a0b0 − k4a0b−1b0 − 2w2a0b−1b0

+ k4a−1b
2
0 − w2a−1b

2
0,

C3 = 6kwa−1a0 − 2k2a3
0 − 12k2a−1a0a1 − 6k4a0b−1 − 2w2a0b−1 + 6kwa0a1b−1

+ 3k4a−1b0 − 2w2a−1b0 + 3kwa2
0b0 + 6kwa−1a1b0 + 3k4a1b−1b0

− 2w2a1b−1b0 − w2a0b
2
0,

C4 = 4k4a−1 − w2a−1 + 3kwa2
0 + 6kwa−1a1 − 6k2a2

0a1 − 6k2a−1a
2
1 − 4k4a1b−1

− 2w2a1b−1 + 3kwa2
1b−1 − k4a0b0 − 2w2a0b0 + 6kwa0a1b0

+ k4a1b
2
0 − w2a1b

2
0,

C5 = k4a0 − w2a0 + 6kwa0a1 − 6k2a0a
2
1 − k4a1b0 − 2w2a1b0 + 3kwa2

1b0,

C6 = −w2a1 + 3kwa2
1 − 2k2a3

1 .

Equating the coefficients of exp (jζ ) to zero in Equation (18) and solving the resulting algebraic
system for a1, a0, a−1, b0, b−1, k, m, and w, we get the following solution sets (denoted in curly
brackets from now on) and the corresponding generalized solitary wave solutions to Equation (1):

Case 1.1{
a−1 = 0, b−1 = −a2

0 ∓ ka0b0

k2
, a1 = ∓k, w = ∓k2, a0 = a0, b0 = b0, k = k, m = m

}
, (19)

u1(x, y, t) = −k2 exp(kx + my − k2t)

a0 + k(b0 + exp(kx + my − k2t))
,

v1(x, y, t) = −m

2
, (20)

u2(x, y, t) = −k2 exp(kx + my + k2t)

a0 − k
(
b0 + exp(kx + my + k2t)

) ,

v2(x, y, t) = m

2
+ m (kb0 − a0)

a0 − k(b0 + exp(kx + my + k2t))
, (21)

where a0, b0, k, and m are arbitrary constants.

Case 1.2 {
a−1 = 0, a1 = 0, b−1 = 0, b0 = ∓a0

k
, w = ∓k2, a0 = a0, k = k, m = m

}
, (22)



752 İ. Aslan

u3(x, y, t) = ka0

k exp(kx + my − k2t) − a0
,

v3(x, y, t) = ma0

k exp(kx + my − k2t) − a0
, (23)

u4(x, y, t) = ka0

k exp(kx + my + k2t) + a0
,

v4(x, y, t) = 0, (24)

where a0, k, and m are arbitrary constants.

Case 1.3

{
a−1 = ∓2kb−1, a1 = 0, b0 = 0, a0 = 0, w = ∓2k2, b−1 = b−1, k = k, m = m

}
, (25)

u5(x, y, t) = − 2kb−1

b−1 + exp(2(kx + my − 2k2t))
,

v5(x, y, t) = − 2mb−1

b−1 + exp(2(kx + my − 2k2t))
, (26)

u6(x, y, t) = 2kb−1

b−1 + exp(2(kx + my + 2k2t))
,

v6(x, y, t) = 0, (27)

where b−1, k, and m are arbitrary constants.

Case 2 p = c = 2, d = q = 1.
Then, the trial function (8) becomes

U(ζ ) = a2 exp(2ζ ) + a1 exp(ζ ) + a0 + a−1 exp(−ζ )

b2 exp(2ζ ) + b1 exp(ζ ) + b0 + b−1 exp(−ζ )
. (28)

We set b2 = 1 for simplicity, and thus, Equation (28) takes the form

U(ζ ) = a2 exp(2ζ ) + a1 exp(ζ ) + a0 + a−1 exp(−ζ )

exp(2ζ ) + b1 exp(ζ ) + b0 + b−1 exp(−ζ )
. (29)

Substituting Equation (29) into Equation (7), we get the equation

(exp(3ζ ) + b−1 + exp(ζ )b0 + exp(2ζ )b1)
−3

9∑
j=0

Cj exp(jζ ) = 0. (30)

We omit to display the coefficients Cj explicitly. Then, equating the coefficients of exp(jζ ) to zero
and solving the resulting algebraic system for a2, a1, a0, a−1, b1, b0, b−1, k, m, and w, we get the
following solution sets and the corresponding generalized solitary wave solutions to Equation (1):
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Case 2.1 {
a−1 = 0, a2 = 0, b−1 = 0, a1 = 1

2

(
∓kb1 −

√
k2(b2

1 − 4b0)

)
, a0 = ∓kb0,

w = ∓k2, b1 = b1, b0 = b0, k = k, m = m

}
, (31)

u7(x, y, t) =
−kb0 − 1

2

(
kb1 +

√
k2

(
b2

1 − 4b0
))

exp(kx + my − k2t)

exp(2(kx + my − k2t)) + b0 + b1 exp(kx + my − k2t)
,

v7(x, y, t) = −
m

(
2kb0 +

(
kb1 +

√
k2

(
b2

1 − 4b0
))

exp(kx + my − k2t)
)

2k(b0 + (b1 + exp(kx + my − k2t)) exp(kx + my − k2t))
, (32)

u8(x, y, t) =
kb0 + 1

2

(
kb1 −

√
k2

(
b2

1 − 4b0
))

exp(kx + my + k2t)

exp(2(kx + my + k2t)) + b0 + b1 exp(kx + my + k2t)
,

v8(x, y, t) = 0, (33)

where b0, b1, k, and mare arbitrary constants.

Case 2.2{
a−1 = 0, a2 = ∓k, b−1 = 0, a1 = 1

2

(
∓kb1 −

√
k2

(
b2

1 − 4b0
))

, a0 = 0,

w = ∓k2, b1 = b1, b0 = b0, k = k, m = m

}
, (34)

u9(x, y, t) =
−k exp(2(kx + my − k2t)) − 1

2

(
kb1 +

√
k2

(
b2

1 − 4b0
))

exp(kx + my − k2t)

exp(2(kx + my − k2t)) + b0 + b1 exp(kx + my − k2t)
,

v9(x, y, t) = −m

2
, (35)

u10(x, y, t) =
k exp(2(kx + my + k2t)) + 1

2

(
kb1 −

√
k2

(
b2

1 − 4b0
))

exp(kx + my + k2t)

exp(2(kx + my + k2t)) + b0 + b1 exp(kx + my + k2t)
,

v10(x, y, t) = −
m

(
kb0 +

(√
k2

(
b2

1 − 4b0
) − k exp(kx + my + k2t)

)
exp(kx + my + k2t)

)
2k(b0 + (b1 + exp(kx + my + k2t)) exp(kx + my + k2t))

,

(36)

where b0, b1, k, and m are arbitrary constants.

Case 2.3

{a−1 = 0, a2 = ∓2k, b−1 = 0, a1 = 0, a0 = 0, b1 = 0, w = ∓2k2, b0 = b0, k = k, m = m},
(37)

u11(x, y, t) = − 2k exp(2(kx + my − 2k2t))

b0 + exp(2(kx + my − 2k2t))
,
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v11(x, y, t) = −m, (38)

u12(x, y, t) = 2k exp(2(kx + my + 2k2t))

b0 + exp(2(kx + my + 2k2t))
,

v12(x, y, t) = m − 2mb0

b0 + exp(2(kx + my + 2k2t))
, (39)

where b0, k, and m are arbitrary constants.

Case 2.4

{a−1 = ∓3kb−1, a2 = 0, a1 = 0, a0 = 0, b1 = 0, b0 = 0, w = ∓3k2, b−1 = b−1,

k = k, m = m}, (40)

u13(x, y, t) = − 3kb−1

b−1 + exp(3(kx + my − 3k2t))
,

v13(x, y, t) = − 3mb−1

b−1 + exp(3(kx + my − 3k2t))
, (41)

u14(x, y, t) = 3kb−1

b−1 + exp(3(kx + my + 3k2t))
,

v14(x, y, t) = 0, (42)

where b−1, k, and m are arbitrary constants.

Case 2.5

{a−1 = 0, a2 = ∓3k, b−1 = 0, a1 = ∓3kb1, a0 = ∓3kb0, w = ∓3k2, b1 = b1,

b0 = b0, k = k, m = m}, (43)

u15,16(x, y, t) = ∓3k exp(2(kx + my ∓ 3k2t)) ∓ 3kb0 ∓ 3kb1 exp(kx + my ∓ 3k2t)

exp(2(kx + my ∓ 3k2t)) + b0 + b1 exp(kx + my ∓ 3k2t)
,

v15,16(x, y, t) = ∓3m

2
, (44)

where b0, b1, k, and m are arbitrary constants.

Case 2.6

{a−1 = 0, a2 = ∓3k, a1 = 0, a0 = 0, b1 = 0, b0 = 0, w = ∓3k2, b−1

= b−1, k = k, m = m}, (45)

u17(x, y, t) = −3k exp(3(kx + my − 3k2t))

b−1 + exp(3(kx + my − 3k2t))
,

v17(x, y, t) = −3m

2
, (46)

u18(x, y, t) = 3k exp(3(kx + my + 3k2t))

b−1 + exp(3(kx + my + 3k2t))
,

v18(x, y, t) = 3m

2
− 3mb−1

b−1 + exp(3(kx + my + 3k2t))
, (47)

where b−1, k, and m are arbitrary constants.
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Case 3 p = c = 2, d = q = 2.
Then, the trial function (8) becomes

U(ζ ) = a2 exp(2ζ ) + a1 exp(ζ ) + a0 + a−1 exp(−ζ ) + a−2 exp(−2ζ )

b2 exp(2ζ ) + b1 exp(ζ ) + b0 + b−1 exp(−ζ ) + b−2 exp(−2ζ )
. (48)

There are some free parameters in Equation (48), so we set b2 = 1, b1 = 0, and b−1 = 0 for
simplicity, and thus, Equation (48) takes the form

U(ζ ) = a2 exp(2ζ ) + a1 exp(ζ ) + a0 + a−1 exp(−ζ ) + a−2 exp(−2ζ )

exp(2ζ ) + b0 + b−2 exp(−2ζ )
. (49)

By the same manipulations as in the previous cases, we obtain the following solution sets and the
corresponding generalized solitary wave solutions to Equation (1).

Case 3.1{
a−2 = ∓2kb−2, a2 = 0, a−1 = 0, a1 = 0, a0 = ∓kb0 −

√
k2

(
b2

0 − 4b−2
)
,

w = ∓2k2, b−2 = b−2, b0 = b0, k = k, m = m

}
, (50)

u19(x, y, t) =
−2kb−2 exp(−2(kx + my − 2k2t)) − kb0 −

√
k2

(
b2

0 − 4b−2
)

b0 + exp(2(kx + my − 2k2t)) + b−2 exp(−2(kx + my − 2k2t))
,

v19(x, y, t) = −
m

(
2kb−2 +

(
kb0 +

√
k2

(
b2

0 − 4b−2
))

exp(2(kx + my − 2k2t))
)

k(exp(4(kx + my − 2k2t)) + b−2 + b0 exp(2(kx + my − 2k2t)))
, (51)

u20(x, y, t) =
2kb−2 exp(−2(kx + my + 2k2t)) + kb0 −

√
k2

(
b2

0 − 4b−2
)

exp(2(kx + my + 2k2t)) + b−2 exp(−2(kx + my + 2k2t)) + b0
,

v20(x, y, t) = 0, (52)

where b0, b−2, k, and m are arbitrary constants.

Case 3.2{
a−2 = 0, a2 = ∓2k, a−1 = 0, a1 = 0, a0 = ∓kb0 −

√
−4k2b−2 + k2b2

0, w = ∓2k2,

b−2 = b−2, b0 = b0, k = k, m = m

}
, (53)

u21(x, y, t) =
−2k exp(2(kx + my − 2k2t)) − kb0 −

√
k2

(
b2

0 − 4b−2
)

b0 + exp(2(kx + my − 2k2t)) + b−2 exp(−2(kx + my − 2k2t))
,

v21(x, y, t) = −m, (54)

u22(x, y, t) =
2k exp(2(kx + my + 2k2t)) + kb0 −

√
k2

(
b2

0 − 4b−2
)

b0 + exp(2(kx + my + 2k2t)) + b−2 exp(−2(kx + my + 2k2t))
,
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v22(x, y, t) = −
m

(
−k exp(4(kx + my + 2k2t)) + kb−2 +

√
k2

(
b2

0 − 4b−2
)

exp(2(kx + my + 2k2t))

)

k(exp(4(kx + my + 2k2t)) + b−2 + b0 exp(2(kx + my + 2k2t)))
, (55)

where b0, b−2, k, and m are arbitrary constants.

Case 3.3

{a−2 = ∓4kb−2, a2 = 0, a−1 = 0, a1 = 0, a0 = 0, b0 = 0, w = ∓4k2,

b−2 = b−2, k = k, m = m}, (56)

u23(x, y, t) = − 4kb−2

b−2 + exp(4(kx + my − 4k2t))
,

v23(x, y, t) = − 4mb−2

b−2 + exp(4(kx + my − 4k2t))
, (57)

u24(x, y, t) = 4kb−2

b−2 + exp(4(kx + my + 4k2t))
,

v24(x, y, t) = 0, (58)

where b−2, k, and m are arbitrary constants.

Case 3.4

{a−2 = 0, a2 = ∓4k, a−1 = 0, a1 = 0, a0 = 0, b0 = 0, w = ∓4k2,

b−2 = b−2, k = k, m = m}, (59)

u25(x, y, t) = − 4k

1 + b−2 exp(−4(kx + my − 4k2t))
,

v25(x, y, t) = −2m, (60)

u26(x, y, t) = 4k

1 + b−2 exp(−4(kx + my + 4k2t))
,

v26(x, y, t) = 2m − 4mb−2

b−2 + exp(4(kx + my + 4k2t))
, (61)

where b−2, k, and m are arbitrary constants.

Case 4 p = c = 3, d = q = 2.
Then, the trial function (8) becomes

V (ζ ) = a3 exp(3ζ ) + a2 exp(2ζ ) + a1 exp(ζ ) + a0 + a−1 exp(−ζ ) + a−2 exp(−2ζ )

b3 exp(3ζ ) + b2 exp(2ζ ) + b1 exp(ζ ) + b0 + b−1 exp(−ζ ) + b−2 exp(−2ζ )
. (62)

There are some free parameters in Equation (62), so we set b3 = 1, b2 = 0, b1 = 0, and b−1 = 0
for simplicity, and thus Equation (62) takes the form

V (ζ ) = a3 exp(3ζ ) + a2 exp(2ζ ) + a1 exp(ζ ) + a0 + a−1 exp(−ζ ) + a−2 exp(−2ζ )

exp(3ζ ) + b0 + b−2 exp(−2ζ )
. (63)

By the same procedure, we obtain the following solution sets and the corresponding generalized
solitary wave solutions to Equation (1).
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Case 4.1

{a−2 = 0, a3 = ∓5k, a−1 = 0, a2 = 0, a0 = 0, a1 = 0, b0 = 0, w = ∓5k2,

b−2 = b−2, k = k, m = m}, (64)

u27(x, y, t) = − 5k

1 + b−2 exp(−5(kx + my − 5k2t))
,

v27(x, y, t) = −5m

2
, (65)

u28(x, y, t) = 5k

1 + b−2 exp(−5(kx + my + 5k2t))
,

v28(x, y, t) = 5m

2
− 5mb−2

b−2 + exp(5(kx + my + 5k2t))
, (66)

where b−2, k, and m are arbitrary constants.

Case 4.2

{a−2 = ∓5kb−2, a3 = 0, a−1 = 0, a2 = 0, a0 = 0, a1 = 0, b0 = 0, w = ∓5k2,

b−2 = b−2, k = k, m = m}, (67)

u29(x, y, t) = − 5kb−2

b−2 + exp(5(kx + my − 5k2t))
,

v29(x, y, t) = − 5mb−2

b−2 + exp(5(kx + my − 5k2t))
, (68)

u30(x, y, t) = 5kb−2

b−2 + exp(5(kx + my + 5k2t))
,

v30(x, y, t) = 0, (69)

where b−2, k, and m are arbitrary constants.

Case 5 p = c = 3, d = q = 3.
Then, the trial function (8) becomes

U(ζ ) =
a3 exp(3ζ ) + a2 exp(2ζ ) + a1 exp(ζ ) + a0 + a−1 exp(−ζ )

+ a−2 exp(−2ζ ) + a−3 exp(−3ζ )

b3 exp(3ζ ) + b2 exp(2ζ ) + b1 exp(ζ ) + b0 + b−1 exp(−ζ )

+ b−2 exp(−2ζ ) + b−3 exp(−3ζ )

. (70)

There are some free parameters in Equation (70), so we set b3 = 1, b2 = 0, b1 = 0, b−2 = 0, and
b−1 = 0 for simplicity, and thus, Equation (70) takes the form

U(ζ ) =
a3 exp(3ζ ) + a2 exp(2ζ ) + a1 exp(ζ ) + a0 + a−1 exp(−ζ )

+ a−2 exp(−2ζ ) + a−3 exp(−3ζ )

exp(3ζ ) + b0 + b−3 exp(−3ζ )
. (71)

By the same procedure, we obtain the following solution sets and the corresponding generalized
solitary wave solutions to Equation (1).
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Case 5.1

{
a−3 = 0, a3 = ∓3k, a−2 = 0, a2 = 0, a0 = 3

2

(
∓kb0 −

√
k2

(
b2

0 − 4b−3
))

,

a1 = 0, a−1 = 0, w = ∓3k2, b−3 = b−3, b0 = b0, k = k, m = m

}
, (72)

u31(x, y, t) =
−3k exp(3(kx + my − 3k2t)) − 3

2

(
kb0 +

√
k2

(
b2

0 − 4b−3
))

b0 + exp(3(kx + my − 3k2t)) + b−3 exp(−3(kx + my − 3k2t))
,

v31(x, y, t) = −3m

2
, (73)

u32(x, y, t) =
3k exp(3(kx + my + 3k2t)) + 3

2

(
kb0 −

√
k2

(
b2

0 − 4b−3
))

b0 + exp(3(kx + my + 3k2t)) + b−3 exp(−3(kx + my + 3k2t))
,

v32(x, y, t) = −
3m

(
−k exp(6(kx + my + 3k2t)) + kb−3 +

√
k2

(
b2

0 − 4b−3
)

exp(3(kx + my + 3k2t))

)

2k(exp(6(kx + my + 3k2t)) + b−3 + b0 exp(3(kx + my + 3k2t)))
, (74)

where b0, b−3, k, and m are arbitrary constants.

Case 5.2

{
a−3 = ∓3kb−3, a3 = 0, a−2 = 0, a2 = 0, a0 = 3

2

(
∓kb0 −

√
k2

(
b2

0 − 4b−3
))

,

a1 = 0, a−1 = 0, w = ∓3k2, b−3 = b−3, b0 = b0, k = k, m = m

}
, (75)

u33(x, y, t) =
−3kb−3 exp(−3(kx + my − 3k2t)) − 3

2

(
kb0 +

√
k2

(
b2

0 − 4b−3
))

b0 + exp(3(kx + my − 3k2t)) + b−3 exp(−3(kx + my − 3k2t))
,

v33(x, y, t) = −
3m

(
2kb−3 +

(
kb0 +

√
k2

(
b2

0 − 4b−3
))

exp(3(kx + my − 3k2t))
)

2k(exp(6(kx + my − 3k2t)) + b−3 + b0 exp(3(kx + my − 3k2t)))
, (76)

u33(x, y, t) =
3kb−3 exp(−3(kx + my + 3k2t)) + 3

2

(
kb0 −

√
k2

(
b2

0 − 4b−3
))

b0 + exp(3(kx + my + 3k2t)) + b−3 exp(−3(kx + my + 3k2t))
,

v33(x, y, t) = 0, (77)

where b0, b−3, k, and m are arbitrary constants.

Case 5.3

{a−3 = 0, a3 = ∓6k, a−2 = 0, a2 = 0, a0 = 0, a1 = 0, a−1 = 0, b0 = 0, w = ∓6k2,

b−3 = b−3, k = k, m = m}, (78)
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u34(x, y, t) = − 6k

1 + b−3 exp(−6(kx + my − 6k2t))
,

v34(x, y, t) = −3m, (79)

u35(x, y, t) = 6k

1 + b−3 exp(−6(kx + my + 6k2t))
,

v35(x, y, t) = 3m − 6mb−3

b−3 + exp(6(kx + my + 6k2t))
, (80)

where b−3, k, and m are arbitrary constants.

Case 5.4

{a−3 = ∓6kb−3, a3 = 0, a−2 = 0, a2 = 0, a0 = 0, a1 = 0, a−1 = 0, b0 = 0, w = ∓6k2,

b−3 = b−3, k = k, m = m}, (81)

u36(x, y, t) = − 6kb−3

b−3 + exp(6(kx + my − 6k2t))
,

v36(x, y, t) = − 6mb−3

b−3 + exp(6(kx + my − 6k2t))
, (82)

u37(x, y, t) = 6kb−3

b−3 + exp(6(kx + my + 6k2t))
,

v37(x, y, t) = 0, (83)

where b−3, k, and m are arbitrary constants.

Remark 1 It is important that one should be aware of the limitations of each of the existing
methods and there is no guarantee that they will succeed for a specific nonlinear problem. Any
of these techniques can have some advantages and disadvantages. The Exp-function method
provides exponential function solutions in a neat form from which we can construct solitary and
periodic wave solutions by setting the parameters as special values. It is entirely algorithmic
and involves a large amount of tedious calculations that can become virtually unmanageable if
attempted manually. However, it does not require a large amount of run-time with the aid of a
computer algebra system. The Exp-function method, by assuming the solution of the equation in
exponential form with many parameters, entails the solution of several sets of nonlinear algebraic
equations that sometimes constitute inconsistent systems.

4. Conclusion

Thanks to the improvement in analytic techniques via the rapid advance in computer technology,
most of the PDEs arising from applications that were previously intractable can now be rou-
tinely solved. In this work, we used the Exp-function method to solve the (2+1)-dimensional BLP
equation. Some of the obtained generalized solitary wave solutions have known physical under-
standings, while others require further insight into their hidden meanings. We verified the obtained
solutions by putting them back into the original Equation (1) with the aid of MATHEMATICA; it
provides an extra measure of confidence in the results.We predict that the Exp-function method can
be found widely applicable in searching for exact and explicit solutions of nonlinear differential
equations.
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[34] T. Öziş and İ. Aslan, Exact and explicit solutions to the (3 + 1)-dimensional Jimbo–Miwa equation via the Exp-
function method, Phys. Lett. A 372 (2008), pp. 7011–7015.
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