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a b s t r a c t

A new combinatorial optimization problem, the Bandpass problem, was defined in Bell
and Babayev (2004) [4]. Recently, this problem was investigated in detail in Babayev et al.
(2009) [5]. In this paper, we first present some new mathematical models of the Bandpass
problem. Then related to this problem, we introduce a software called OrderMatic which
is very useful for teaching permutations.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Due to the rapid growth in Internet usage, more bandwidth is needed. A technology named dense wavelength division
multiplexing (DWDM) provides a platform to exploit the huge capacity of optical fiber. DWDM increases the number
of communication channels within a fiber-optic cable, thereby letting service providers obtain much more bandwidth
without installing a new cable [1]. DWDMworks by combining and transmittingmultiple signals simultaneously at different
wavelengths on the same fiber. One fiber is transformed intomultiple virtual fibers. Theoretically, more than 1000 channels
may bemultiplexed in a fiber. DWDMwithmore than 200wavelengths has already been demonstrated [2]. A DWDMsystem
with 200 signals can expand a basic 10 Gbit/s fiber system to a total capacity of over 2 Tbit/s over a strand of fiber. A simple
architecture of a WDM system is presented in Fig. 1.

An optical add–drop multiplexer (OADM) is one of the most important elements in a fiber optic network. An OADM is a
device that can add, block, pass or redirect various wavelengths in a fiber optic network. OADM consists of two logical input
ports, namely In and Add, as well as two logical output ports, namely Out and Drop [3]. A typical OADM is shown in Fig. 2.

Each OADM facilitates flows on somewavelengths to exit the cable according to their paths. In each OADM, special cards
control eachwavelength; theymay either pass through the OADMormay be dropped at their destination. DWDM is efficient
in long-haul (600 km or less) communication. But it is expensive in short distances, because the communication requires
a lot of add/drop processes. Many producers and researchers try to find out how to reduce cost of metropolitan (80 km or
less) DWDM systems. The Bandpass problemwas proposed to serve this purpose. If thewavelengths are consecutive such as
λm, λm+1, . . . , λm+k, then it is possible to pack wavelengths, and this reduces the cost of optic communication networks. In
Section 2, we give the definition of the Bandpass problem. In Section 3, we give newmathematical models for the Bandpass
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Fig. 1. A simple WDM system with 4 wavelengths.

Fig. 2. OADM in a DWDM system.

a b c d

Fig. 3. Overlapping bandpasses.

problem, In Section 4, we present a game related to the Bandpass problem andwe end the paperwith a list of open problems
in Section 5.

2. The Bandpass problem

The Bandpass problemwas first presented in Annual INFORMSmeeting, in October 2004 by Bell and Babayev [4]. Before
introducing models of the Bandpass problem, we give the definition of the bandpass and the Bandpass problem.

Definition 2.1. Let B > 1 be a positive integer. B consecutive non-zero entries of an m × n binary matrix A in the same
column form a Bandpass. B is called the bandpass number.

Every non-zero entry of a column can be included in only one bandpass. The definition implies that several bandpasses
in the same column cannot have any common rows. Consider as an example, the matrix Awithm = 8 and n = 4 presented
in Fig. 3(a), with bandpass number B = 3. Note that there is a single bandpass number which is the same for all columns. In
Fig. 3(a) the matrix A, columns 1 and 2 contain no bandpasses because they have no B = 3 consecutive non-zero elements.
Column 3 contains 5 consecutive non-zero elements from row 2 to row 6. Therefore, rows 2–4 (Fig. 3(b)) or rows 3–5
(Fig. 3(c)) or rows 4–6 (Fig. 3(d)) in the third column form a bandpass. But according to the definition of the bandpass, only
one of these three groups of non-zero elements can be taken as a bandpass for this column. Because they have overlapping
elements.

In order to have more than one bandpass, the column should have more than one group of non-overlapping consecutive
nonzero elements. Each group should not have less than B elements. For instance, column 4 may have two bandpasses, one
of the following three pairs of groups of rows: rows 1–3 and 4–6 (Fig. 4(a)), rows 1–3 and 5–7 (Fig. 4(b)), rows 2–4 and 5–7
(Fig. 4(c)).
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Fig. 4. Non-overlapping bandpasses.

Let A be an m × nmatrix and nj be the number of bandpasses in column j for some 1 ≤ j ≤ n. Then, nj ≤
∑m

i=1 aij/B

.

If a column of the matrix has no bandpass but the total number of non-zero elements in the column is equal to or more
than the bandpass number B, then the rows of the matrix can be relocated in order to form a bandpass in this column. For
example, column 1 in the matrix (Fig. 3(a)) has no bandpass, but relocating row 1 to position 2, or 5, creates a bandpass in
this column. Notice that many other relocations of rows also create a bandpass in column 1. However, this may affect the
existing bandpasses in other columns.

The Bandpass problem is to find an optimal permutation of rows of a binary matrix which produces the maximum total
number of bandpasses of given bandpass number B in all columns. It is very easy to find an optimal permutation of rows for
a matrix which includes one or two columns. However, the Bandpass problem is NP-hard for a matrix with more than two
columns [5].

3. Mathematical models of the Bandpass problem

In this section, we give four new mathematical models of the Bandpass problem.

3.1. The Boolean model of the Bandpass problem

This model is given in detail by Babayev et al. in [5]. Let A = (aij) be anm × nmatrix and aij be an element of the matrix
A. Let B be a bandpass number of A. Let us define decision variables as follows:

xik =


1, if row i is relocated to position k;
0, otherwise.

ykj =


1, if row k is the first row of a bandpass in column j;
0, otherwise.

We can formulate the Boolean model of the Bandpass problem as follows:

max
n−

j=1

m−B+1−
k=1

ykj (3.1a)

subject to
m−

k=1

xik = 1, i = 1, . . . ,m (3.1b)

m−
i=1

xik = 1, k = 1, . . . ,m (3.1c)

k+B−1−
i=k

yij ≤ 1, j = 1, . . . , n, k = 1, . . . ,m − B + 1 (3.1d)

B · ykj ≤

k+B−1−
i=k

m−
r=1

arjxri, j = 1, . . . , n, k = 1, . . . ,m − B + 1 (3.1e)

xik, ykj ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , n, k = 1, . . . ,m. (3.1f)
The constraints in (3.1b) express the fact that row i must be relocated into one new position k only and the constraints

in (3.1c) express that only one row i must be relocated to each new position k. The constraints in (3.1d) guarantee that no
two bandpasses may have a common element. The constraints in (3.1e) guarantee to find the coordinates of bandpasses.
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In this model, there are 2m + 2n(m − B + 1) constraints, i.e., O(mn).

3.2. Integer programming model of the Bandpass problem

In this model, each xi is a positive integer such that

xi :=


p, if row i is relocated to position p;
i, otherwise.

Therefore, the model is called the integer programming model [6] of the Bandpass problem.
The other variables are as defined previously in (3.1) We can formulate this model as follows:

max
n−

j=1

m−B+1−
k=1

ykj (3.2a)

subject to

k+B−1−
i=k

yij ≤ 1, j = 1, . . . , n, k = 1, . . . ,m − B + 1 (3.2b)

B · ykj ≤

k+B−1−
i=k

m−
r=1

arjxri, j = 1, . . . , n, k = 1, . . . ,m − B + 1 (3.2c)

ykj ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , n, k = 1, . . . ,m (3.2d)

xi ∈ {1, . . . ,m}, i = 1, . . . ,m (3.2e)
xi ≠ xj for i ≠ j, i = 1, . . . ,m, j = 1, . . . , n. (3.2f)

In this model, there are 2n(m − B + 1) constraints, i.e., O(mn).

3.3. Combinatorial model of the Bandpass problem

This model represents all possible arrangements of rows (permutations). The model deals with which permutation π
of the rows maximizes the total number of bandpasses in all columns. π is a permutation which is an arrangement, or an
ordering of (1, . . . ,m). That is, π =


1 2 3 . . . m

π(1) π(2) π(3) . . . π(m)


. For example, for π =


1 2 3 4 5
4 1 5 2 3


, π(1) = 4,

π(2) = 1, π(3) = 5, π(4) = 2, π(5) = 3. Let us define decision variables as follows:

yπ(k)j :=


1, if row k is the first row of a bandpass in column j;
0, otherwise.

We can formulate the model as follows:

max
n−

j=1

m−B+1−
k=1

yπ(k)j (3.3a)

subject to

k+B−1−
i=k

yπ(i)j ≤ 1, j = 1, . . . , n, k = 1, . . . ,m − B + 1 (3.3b)

B · yπ(k)j ≤

k+B−1−
i=k

aπ(i)j, j = 1, . . . , n, k = 1, . . . ,m − B + 1 (3.3c)

yπ(k)j ∈ {0, 1}, j = 1, . . . , n, k = 1, . . . ,m. (3.3d)

3.4. Modelling of multiple Bandpass problem

In this model, it is supposed that the matrix Am×n may have different bandpass numbers in its columns. For example;
B = 3 in the first column, B = 5 in the second column etc. All the variables except Bj ∈ {B1, . . . , Bn} are the same as the
previous ones. Now, we can formulate the model as follows:

max
n−

j=1

m−Bj+1−
kj=1

ykjj (3.4a)
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Fig. 5. A8x4, B = 3.

a b

Fig. 6. Graphmodel of the Bandpass problem. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

subject to

m−
k=1

xik = 1, i = 1, . . . ,m (3.4b)

m−
i=1

xik = 1, k = 1, . . . ,m (3.4c)

kj+Bj−1−
i=kj

yij ≤ 1, j = 1, . . . , n, kj = 1, . . . ,m − Bj + 1 (3.4d)

Bj · ykjj ≤

kj+Bj−1−
i=kj

m−
r=1

arjxri, j = 1, . . . , n, kj = 1, . . . ,m − Bj + 1 (3.4e)

xik, ykjj ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , n, k = 1, . . . ,m, kj = 1, . . . ,m − Bj + 1. (3.4f)

3.5. Graph model of the Bandpass problem

This model is presented for better understanding of the Bandpass problem. We illustrate this model by an example.
The matrix A in Fig. 5 says that there is a communication from a source to four different destinations (columns) on eight
wavelengths (rows). Wemodel this matrix as a star graph Sk (k is the number of 1s in thematrix A that indicates the number
of edges in S). The internal node of the star graph is the source of communication. The stations (destinations) are indicated
as sides of a polygon. In this example, four stations are indicated as sides of a square.

Wavelengths are stated as eight vertices at each station. Eachwavelengthwhich goes to the stations is colored differently
as seen in Fig. 6. For example, the first wavelength is represented by the color blue. There is a communication to the
second, third and fourth stations on this wavelength. The second wavelength is represented by the color green and the
communication exists to the first, second and fourth stations on the second wavelength.

In this model, the objective is to maximize the number of bandpasses in matrix A as in all previous models defined in
this paper. That is, for a given B the aim is to maximize total number of B consecutive edges to all stations. There are no
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Fig. 7. The OrderMatic game. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

three consecutive edges to reach the second, third and fourth station in Fig. 6(a). If the fourth edge is swappedwith the third
edge in all stations then three consecutive edges are formed at the second and fourth station. New edges after swapping are
indicated as thick arrows in Fig. 6(b). The consecutive edges at the first station are not destroyed while three consecutive
edges are formed at the second and fourth stations. Consequently, this swapping increases the total number of bandpasses
in the graph.

4. OrderMatic computer game

OrderMatic is designed for students who are interested in permutation. This game emphasizes the importance of
permutation related to the Bandpass problem.

The exact solution of the Bandpass problem is found by choosing the correct permutation of rows which creates the
maximum total number of bandpasses in all permutations. The auxiliary software (which allows tomake calculations easier)
transforms into a brain stimulating game.

In the OrderMatic game (Fig. 7), there are apples in colors red and green and three different levels; easy, normal and
hard. There are different binary matrices and bandpass numbers related to hardness in each level. The aim of the game is
to be able to order, as many as possible, consecutive green apples in a column of given bandpass number B. This ordering is
shown on a black background on screen.

The player starts the game by choosing a level. Initially, a binarymatrix and existing bandpasses are shown on the screen.
The number of bandpasses in the current time is displayed on the ‘‘Present’’ tag. The maximum total number of bandpasses
which would be found by arranging rows is displayed on the ‘‘Target’’ tag. The player chooses two rows by choosing two
apples which are in different rows and ticks the button ‘‘Change Selected Rows’’. Then the chosen rows are relocated by the
computer. If a new bandpass is formed or the number of bandpasses differs from previous one, the ‘‘Present’’ tag is updated.
The game ends when the target number of bandpasses is reached.

The upcoming version of the game will include more levels and matrices. New matrices will be defined by players and
the total number of bandpasses for these matrices of a given number B will be computed by a heuristic algorithm. Players
can also share their permutations of rows which is a solution of the Bandpass problem in the library of Bandpass problems
(BPLIB). This game is available on [7].

5. Conclusions

Newmodels of a combinatorial optimization problem, called the Bandpass problem are introduced. The problemmodels
a design problem in optical communications networks using wavelength division multiplexing technologies. In order to
encourage research to meet the challenge of solving the problems, a library of Bandpass problems (BPLIB) is created in [7].
The library is open to the public and contains 90 problems.
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