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a b s t r a c t

The most important mechanism to occur in biological distributed sensory networks (DSNs) is called

lateral inhibition, (LI). LI relies on one simple principle. Each sensor strives to suppress its neighbors in

proportion to its own excitation. In this study, LI mechanism is exploited to localize the unknown position

of a light source that illuminated the photosensitive sensory network containing high and low quality

sensors. Each photosensitive sensor was then calibrated to accurately read the distance to the light source.

A series of experiments were conducted employing both quality sensors. Low quality array was allowed to

take advantage of LI, whereas the high quality one was not. Results showed that the lateral inhibition

mechanism increased the sensitivity of inferior quality sensors, giving the ability to make the localization

as sensitive as high quality sensors do. This suggests that the networks with multitude of sensors could be

made cost-effective, were these sensory networks equipped with LI.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

A set of geographically scattered sensors designed to collect
information about the environment in which they are deployed is
described as a distributed sensory network (DSN). Today many
advanced systems employ distributed sensory systems which
consist of a large number of sensors in practical applications
ranging from aerospace, defense, robotics, automation systems,
to monitoring and control of plants. The development and imple-
mentation of DSN systems bring about a combination of many
different problems in sensor deployment such as network com-
munication, data association, fusion and processing. Although long
processing time and the energy needed for processing of informa-
tion are common problems for DSNs, the primary reason of all these
problems that described above and the most important challenge
to overcome for DSNs is redundancy. Depending on the increasing
number of sensors used in DSN, the input fields of the individual
sensors may overlap, leading to redundancy. Although there are
many techniques in order to cope with the redundancy problem,
lateral inhibition (LI) is one way that stands out for its ubiquity in
nature and simplicity. LI is a fundamental peripheral processing in
biological systems such as visual, auditory and somatosensory
systems. It is commonplace in biological distributed sensory
networks. In lateral inhibition mechanism, each individual recep-
tor drives down each of its neighbors in proportion to its own
excitation.
ll rights reserved.
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While the first attempts to describe lateral inhibition were made
by Ernst Mach on the basis of his perceptual experiments demon-
strating Mach bands, Hartline et al. constituted the first statement
based on known interactions of biological sensors. The concept of
lateral inhibition arose in the extensive experimental research of
Hartline and his colleagues on the facetted compound eye of
Horseshoe crab (Limulus) (Hartline et al., 1956). The research by
Hartline, and later by Barlow (1969), occupied a period of over 50
years and is an outstanding example of bringing quantitative
mathematical methods of signal transmission out of complex
biological systems. Brooks discussed the features of biological
sensors and possible ramifications that might occur, should there
be a parameter change.

The most conspicuous feature of LI and localization using sensor
networks is the shortage of research over how much advantage LI
provides to an existing network. A concrete link between the
inclusion of LI and an increase in localization performance is the
missing link. One may find numerous examples of elementary
study regarding LI both in engineering and biological networks.
However one may find almost none of the answers to a set of
fundamental questions such as the amount of percent improve-
ment over pinpointing an object in space. This study attempts to
answer some. In the light of this shortage, only a few relatively
pertinent works are to be presented.

Xie et al. (2002) showed that there is a competition between
neurons due to lateral inhibition. This is popularly known as
winner-takes-all competition. They set a formula to show the
inhibitory connectivity of overlapping groups. Their study stated
that it was possible to organize lateral inhibition to mediate the
winner-takes-all competition between potentially overlapping
groups of neurons.
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Since Hartline and Barlow, there have been plethora publica-
tions on LI over neuronal studies about the role of LI within neuron
interactions. Exploiting the contrast enhancement aspect of LI in a
general signal processing perspective has rather been very limited.
Contrast enhancement is an important area especially in image
recognition and related fields. Traditionally, contrast enhancement
has been realized by a proper selection of wavelet filters, enhance-
ment functions (Fan and Laine, 1996), multimodal histograms
(Grundland and Dodgson, 2006), entropy operators (Khellaf et al.,
1991), to name a few.

Two specific examples stand out with the use of LI. One is
concerned with an application in image recognition. Edge detection
is the focus of this paper which is realized through a neural network
having a lateral inhibition ability (Kristensen and Patel, 2002). The
second paper is close in content to the current study, in that LI is
applied to a two-dimensional photoreceptor array (Wolpert and
Micheli-Tzanakou, 1989). The motivation was to analyze the
equilibrium of the LI systems. It is claimed that the homeostasis
of the system will be inherently unstable. LI is applied by two
different configurations. One method is a dynamic algorithm that is
applied to a 25-cell rectangular array. A second static method is
used on a 19-cell hexagonal array, where both circuits were
implemented in VLSI. A hexagonal array is formed in which each
node of the source image is directly inhibited by each of its six
nearest neighbors. It is stated that hexagonal arrays are not only
spatially efficient than their rectangular counterparts but also carry
closer resemblance to biological sensory arrays.

The last and the most relevant study is by Cunningham (2007).
Researcher tackles the localization problem on a regular and a
random 12�12 array. Localization is realized after a calibration
run on statistical inference. Edge and corner detection forms the
basis of his study. Unfortunately, it is not clear how the statistical
inference is gained and under what assumptions. Even though it is
again not quite clear, it is believed that calibration runs are used to
pinpoint optimal values of LI parameters. Two interesting real-life
examples, however, put an emphasis on the commercial and
military potential of LI.

The aim of this study is to show the efficiency of the lateral
inhibition mechanism on contrast enhancement, which is applied
to target localization. For this purpose, several sensory arrays
which contain light detectors with different configurations had been
constructed and the unknown position of a light source (target) was
estimated by measuring the outputs of these sensory arrays.

To calibrate the system for establishing the link between the
sensory output and the distance of the source, the single member of
each sensor group (LDRs and photodiodes) was illuminated by
adjusting the light source to different positions whose coordinates
were known and the response of the sensors were recorded. The
next process was to create characteristic curves through regression
so that sensor output in volts and the source distance are mapped.
Fig. 1. Schematic illustration of lateral inhibiti
The light source was placed on to a series of unknown locations
over the sensory array and the positions of the light source were
estimated. Then the lateral inhibition mechanism was applied to
the sensor outputs and this process enhanced the response of the
sensors. These estimated and modified values were used to find the
position of the light source by two computational methods. The
first is known as trilateration and the second as TbHP+. Trait-based
heterogeneous population plus (TbHP+) is an original algorithm in
the training arena, where it uses the general philosophy of
combining genetic algorithms (GAs) with simulated annealing
(SA) in the very basic principles. More could be found in (Tayfur
et al., 2009) on TbHP+.
2. Lateral inhibition

Lateral inhibition (LI) is the dominant feature of biological
distributed sensory networks where each individual receptor
drives down each of its neighbors in proportion to its own
excitation. The strengths of these connections are fixed rather
than modifiable and are generally arranged as excitatory among
nearby receptors and inhibitory among farther receptors. In other
words, when any given receptor responds, the excitatory connec-
tions tend to increase its response while inhibitory connections try
to decrease it. All receptors in the network receive a mixture of
excitatory and inhibitory signals from other competitive receptors.
As a result of the competitive network structure a distinction
between the receptor or a group of receptors which have the
strongest output and the receptors with weaker output become
larger. Weaker receptors might be suppressed. According to the
value of excitatory and inhibitory coefficients and number of
interconnected receptors, the response of the whole network can
vary. In the case of choosing optimum coefficients, the receptor
which has the strongest output suppresses all the other receptor
outputs and this kind of a network is called ‘‘winner takes all’’ type.

Fig. 1 defines a set of sensors with lateral inhibition mechanism.
The arcs ending in black arrows indicate inhibitory effect of each
sensor on the neighboring sensors which are represented by ‘‘I’’.
Each sensor has individual input that is designated by ‘‘xn’’ and each
sensor drives down the outputs ‘‘yn’’ of its neighbors which are
connected to it at black arrow end. The ratio between the amount of
sensory output which is driven down by neighbors and the amount
of output is called the degree of lateral inhibition (Brooks, 1988).

Effects of lateral inhibition were first recognized in 1886 by the
Austrian physicist Ernst Mach who ascertained that all knowledge
was based on sensation, and that all scientific observations or
measurements were dependent upon the observer’s perception.
Although the physiological phenomenon discovered by him was
not named lateral inhibition, it was the first step for future studies.
Mach’s study concluded that the brighter and darker contours are
on (Source: www.medical-cybernetics.de).
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Fig. 2. Mach bands.
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physiologically provoked. There is a brightness enhancement at the
region where the bright area becomes darker and there is a darker
band where the dark area becomes brighter. This effect can be seen
in Fig. 2. Although there are two columns which have different but
constant physical brightness values near the border line of the two
columns, a dissimilarity is perceived by the observer. It is seen that
the dark column becomes brighter and bright column becomes
darker near the border line.

The most important studies that explained the lateral inhibition
mechanism were made by H.K. Hartline in 1934, who received
Nobel Prize for this work in 1968. His works were about visual
system of Horseshoe crab (Limulus polyphemus) which is a kind of
arthropod from North America. The concept of lateral inhibition
arose in the comprehensive experimental research of H.K. Hartline
and colleagues on the facetted compound eye of Horseshoe crab.
Fig. 3. The first experiment setup.

Fig. 4. (a, b) The second experiment setup.
3. Mathematical model of LI

Since Hartline, various forms and equations have appeared.
Some of the proposed models have accounted for neuronal
activities in terms of electrical charges, and down to ion transfers.
Some preferred simplified models, representing all main elements
of LI. The model below is given in detail in Coskun (2006):

dxi

dt
þxi ¼ ½biþax�i �b

X
Jijx
�
j �
þ ð1Þ

Eq. (1) gives the dynamics of the network. This equation defines
the effect of lateral inhibition where; Jij is the lateral inhibition
between the neurons i and j, a the strength of self-excitation
(a40), b the strength of lateral inhibition (b40), b the external
input, xi the activity of neuron, x�i the raw activity of neuron and
dxi/dt the change in the activity of ith neuron (sensor).

Furthermore, the value J is calculated as follows:

Jij ¼
Ym

a ¼ 1

1�xa
i x

a
j

� �
¼

0 f i and j both belong to a group

1 otherwise

�
ð2Þ

where

xa
i ¼

1 f ith neuron is in ath group

0 otherwise

�

The steady state of Eq. (1) is Eq. (3), where for a given set of
parameters, and a constant input, output of the sensor is time-
invariant as below:

xi ¼ x�i �b1

X
xijþax�i ð3Þ

a is the strength of self-excitation (a40), b the strength of lateral
inhibition (b40), xi the final activity of sensor, xij the activity of
sensors which are in the neighborhood of xi.
4. Experimental setup

To observe the effects of lateral inhibition mechanism, two
experimental setups were built. Each experimental setup consists
of a light source and a sensory array with several photosensitive
sensors such as photodiodes because of their low cost. One problem
encountered early in the experiments was the memory effect with
the LDRs. LDRs did ‘‘remember’’ the recent trials, giving inaccurate
results. This is bypassed with the use of photodiodes throughout
the trials.

In the first setup (Fig. 3), there is a board containing several
photosensitive sensors. These sensors were stimulated by a pair of
point light sources whose position in space could be adjusted as
seen on the left-hand side of Fig. 3. The second experimental setup
consists of a light source; 12 V/20 W halogen lamp and a sensory
array of several photosensitive sensors. The light source and
photosensitive array were placed within an aluminum frame.
This frame stabilized the sensory array and gave the light source
an ability to move in three dimensions, and also the whole setup
could be covered to allow a dark chamber to minimize the light-
induced noise (Fig. 4(a, b)). To control the experiment, the same
sensor is used for both high and low quality sensors. What made the
same sensor a ‘‘low’’ quality one is a pane of glass with soot smeared
all over the surface kept above the sensors. The amount of soot was
determined by trial and error so as to degrade sensor performance
but not to block the light completely.

These sensors were connected to a Pentium 4 PC over a
multiplexer which was then interfaced with a Keithley 2750
datalogger instrument and this instrument was controlled via
ExceLink software (Fig. 5). Each sensor had an address and
successive readings were made in turn, over a specific setup.
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5. Lateral inhibition on localization

In the experimental process, the voltage values from photo-
diodes were processed and transferred into a distance reading.
These distances were then used to localize the light source. For this
localization process the trilateration method and a GA algorithm
(TbHP+) were used. The same process was conducted for each
photodiode array by applying lateral inhibition mechanism.

Trilateration is a basic geometric principle that helps find a
location using relative positions of three or more known locations
Fig. 5. (a) Connections of multiplexer and (b) Keithley datalogger.

Table 1
Results of measurement with 9 high quality photodiodes.

Photodiode number Coordinates Measured
voltage (V)

X Y Z

1 0 45 0 0.5903

2 41 45 0 0.5915

3 82 45 0 0.5901

4 0 80 0 0.5892

5 41 80 0 0.5905

6 82 80 0 0.5893

7 0 115 0 0.5863

8 41 115 0 0.588

9 82 115 0 0.5867

Table 2
Results of comparison of high quality array and low quality array.

Sensor type Real coordinates T

X Y Z X

High quality sensors without LI 41 45 200 3

High quality sensors with LI 41 45 200 4

Low quality sensors without LI 41 45 200 3

Low quality sensors with LI 41 45 200 4

Table 3
Results of measurement with 9 low quality photodiodes.

Photodiode Coordinates Measured
voltage (V)

Number X Y Z

1 0 45 0 0.29218

2 41 45 0 0.29281

3 82 45 0 0.29177

4 0 80 0 0.29018

5 41 80 0 0.29178

6 82 80 0 0.29022

7 0 115 0 0.28666

8 41 115 0 0.28852

9 82 115 0 0.28696
similar to triangulation. Unlike triangulation, which uses angle
measurements (together with at least one known distance) to
calculate the subject’s location, trilateration uses the known
locations of two or more reference points, and the measured
distance between the subject and each reference point. To accu-
rately and uniquely determine the relative location of a point in
two-dimensional space, at least three circles are needed to pinpoint
the location. In three-dimensional space, at least four spheres are
needed. Trilateration can be applied to many different areas, such
as geographic mapping, navigation (e.g. GPS systems), and for the
progress in electronic distance-measuring it is preferred to
triangulation.

In lateral inhibition, it is assumed that each photodiode has an
interconnection with the three closest neighbor photodiodes.
Inhibition coefficient (b) was chosen 0.05 and the excitation
coefficient (a) was chosen 0.145. As a first step an array which
contains 9 (3�3) high quality photodiodes was constructed. The X,
Y and Z coordinates of the light source were adjusted to 41, 45 and
200 mm, respectively. The coordinates of photodiodes and the
measurement results are tabulated in Table 1. The result of
localization process with high quality photodiode array can be
seen in Table 2. After the localization, the estimated and the real
coordinates of the light source were compared. The result of this
comparison is given in Table 4. The results of applying lateral
Estimated total
distance (mm)

Voltage after LI (V) Estimated total
distance after LI (mm)

194.46 0.5874 203.31

191.18 0.5887 199.35

195.13 0.5871 204.14

197.96 0.5862 206.91

194.07 0.5877 202.48

197.61 0.5864 206.5

206.85 0.5829 217.72

201.57 0.585 210.66

205.6 0.5833 216.23

bHP+ Trilateration

Y Z X Y Z

7.79 39.21 189.01 35.93 56.74 195.19

2.06 43.75 199.57 39.99 46.19 202.65

4.04 33.62 178.1 28.14 63.51 194.09

3.18 42.43 188.65 29.03 58.96 198.92

Estimated total
distance (mm)

Voltage after LI (V) Estimated total
distance after LI (mm)

187.16 0.29081 190.9

185.48 0.29148 189.06

188.27 0.29034 192.21

192.64 0.28872 196.75

188.24 0.29051 191.71

192.53 0.28878 196.6

202.77 0.2847 208.69

197.34 0.28708 201.51

201.88 0.28504 207.65
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inhibition to localization process for the same array are also given
in Table 2. Comparison of the real coordinates and the estimated
coordinates of the light source after applying lateral inhibition
mechanism are seen in Table 4.

The localization was repeated with an array containing low
quality photodiodes. The number of photodiodes was kept the
same as before. The localization with the low quality units was
done with and without lateral inhibition mechanism. The coordi-
nates of photodiodes and the measurement results are shown in
Tables 1–3.

The effects of the sensor number on the localization ability
might be better realized with an array which contained 16 (4�4)
low quality photodiodes. At first, the coordination of the light
source was computed without applying LI. Then the same process
was repeated with LI. The coordinates of photodiodes and the
measurement results are shown in Table 5. The results of the
localization processes are shown in Tables 6 and 7.

It is clearly seen in Tables 3 and 6 that by LI, estimates converge
to the real coordinates. Although the same number and the same
quality photodiodes were used for both measurements, the
Table 4
Error comparison of high quality array and low quality array.

Sensor type Error (%)

TbhP+ Trilateration

X Y Z X Y Z

High quality sensors without LI 7.83 12.85 5.49 12.37 26.08 2.40

High quality sensors with LI 2.58 2.79 0.21 2.46 2.64 1.33

Low quality sensors without LI 16.98 25.29 10.95 31.37 41.13 2.96

Low quality sensors with LI 5.32 5.71 5.68 29.20 31.02 0.54

Table 5
Results of measurement with 16 low quality photodiodes.

Photodiode Coordinates Measured
voltage (V)

Number X Y Z

1 0 45 0 0.29319

2 27.3 45 0 0.2948

3 54.6 45 0 0.29544

4 82 45 0 0.29319

5 0 68.3 0 0.29275

6 27.3 68.3 0 0.29378

7 54.6 68.3 0 0.29398

8 82 68.3 0 0.29275

9 0 91.6 0 0.28947

10 27.3 91.6 0 0.29214

11 54.6 91.6 0 0.29254

12 82 91.6 0 0.28947

13 0 114.9 0 0.28604

14 27.3 114.9 0 0.28784

15 54.6 114.9 0 0.28804

16 82 114.9 0 0.28604

Table 6
Result comparison of 9 high quality photodiodes and 16 low quality photodiodes.

Sensor type Real Coordinates

X Y Z

9 high quality sensors without LI 41 45 200

16 low quality sensors without LI 41 45 200

16 low quality sensors with LI 41 45 200
deviation in the localization of the position of the light source
decreased. It proves that lateral inhibition mechanism enhances
localization. In addition, applying LI to sensory arrays with high in
number and low in quality photodiodes provides localization as
sensitive as the array which contains less in number but high in
quality photodiodes. It is clearly seen in Table 4 that in the case of
using low quality array, the error values for the X-axis 11.77% and
the Z-axis 6.62% are kept close to the error value 7.84% for the X-axis
and 5.49% for the Z-axis which was obtained by using high quality
sensory array without lateral inhibition mechanism. Similarly for
the Y-axis, low quality sensory array proved better (1.53%) than high
quality sensory array as a result of lateral inhibition mechanism.
6. Conclusions

In this study, the potential help in sensing by LI which is also
known as the contrast enhancement mechanism by biologists was
examined. Lateral inhibition is a basic data processing principle for
biological systems and it is commonplace for biological DSNs
including human sensory and nervous systems. The interactions
Estimated total
distance (mm)

Voltage
after LI (V)

Estimated total
distance after LI (mm)

184.46 0.29164 188.62

180.28 0.29342 183.86

178.64 0.29418 181.87

184.46 0.2916 188.74

185.63 0.29138 189.33

182.92 0.29233 186.75

182.39 0.29257 186.11

185.63 0.29137 189.36

194.64 0.28789 199.15

187.26 0.2908 190.93

186.19 0.29139 189.31

194.64 0.28787 199.2

204.62 0.28404 210.73

199.31 0.28626 203.95

198.72 0.28648 203.29

204.62 0.28401 210.82

TbHP+ Trilateration

X Y Z X Y Z

37.79 39.21 189.01 35.93 56.74 195.19

34.06 36.55 180.15 52.33 32.10 184.75

45.83 45.69 186.76 46.78 43.05 195.04

Table 7
. Error comparison of 9 high quality photodiodes and 16 low quality photodiodes.

Sensor type Error (%)

TbhP+ Trilateration

X Y Z X Y Z

9 high quality sensors without LI 7.83 12.85 5.49 12.37 26.09 2.41

16 low quality sensors without LI 16.93 18.78 9.92 27.63 28.67 7.63

16 low quality sensors with LI 11.77 1.53 6.62 14.10 4.33 2.48
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within LI can be excitatory or inhibitory. As a result of it, each
sensor drives down the neighboring sensors in proportion to its
own value. It has an important role for human vision, audition and
somatic sensation.

An experimental setup for getting the effects of lateral inhibition
was built up. It consisted of photodiodes and an adjustable light
source. It was observed that, the same effects of lateral inhibition
which play important role for biological systems are also at work
for the ad hoc setup. Each sensor was calibrated, and the output of
each sensor was employed to localize the position of the light
source. Localization process was done by trilateration and TbHP+
algorithm.

Results showed that lateral inhibition mechanism increased the
sensitivity of the localization. When the estimated coordinates and
the real ones of the light source were compared, it was observed
that the lateral inhibition for identical sensory network with 9
(3�3) high quality sensors reduced error values from 7.83%,
12.85%, 5.49% to 2.58%, 2.79%, 0.21% for the X, Y and Z axes,
respectively. This process was repeated with another network that
contains 16 (4�4) low quality and low cost sensors. It was seen
that the result of positioning by low quality sensors with LI
converged to the result which were taken by using high quality
sensory network without lateral inhibition. The error values for low
quality sensory array decreased by 16.93%, 18.78%, 9.92% to 11.77%,
1.53% and 6.62% for the X, Y and Z axes, respectively. For high
quality sensory network the error values were calculated as 7.83%,
12.85%, 5.49% for the X, Y and Z axes, respectively.

LI has a great potential for the artificial intelligence related fields
and for general signal processing. The competition among sensors
has benefits, such as the reduction of redundancy, and contrast
enhancement. DSNs must become economically viable since more
and more intelligence related applications require an abundance of
sensing units. Authors believe that LI is not standing at its rightful
niche. The understanding of this rather less-known algorithm by
wider circles could hopefully help process signals faster and more
efficiently.
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