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Atmospheric Concentrations and Phase
Partitioning of Polycyclic Aromatic Hydrocarbons
in Izmir, Turkey

Ambient air polycyclic aromatic hydrocarbon (PAH) samples were collected at a sub-

urban (n¼ 63) and at an urban site (n¼ 14) in Izmir, Turkey. Average gas-phase total PAH

(
P

14PAH) concentrations were 23.5 ngm�3 for suburban and 109.7 ngm�3 for urban

sites while average particle-phase total PAH concentrations were 12.3 and 34.5 ngm�3

for suburban and urban sites, respectively. Higher ambient PAH concentrations were

measured in the gas-phase and
P

14PAH concentrations were dominated by lower

molecular weight PAHs. Multiple linear regression analysis indicated that the mete-

orological parameters were effective on ambient PAH concentrations. Emission sources

of particle-phase PAHs were investigated using a diagnostic plot of fluorene (FLN)/

(fluorineþpyrene; PY) versus indeno[1,2,3-cd]PY/(indeno[1,2,3-cd]PYþ benzo[g,h,i]perylene)

and several diagnostic ratios. These approaches have indicated that traffic emissions

(petroleum combustion) were the dominant PAH sources at both sites for summer and

winter seasons. Experimental gas–particle partition coefficients (KP) were compared to

the predictions of octanol–air (KOA) and soot–air (KSA) partition coefficient models. The

correlations between experimental and modeled KP values were significant (r2¼ 0.79

and 0.94 for suburban and urban sites, respectively, p< 0.01). Octanol-based absorptive

partitioning model predicted lower partition coefficients especially for relatively

volatile PAHs. However, overall there was a relatively good agreement between the

measured KP and soot-based model predictions.
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1 Introduction

Polycyclic aromatic hydrocarbons (PAHs) are a complex class of

organic compounds containing two or more fused aromatic rings,

and only carbon and hydrogen. PAHs are formed as a result of

incomplete combustion and released into the environment through

natural and anthropogenic sources. There are hundreds of

individual PAHs in the environment, however, only 16 PAH com-

pounds have been classified by the U.S. Environmental Protection

Agency (USEPA) as priority pollutants [1]. At ambient temperatures,

PAHs are solids. The general characteristics common to the class are

high melting- and boiling-points, low vapor pressure, and very low

water solubility [2].

Atmospheric PAHs are distributed between gas and particle-

phases. The partitioning of PAHs between the gas and particle-phases

is an important factor affecting their removal processes [2, 3]. PAHs

are removed from the atmosphere by transformation, wet and dry

deposition, air–water exchange, and air–soil exchange.

Atmospheric levels of PAHs have been widely measured around

the world [4–15]. Despite their environmental relevance, only a few

studies have been conducted in Turkey on the atmospheric PAH

levels [14–19]. The objectives of this study were to investigate (1) the

ambient air concentrations of 14 PAHs and their temporal variations

in Izmir, Turkey, (2) the effect of meteorological parameters on

ambient concentrations, (3) the possible sources of PAHs in the study

area, and (4) their gas/particle partitioning.

2 Materials and methods

2.1 Sampling program and collection

Ambient air samples were collected at two sampling sites (suburban

and urban) in Izmir (Fig. 1). The suburban samples were collected on

a 4-m high platform located on the Kaynaklar Campus of the Dokuz

Eylul University, �10km southeast of Izmir’s center. This site is

relatively far from any settlement zones or industrial facilities.

Correspondence: Dr. A. Sofuoglu, Faculty of Engineering, Department of
Chemical Engineering, Izmir Institute of Technology, 35430 Gulbahce-
Urla, Turkey
E-mail: aysunsofuoglu@iyte.edu.tr

Abbreviations: ANT, anthracene; BaA, benz[a]anthracene; BaP,
benzo[a]pyrene; BbF, benzo[b]fluoranthene; BghiP, benzo[g,h,i]perylene;
BkF, benzo[k]fluoranthene; CHR, chrysene; CRB, carbazole; DahA,
dibenzo[a,h]anthracene; FL, fluoranthene; FLN, fluorene; IcdP,
indeno[1,2,3-cd]pyrene; MLR, multiple linear regression; OM, organic
matter; PAH, polycyclic aromatic hydrocarbon; PHE, phenanthrene;
PUF, polyurethane foam; PY, pyrene; TSP, total suspended particles.

Clean – Soil, Air, Water 2011, 39 (4), 319–327 319

� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.clean-journal.com



There are residential areas located approximately 2 km southwest

and a highway located 0.5 km south of the sampling site. Land cover

in the immediate area is a young coniferous forest. There are steel

plants, a petroleum refinery, and petrochemical industry located

45km to the northwest. The nearest industrial facility is a cement

work about 10 km at north and an open road gravel storage site

nearly 3 km at the east. Urban samples were collected from Yesildere

site located near a main street with heavy traffic and residential

areas.

Sixty-three ambient air samples were collected between May 2003

andMay 2004 at the suburban site. Another two additional sampling

campaigns were conducted between March 17–24, 2004 (winter) and

July 15–22, 2004 (summer) at the urban site. Successive seven ambi-

ent air samples were collected for each sampling period. All samples

were collected when there was no rain. Samples were also collected

to determine the total suspended particles (TSP) and their organic

matter (OM) content. Meteorological data were obtained from a 10-m

high tower located at the suburban sampling site.

Air samples were collected using a modified high-volume sampler

model GPS-11 (Thermo-Andersen Inc.). Particles were collected on

10.5-cm diameter quartz filters and the gas-phase compounds were

collected in a modified cartridge containing XAD-2 resin placed

between layers of polyurethane foam (PUF). Concurrently, particle

samples were collected on 11-cm diameter glass fiber filters using

another high-volume sampler to determine TSP and its OM content.

The average sampling volumes for PAHs were 173� 44 and

277� 62m3 and the average sampling volume for TSP were

40.5� 8.5 and 93.9� 13.0m3 at suburban and urban sites, respec-

tively. Sampling time ranged between 11h (suburban) and 22h

(urban).

Prior to sampling, quartz filters were baked at 4508C overnight.

Then, they were allowed to cool to room temperature in a desiccator.

PUF cartridges (two PUF plugsþXAD-2 resin layer) were cleaned by

Soxhlet extraction using an acetone/hexane mixture (1:1) for 12 h,

dried in an oven at 708C, and stored in glass jars capped with Teflon-

lined lids. After sampling, PS-1 filters and PUF cartridges were stored

at �208C in their containers.

2.2 Sample preparation and analysis

Ambient air samples (filters and PUF cartridges) were separately

Soxhlet extracted for 12h with a mixture of 20:80 dichloromethane

(DCM):petroleum ether (PE). Prior to extraction, all samples were

spiked with PAH surrogate standards (naphthalene-d8, acenaph-

thene-d10, phenanthrene (PHE)-d10, chrysene-d12, and perylene-

d12) to monitor the analytical recovery efficiencies. The extract

volumes were reduced and the solvent was exchanged into hexane

using a rotary evaporator and a high-purity N2 stream. After con-

centrating to 2mL, samples were cleaned up and fractionated on an

alumina–silicic acid column containing 3 g of silicic acid (deacti-

vated with 3% deionized water) and 2 g of alumina (deactivated with

6% deionized water). The columnwas pre-washed with 20mL of DCM

followed by 20mL of PE. Then, the sample in 2mL hexane was added

to the column and PAHs were eluted with 20mL DCM. The final

extracts were solvent exchanged into hexane and concentrated to

1mL under a stream of N2.

Prior to sampling for TSP, baked and cooled glass fiber filters were

weighed using a microbalance capable of weighing 0.1mg. After

collection of sample, they were kept in a desiccator overnight and

reweighed. TSP was obtained by subtracting the initial weight from

the final weight. OM contents of the particles were determined by

subtracting the filters baked in a furnace for 1 h at 4508C from the

initial weight before baking.

All samples were analyzed for 14 PAHs including fluorene (FLN),

PHE, anthracene (ANT), carbazole (CRB), fluoranthene (FL), pyrene

(PY), benz[a]anthracene (BaA), chrysene (CHR), benzo[b]fluoranthene

(BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), indeno[1,2,3-

cd]pyrene (IcdP), dibenzo[a,h]anthracene (DahA), and benzo[g,h,i]per-

ylene (BghiP) with an Agilent 6890N GC equipped with a mass

selective detector (Agilent 5973 inert MSD). A capillary column

(HP5-ms, 30m, 0.25mm, 0.25mm)was used. The initial oven tempera-

ture was held at 508C for 1min and raised to 2008C at 258Cmin�1,

200–3008C at 88Cmin�1, and was held for 5.5min. The injector, ion

source, and quadrupole temperatures were 295, 300, and 1808C,
respectively. High-purity helium was used as the carrier gas at con-

stant flow mode (1.5mLmin�1). The MSD was run in selected ion-

monitoring mode. All compounds were identified based on their

retention times, target, and qualifiers ions. The quantification was

based on internal standard calibration procedure.

2.3 Quality control

Average recoveries of PAH surrogate standards were 68� 14% for

PHE-d10 (n¼ 147), 82� 14% for CHR-d12 (n¼ 154), and 77� 19% for

perylene-d12 (n¼ 152) for all ambient air samples. The recoveries of

target compounds were also tested by matrix spiking experiments

and average recovery efficiencies were between 88� 22% (DahA) and

121� 6% (IcdP) (overall average� SD, 107� 16%).

Blank PUF cartridges and air filters were routinely placed in the

field to determine if there was any contamination during sampling,

sample handling, and preparation. PHE had the highest amount in

blanks with an average of 123� 43ng for PUFs and 79� 21ng for air

filters. Average blank amounts for PUFs and air filters were 11� 10

and 8� 13% of the sample amounts for all analyzed PAHs, respec-

tively. Instrumental detection limits (IDL) were determined from

linear extrapolation from the lowest standard in calibration curve

using the area of a peak having a signal/noise ratio of 3. The quanti-

fiable PAH amount was approximately 0.15 pg for 1mL injection. IDL

Figure 1. Map of the Izmir showing the sampling sites. (A) Suburban
sampling site, (B) Urban sampling site. Dashed line is border of densely
populated areas.
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was used for the compounds that were not detected in blanks. The

limit of detection of themethod (LOD) was defined as themean blank

mass plus three standard deviations. LODs for 14 PAH compounds

ranged from 2ng (BaP) to 253ng (PHE) for PUFs and 2ng (BaA) to

143ng (PHE) for PS-1 filters. These values correspond to air concen-

trations of 0.01ngm�3 (BaP) to 0.9 ngm�3 (PHE) for PUFs, and

0.01ngm�3 (BaA) to 0.5 ngm�3 (PHE) for PS-1 filters. Sample

quantities exceeding the LOD were quantified and blank-corrected

by subtracting the mean blank amount from the sample amount

for all samples.

Six levels of calibration standards (0.04, 0.4, 1.0, 4.0, 6.0, and

10.0mgmL�1) were used to calibrate the GC/MS system. In all cases,

the r2 of the calibration curve was �0.999. System performance was

verified by the analysis of the mid-point calibration standard for

every 24 h during the analysis period.

Concurrent blank filters were run for each TSP and OM sample to

determine if there was any contamination during sample handling

and preparation, and to account for probable interferences (i.e.,

weight loss of filters at high temperatures) in OM determination.

The average weight loss of blank filters (0.38mg) was significantly

lower than the average weight loss of the samples (2.5mg) indicating

that the interference was not significant in OM determination.

3 Results and discussion

3.1 Ambient PAH concentrations

Gas and particle-phase concentrations of individual PAHs at all sites

are presented in Tab. 1. Average gas-phase total PAH (
P

14PAH)

concentrations were 23.5 ngm�3 for suburban and 109.7 ngm�3

for urban sites while average particle-phase total PAH concen-

trations were 12.3 and 34.5 ngm�3 for suburban and urban sites,

respectively. Measured average total (gasþparticle) PAH concen-

trations were 36� 39 and 144� 163ngm�3 for suburban and urban

sites in this study. The concentrations of PAHs may have a diurnal

variation. This may be a confounding factor for the comparison of

themeasurement results from the urban site (for 22h) and suburban

site (for 11 h). The values measured in the present study were within

the range of previously reported values in other urban and industrial

sites around the world (Tab. 2). Total
P

14PAH concentrations

measured at the suburban, and urban sites in the present study

are considerably lower than those reported for urban sites in Bursa

[14] and in Chicago [5] while they are significantly higher than those

reported for urban Athens [8]. The PAH levels measured at the

suburban site in this study are similar to those reported for an

industrial site in Izmir, for urban Heraklion, for industrial sites

in Fuji and Shimizu, and for urban/industrial Baltimore (Tab. 2).

The gas/particle phase distributions indicated that about 69 and

81% of
P

14PAHs were in the gas-phase for the suburban and urban

sites, respectively. Because of their higher volatility, low to medium

molecular weight PAHs (3–5 rings) were more abundant in the gas-

phase similar to the previous studies [10, 14, 20, 21].

Table 1. Ambient air concentrations (ngm�3) of individual PAHs for

suburban and urban sites (average�SD)

PAHs Suburban Urban

Gas Particle Gas Particle

FLN 4.1� 4.5 0.6� 1.0 12.5� 10.3 0.1� 0.1
PHE 11.7� 12.1 1.9� 2.6 40.8� 36.2 1.0� 0.8
ANT 0.5� 0.7 0.1� 0.1 5.6� 6.2 0.1� 0.1
CRB 0.4� 0.8 0.2� 0.3 1.0� 2.0 0.1� 0.1
FL 3.7� 4.1 1.5� 2.5 27.3� 43.5 2.8� 3.7
PY 2.4� 2.4 1.4� 2.2 20.2� 27.0 3.1� 4.2
BaA 0.1� 0.1 0.5� 1.0 0.6� 0.5 3.0� 4.8
CHR 0.4� 0.3 1.5� 2.5 1.6� 1.0 6.2� 8.6
BbF 0.05� 0.04 0.9� 1.3 0.03� 0.02 3.4� 4.1
BkF 0.02� 0.01 0.8� 1.2 0.02� 0.01 3.6� 4.6
BaP 0.02� 0.02 0.7� 1.0 0.008� 0.006 3.1� 4.7
IcdP 0.01� 0.01 0.9� 1.4 0.006� 0.004 3.4� 4.5
DahA 0.02� 0.03 0.4� 0.7 0.003� 0.001 1.3� 1.9
BghiP 0.03� 0.04 0.9� 1.1 0.008� 0.005 3.4� 3.8P

14 PAH 23.5� 23.8 12.3� 16.2 109.7� 111.7 34.5� 45.7

Table 2. Total PAH concentrations (
P

n PAH, ngm
�3) measured around the world

Location Number of PAHs
included in

P
PAH (n)

Industrial Urban Suburban/
Rural

References

Taichung, Taiwan 13 678.7 476.7 319.4a) [21]
Chicago, USA 13 351.8 [5]
Bursa, Turkey 13 224.6 [14]
Rome, Italy 12 162.4 [12]
London, UK 11 160.6 [4]
Stevenage, UK 11 90.3 [4]
Seoul, Korea 13 67.3 [9]
Heraklion, Greece 12 51.5 [13]
Fuji, Japan 13 46 [10]
Baltimore, USA 13 24 [6]
Athens, Greece 10 15.4 [8]
New Jersey, USA 10 27.5 [7]
Izmir, Turkey 14 43.5 [15]
Zonguldak, Turkey 14 298 [16]
Konya, Turkey 16 206 [17]
Bursa, Turkey 15 298 [18]
Bursa, Turkey 14 152b)–1249c) [19]
Izmir, Turkey 14 144 36

a) Rural area.
b) Non-heating season.
c) Heating season.
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In the suburban site, PHE, FLN, FL, and PY accounted for 42, 14, 12,

and 10% of S14 PAHs in summer period while in urban site they were

41, 12, 14, and 15% of S14 PAHs. During winter, the contributions of

PHE, FLN, FL, and PY in suburban and urban sites were 35, 12, 16, and

11%, 26, 8, 22, and 16% of S14 PAHs, respectively. These percentages

were similar to those reported previously [5, 15, 20].

3.2 Effect of meteorological parameters on gas-

phase PAH concentrations

The effect of wind speed and direction on atmospheric concen-

trations of individual PAHs was investigated using multiple linear

regression (MLR) analysis [22]:

Ct ¼ m1T þm2U þm3cosWDþ b (1)

where Ct is the total (gasþparticle phase) PAH concentration

(ngm�3), T the average atmospheric temperature (8C), U the wind

speed (m s�1), WD the predominant wind direction (radians) during

the sampling period, and m1–m3, and b are the regression

parameters.

The results of MLR analysis are presented in Tab. 3. Temperature,

wind speed, and wind direction together accounted for 1% (CRB) to

31% (ANT), and 54% (CRB) to 82% (ANT) of the variability in the

atmospheric PAH concentrations for suburban and urban sites,

respectively. The m1 values were insignificant for all PAHs for urban

site. Them1 values were statistically significant for all PAHs (p< 0.05)

except CRB andDahA for suburban site. Generally negativem1 values

were obtained for PAHs indicated that their concentrations

increased with decreasing temperature. This was probably due to

increased PAH emissions from combustion sources like residential

heating with decreased ambient temperature. For most of the com-

pounds, m2 had negative values and they were statistically signifi-

cant for most of the compounds. This indicated that their

concentrations decreased as the wind speed increased and advection

was also an important parameter controlling the concentrations of

atmospheric PAHs. Negative values for m3 indicate that relatively

higher concentrations are observed when the wind is from southerly

directions while positive values point northerly directions for high

concentrations. The regression parameter related to wind direction

(m3) had positive values and it was statistically significant for the

urban site while it was insignificant for the suburban site. The

results were consistent with the locations of predominant sources

(urban Izmir plume and Aliaga industrial region at north of the

suburban and urban sites). It should be noted that the MLR analysis

for the urban site is based on a smaller dataset and it may be

considered as a limitation on the interpretation of the results from

this site.

3.3 Sources of PAHs

PAHs are almost entirely anthropogenic in origin and are major

byproducts of the incomplete combustion of all types of OM (e.g.,

gasoline, diesel, and other fuels) [11, 23]. PAH emission sources are

primarily categorized as follows: Heavy oil combustion, natural gas

combustion, wood and coal combustion, diesel combustion, and

vehicles [24].

The winter/summer total PAH (gasþparticle) concentration ratios

ranged between 1.4 (CRB) up to 5.9 (BaA), and 3.1 (PHE) up to 11.0

(BaP) for suburban and urban sampling sites, respectively. Higher

PAH concentrations observed during wintertime could be attributed

to the increasing emissions from residential heating [9, 10, 15, 20,

25–27]. Different ratios for individual compounds indicated that

residential heating emissions have a different profile than summer-

time emissions (Fig. 2).

The concentration ratios of individual PAHs in ambient samples

and source emissions are frequently employed as diagnostic tools to

identify their origin in ambient air [28, 29]. Recently, in Northern

China emission sources of particle-phase PAHs were identified using

a diagnostic plot of FLN/(FLNþ PY) versus IcdP/(IcdPþBghiP) [30].

Figure 3 illustrates an example of such diagnostics as a plot of

FLN/(FLNþ PY) against IcdP/(IcdPþBghiP) for particulate PAHs.

Both FLN/(FLNþ PY) and IcdP/(IcdPþBghiP) are >0.5 in the case of

coal/biomass emissions [30]. In Fig. 3, 70% of the urban samples fall in

the left-bottom quadrant, indicating predominant influence of

petroleum combustion. Samples appearing in the top-right quad-

rant, suggest coal/biomass combustion emissions. More than 50% of

the suburban samples also fall in the left-bottom quadrant, indicat-

ing significant influence of petroleum combustion (vehicular emis-

sions). However, some of the suburban samples fall in the left-top

and right-top quadrants suggesting that coal/biomass combustion is

also a major PAH source at this site.

Li and Kamens [31] observed that the ratio of BaA/BaP was 0.5 for

gasoline exhaust and 1.0 for both diesel exhaust and wood combus-

tion. In the present study, the BaA/BaP ratios were significantly

higher for winter (1.05) than summer (0.70) at suburban site.

These results indicated that, in addition to traffic emissions, wood

and coal combustions are the major PAH sources in winter at the

Table 3. Summary of regression parameters for Eq. (1) for all sites and

individual compounds

m1 m2 m3 r2 n

Suburban
FLN �0.28a) �0.51a) 0.60 0.26 63
PHE �0.71a) �1.53a) 2.39 0.24 63
ANT �0.05a) �0.04 0.06 0.31 63
CRB 0.00 0.03 0.08 0.01 63
FL �0.39a) �0.42 0.67 0.25 63
PY �0.28a) �0.41 0.64 0.28 63
BaA �0.06a) �0.08 0.14 0.28 63
CHR �0.16a) �0.26a) 0.40 0.26 63
BbF �0.07a) �0.13a) 0.22 0.25 63
BkF �0.07a) �0.12a) 0.20 0.27 63
BaP �0.05a) �0.11a) 0.20 0.23 63
IcdP �0.06a) �0.17a) 0.32 0.19 63
DahA �0.02 �0.12a) 0.29a) 0.24 63
BghiP �0.05a) �0.16a) 0.30 0.22 63

Urban
FLN �0.27 �4.70a) 3.68 0.62 14
PHE �0.14 �20.38a) 15.68 0.67 14
ANT �0.41 �2.79a) 4.48a) 0.82 14
CRB �0.05 �0.98a) 1.57 0.54 14
FL �3.00 �16.70 39.11a) 0.63 14
PY �1.89 �12.03a) 26.03a) 0.67 14
BaA �0.25 �2.49a) 4.34a) 0.76 14
CHR �0.47 �4.45a) 7.08a) 0.78 14
BbF �0.20 �1.91a) 2.70a) 0.74 14
BkF �0.24 �2.08a) 3.27a) 0.74 14
BaP �0.22 �2.21a) 3.91a) 0.75 14
IcdP �0.17 �2.27a) 3.16a) 0.75 14
DahA �0.06 �0.94a) 1.33a) 0.72 14
BghiP �0.16 �1.80a) 2.44a) 0.73 14

a) p< 0.05.
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suburban site. In summer, traffic emissions dominated at this site.

Many other diagnostic ratios for PAHs are used to identify the

potential emission sources at different sites. The diagnostic ratios

calculated in this study and reported ones by other studies are

compared in Tab. 4. In summary, although may be prone to some

errors, the diagnostic plot and diagnostic PAH ratios approaches

suggested that traffic emissions (petroleum combustion) were the

dominant PAH sources at all sites for both seasons. During winter,

residential heating was also a possible significant PAH source at all

sites.

3.4 Gas–particle partitioning

Partitioning of atmospheric organic compounds between the gas

and particle-phases is parameterized using the gas/particle partition

coefficient, KP (m3mg�1) [33]:

KP ¼
Cp=CTSP

Cg
(2)

where Cp and Cg are the organic compound concentrations in the

particle and gas-phases, respectively (ngm�3), and CTSP is the con-

centration of TSP in the air (mgm�3).

The octanol–air partitioning coefficient (KOA) can be used to pre-

dict KP with the assumption of predominant distribution process is

absorption [33]. The relationship between KP and KOA is:

KP ¼
ðfOMMWOCTzOCTÞKOA
rOCTMWOMzOM10

12
(3)

where fOM is the fraction of OM phase on TSP, MWOCT and MWOM are

the mean molecular weights of octanol and the OM phase (gmol�1),

rOCT the density of octanol (0.820 kg L
�1), zOCT the activity coefficient

of the absorbing compound in octanol, and zOM is the activity

coefficient of the compound in the OM phase. With the assumptions

that zOCT/zOM and MWOCT/MWOM¼ 1, Eq. (3) can be written as:

logKP ¼ logKOA þ logfOM�11:91 (4)

KOA values were calculated as a function temperature using:

logKOA ¼ Aþ B

T
(5)

where A is the intercept and B is slope of the temperature regressions

given by Odabasi et al. [34] and T is in K.

The experimental gas–particle partition coefficients (KP) for indi-

vidual PAHs were calculated using Eq. (2). The relationship between

KP and KOA is expressed using Eq. (4). Plots of logKP versus logKOA have

been used in field and laboratory studies to evaluate the gas–particle

partitioning of POPs. A good correlation between logKP and logKOA
and a slope near 1 indicates that octanol is a good surrogate for the

partitioning of POPs into aerosol OM [22]. Figure 4 is a plot of logKP
(m3ng�1) measured at suburban and urban sites versus logKOA. For

the plot containing all data, KP and KOA correlated well (r2¼ 0.80–

0.95). The regression parameters, m and b were 0.48 and 6.36 for

suburban and 0.89 and 10.7 for urban sites, respectively. For indi-

vidual samples, KP and KOA were also showed a good correlation

(r2¼ 0.72–0.97 and 0.94–0.98 for suburban and urban sites). The slope

values (m) for suburban and urban sites ranged between 0.22–0.74

and 0.74–1.01, respectively. The variation of slope values for sub-

urban and urban sites suggests that atmospheric particles for differ-

ent sites might have different sorbing properties. Good correlation

between logKP and logKOA suggests that KOA is a useful predictor for

the partitioning of PAHs into aerosol OM. Even though strong cor-

relations were observed between logKP and logKOA, some of the

previously reported slopes were significantly different than 1. As

a result of the plots of logKP and logKOA, the slope values of 0.45–0.99

for OCPs [22], 0.79, 0.99, 0.74, and 0.65 for PAHs, OCPs, PCBs, and PCNs

Figure 3. Plot of FLN/(FLNþPYR) against IcdP/(IcdPþBghiP) for PAH
source diagnostics. Two dashed lines represent the thresholds for petro-
leum combustion and coal/biomass burning.

Figure 2. Seasonal variation of individual PAH concentrations in this study.
Error bars are 1 SD.
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were reported, respectively [33, 35–37]. Goss and Schwarzenbach [38]

have suggested that the slope might deviate from 1 for equilibrium

partitioning when logKP is plotted versus logKOA. Deviations from a

unity slope may further indicate that atmospheric particles have

sorbing properties different from that of octanol.

Strong association of PAHs with soot particles in soot–water sys-

tems suggests that besides absorption, adsorption partitioning could

also be an important sorption mechanism in the atmosphere.

Therefore, the following equation for the overall gas–particle

partition coefficient that accounts for both OM absorption and soot

carbon adsorption was derived by Dachs and Eisenreich [39]:

KP ¼ ½ðfOMMWOCTzOCTÞKOA=ðrOCTMWOMzOM10
12Þ�

þ ½ðfECaECÞKSA=aAC1012� (6)

where fEC is the fraction of elemental carbon in the aerosol, aEC and

aAC are the specific surface areas of elemental carbon and organic

carbon, respectively, and KSA is the soot–air partition coefficient.

Elemental carbon and octanol are the surrogates for the soot carbon

in adsorptive partitioning, and OM in absorptive partitioning,

respectively. The aEC value (62.7m2 g�1) was taken from a recent

study by Jonker and Koelmans [40]. The average OM contents of PM

measured in this study were 53� 20 and 49� 10% for suburban and

urban sites, respectively. Recently, OM contents were reported to be

53% [22] and 53.5–62.1% [41] in the Izmir area. The values measured

in the present studywere similar to these, however, theywere higher

than those typically assumed inmodeling studies (10–20%) [22, 35]. It

was assumed that aEC/aAC¼ 1, fOM¼ 1.6 fOC, and fOC/fEC¼ 3 where fOC
is the fraction of total organic carbon [39, 42].

Dachs et al. [43] have suggested that the thermodynamics-based

model recently reported by vanNoort [44] can be used to estimate KSA
values for PAHs as a function of supercooled liquid vapor pressure

(PL, Pa) and elemental carbon specific surface area (aEC, m
2 g�1):

logKSA¼�0:85 logPL þ 8:94�logð998=aECÞ (7)

PL values as a function of temperature can be calculated using:

logPLðPaÞ ¼ mLT
�1 þ bL (8)

Table 4. Diagnostic ratios for ambient air PAHs in this study and previously reported ones for major emission sources

Diagnostic ratios (this study) Values (winter/summer) Sources (literature)

Suburban Urban Gasoline Diesel Coal Wood

BaA/CHR 0.33/0.24 0.43/0.30 0.28–1.2a) 0.17–0.36a) 1.0–1.2a) 0.66–0.92b)

0.47–0.59b) 1.05–1.17b)

BaA/(BaAþCHR) 0.24/0.19 0.30/0.23 0.22–0.55c),d) 0.38–0.64c),d) – 0.43d)

BaP/BgiP 0.84/0.61 0.85/0.48 0.3–0.4a) 0.46–0.81a) 0.9–6.6 –
IcdP/BghiP 1.02/0.91 0.98/0.74 0.27–0.4b) 1b),e) 1.06–1.12b) 0.23–0.33b)

<0.4e)

IcdP/(IcdPþBghiP) 0.50/0.47 0.49/0.43 0.21–0.22c),d) 0.35–0.70c),b),d),e) 0.56e) 0.62d),e)

0.18b)

BbF/BkF 1.08/1.37 0.94/0.99 1.07–1.45b) >0.5e) 3.53–3.87b) 0.76–1.08b)

PHE/ANT 20.50/36.57 7.29/15.01 3.4–8a) 7.6–8.8a) 3a) –
FLN/(FLNþ PY) 0.51/0.58 0.38/0.44 0.40b),d) 0.60–0.70b),d) – 0.74b)

<0.5e) >0.5e)

FL/(FLþ PY) 0.59/0.54 0.55/0.49 0.40c) 0.60–0.70c) – –
BghiP/BaP 1.25/1.70 1.33/2.11 2.5–3.3d) 1.2–2.2d) – –
BaP/(BaPþCHR) 0.24/0.25 0.27/0.20 0.73e) 0.5e) – –
PY/BaP 8.65/6.61 8.26/14.74 �1e) �10e) – –

a) [32].
b) [21].
c) [29].
d) [28].
e) [23].

Figure 4. Plots of log KP (m3 ng�1) measured at suburban and urban
sampling sites versus logKOA. The dashed diagonal line represents a 1:1
relationship (equilibrium).
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where bL is the intercept and mL is the slope of the temperature

regressions [35].

The atmospheric PAH concentrations measured in this study were

used to investigate the partitioning of PAHs between particle and

gas-phase. Modeled KP values were calculated using Eq. (4) for absorp-

tive partitioning and Eq. (6) for both absorptive and adsorptive

partitioning [34]. The modeled KP values for absorptive partitioning

and for both absorptive and adsorptive partitioning were compared

to the measured ones in Fig. 5. The correlations between experimen-

tal and modeled KP values were significant (r2¼ 0.79 and 0.94 for

suburban and urban sites, respectively, p< 0.01). Octanol-based

absorptive partitioning model predicted lower partition coefficients

especially for relatively volatile PAHs. However, overall there is a

relatively good agreement between the measured KP and soot-based

model predictions. Ratios of measured/modeled partition coeffi-

cients ranged between 0.15 (BghiP) up to 651 (FLN) (80� 394,

average� SD) and 1.2 (CHR) up to 15.5 (FLN) (4.5� 6.0,

average� SD) for the KOAmodel in suburban and urban sites, respect-

ively. The soot model predictions were relatively better and

measured to modeled ratios ranged between 0.11 (BghiP) up to

232 (FLN) (30� 141, average� SD) and 0.6 (CHR) up to 5.6 (FLN)

(2.3� 2.7, average� SD) for suburban and urban sites, respectively.

Recent studies reported that the soot-based model showed a good

predictability at an urban site (Chicago, IL) but underestimated the

values at a rural site (Eagle Harbor) by an order of magnitude [45, 46].

It was suggested that characterizing atmospheric soot, determining

the temperature dependence of soot–air partitioning, and quantify-

ing the exchangeable fraction of each PAH on aerosols will help to

explain the differences between predicted and observed partition

coefficients [46].

It was observed that gas–particle partitioning of PAHs was differ-

ent for suburban and urban samples. This was evident by the more

shallow slopes obtained from the plots of logKP versus logKOA at the

suburban site compared to those for urban sites. Recently, Vardar

et al. [45] have reported steeper slopes for lake samples relative to the

land samples in Chicago. It was suggested that the observed differ-

ences between the lake and land samplesmay be due to the different

properties of particles (i.e., aged particles as a result of longer

residence time for lake samples), non-exchangeability and differ-

ences in activity coefficients of PAHs. Similarly, in the present study

urban samples had steeper slopes than the suburban samples.

However, unlike the Chicago samples that had different levels of

TSP concentrations (i.e., low for lake and higher for land samples)

suburban and urban samples of the present study had similar aver-

age TSP concentrations (�70–80mgm�3, respectively). Previous

experimental studies have shown that a greater fraction of the

higher molecular weight PAHs are associated with fine particles

relative to the lower molecular weight compounds [26, 47, 48].

Recent studies indicated that the contribution of wind-entrained

soil particles to atmospheric coarse PM is significant at the suburban

site [49, 50]. The contribution of local soil to the coarse PM increases

especially the particle-phase concentrations of lowmolecular weight

PAHs. This increase in particle-phase concentration will result in

larger KP values especially for low molecular weight PAHs (Eq. 2) and

consequently more shallow slopes for logKP versus logKOA plots

(Fig. 4).

4 Conclusions

Ambient air PAH samples were collected at a suburban (n¼ 63) and at

an urban site (n¼ 14) in Izmir, Turkey. Higher ambient PAH concen-

trations were measured in the gas-phase and
P

14PAH concen-

trations were dominated by lower molecular weight PAHs. MLR

analysis indicated that themeteorological parameters were effective

on the measured ambient PAH concentrations. Emission sources of

particle-phase PAHs were investigated using diagnostic plots and

diagnostic ratios. These approaches have indicated that traffic emis-

sions (petroleum combustion) were the dominant PAH sources at

both sites for summer and winter seasons.

Experimental gas–particle partition coefficients (KP) were com-

pared to the predictions of octanol–air (KOA) and soot–air (KSA)

partition coefficient models. Octanol-based absorptive partitioning

model predicted lower partition coefficients especially for relatively

volatile PAHs. However, overall there was a relatively good agree-

ment between the measured KP and soot-based model predictions.

The authors have declared no conflict of interest.
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