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Abstract
Proteins are important targets in cancer research because malignancy is associated with defects in cell 
protein machinery. Protein profiling is an emerging independent subspecialty of proteomics that is 
rapidly expanding and providing unprecedented insight into biological events. Quantitative assess-
ment of protein levels in hematologic malignancies seeks a comprehensive understanding of leukemia-
associated protein patterns for use in aiding diagnosis, follow-up treatment, and the prediction of 
clinical outcomes. Many recently developed high-throughput proteomic methods can be applied to 
protein profiling. Herein the importance of protein profiling, its exploitation in leukemia research, and 
its clinical usefulness in the treatment and diagnosis of various cancer types, and techniques for deter-
mining changes in protein profiling are reviewed. (Turk J Hematol 2011; 28: 1-14)
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Özet
Malignitelerde proteinlerin hücresel mekanizmalarında meydana gelen bozukluklardan dolayı, prote-
inler kanser araştırmaları için önemli hedeflerdir. Proteomiksin alt uzmanlık dalı olarak ortaya çıkan 
ve bağımsız bir alan olan protein profilleme biyolojik olaylara farklı bir bakış açısı sağlamak amacıyla 
hızla gelişmektedir. Hematolojik malignitelerdeki protein düzeylerinin kantitatif olarak değerlendiril-
mesi, teşhise yardımcı olması, tedavinin izlenmesi ve klinik sonuçların tahmininde mükemmel bir 
yaklaşım olması nedeni ile lösemi ile ilgili protein modellerinin kapsamlı bir şekilde incelenmesini 
amaçlamaktadır. Son dönemlerde geliştirilen yüksek verimli yöntemler protein profillemede kullanıla-
bilir. Bu makalede, protein profillemenin önemi, lösemi araştırmalarındaki rolü, çeşitli kanser tipleri-
nin tanısı ve tedavisi için klinik kullanımları ve protein profilindeki değişikliklerin belirlenmesinde 
kullanılan teknikler değerlendirilmiştir.  (Turk J Hematol 2011; 28: 1-14)
Anahtar kelimeler: Hematolojik malignitiler, lösemi, proteomiks, protein profilleme
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Introduction

Proteins are abundant in all organisms and play 
key roles in most biological events as catalysts, 
transporters, and messengers. Thus, it is crucial to 
note that all research related to proteins increase 
our understanding of their levels, interactions, func-
tions, modifications, regulations, and localization in 
cells [1,2]. Proteomics is a rapidly expanding disci-
pline that aims to gain a comprehensive under-
standing of proteins. The term proteomics, which is 
a combination of protein and genomics, is used to 
define the large-scale analysis of a complete set of 
proteins - the chief components of cells that are 
responsible for the most significant metabolic path-
ways in cells or tissues [2-7]. The goal underlying 
proteomics is not only to identify all proteins in a 
cell, but also to identify the correlation between the 
genetic sequence and three-dimensional (3D) pro-
tein structure [2]. In other words, work in pro-
teomics encompasses the investigation of protein-
protein interactions, the connection between the 
structure of proteins and their function, cellular pro-
cesses and networks, and to improve protein sepa-
ration and protein profiling techniques. 

Protein profiling, an emerging independent sub-
specialty of proteomics, is poised to provide unprec-
edented insight into biological events. Quantitative 
evaluation of protein levels can be accomplished 
with protein profiling, which shows us unique 
expression patterns (diseased vs. healthy, treated 
vs. untreated, experimental vs. control) at the pro-
tein level when proteins from one cell type are com-
pared with those of another cell type. The value of 
protein profiling is increasing daily and there are 
several reasons why it is of great importance, espe-
cially as a potential tool for the early diagnosis of 
leukemias and other diseases. 

One such reason is that it provides a much better 
understanding of an organism, as it is not always 
possible or sufficient for scientists to clarify some 
metabolic pathways, including mechanisms of dis-
eases, exclusively by studying the genome [2]. 
Additionally, there are some difficulties associated 
with accurately indentifying genes solely by dealing 
with genomic data [8]. To overcome this problem, 
data provided from genomic studies should be sup-
ported with data obtained from the study of pro-
teins. Proteomics is often considered as the stage 
following genomics in the study of biological sys-
tems. Compared to genomics, proteomics is much 

more complicated, as the proteome differs from 
cell to cell, and under different conditions. This is 
because distinct genes are expressed in distinct cell 
types, and to identify even a basic group of proteins 
produced in a cell, one needs to have a comprehen-
sive understanding of protein-related actions [2]. 

Until recently, such research was carried out 
using mRNA analysis via different methods, includ-
ing microarray technology [9,10] and serial analysis 
of gene expression (SAGE) [11]. On the other hand, 
recent studies demonstrate that mRNA analysis 
cannot be correlated directly with protein levels 
[12-17], as mRNA is not always translated into pro-
teins [7]. Moreover, the quantity of protein formed 
for a given quantity of mRNA depends on both the 
gene that it is transcribed from and the current 
physiological state of the cell. As such, the level of 
transcription of a gene provides only a rough esti-
mation of its extent of translation into a protein. 
Additionally, mRNA produced may go under rapid 
degradation that causes a reduction in translation, 
resulting in the production of less protein. In addi-
tion, some bodily fluids, such as serum and urine, 
have no source of mRNA under normal circum-
stances; therefore, proteomic technologies have 
emerged as an important addition to genomic stud-
ies [2]. 

Proteomics verifies the presence of a protein and 
provides a direct measure of the quantity present. An 
additional important reason that protein profiling is 
crucial is its power to analyze protein modifications. 
Although a particular cell may have a distinguishable 
set of proteins at various times or under various con-
ditions, any particular protein may go through a wide 
range of alterations known as post-translational 
modifications, which will have critical effects on its 
function. Phosphorylation is an example of post-
translational modification. Structural proteins can 
undergo phosphorylation during cell signaling and 
result in the protein becoming a target for binding to 
or interacting with a distinct group of proteins that 
recognize the phosphorylated domain [18]. 
Ubiquitination is another post-translational type of 
modification. Ubiquitin is a small protein that can be 
affixed to certain protein substrates by means of 
enzymes known as E3 ubiquitin ligases [19]. 
Identifying which proteins are polyubiquitinated 
can be helpful in understanding how protein path-
ways are regulated. In addition to phosphorylation 
and ubiquitination, proteins can undergo additional 
modifications via methylation, acetylation, glycosyl-
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ation, oxidation, sulfation, hydroxylation, nitrosyl-
ation, amidation, etc. 

These modifications can be assessed only at the 
protein level and modifications of many proteins 
expressed by a cell can be determined at the same 
time using such proteomic methods as phospho-
proteomics and glycoproteomics [2]. In addition to 
modifications, there is no doubt that protein local-
ization and interactions are of vital importance to 
their function. Mislocalization of a protein or any 
problem in signal transduction can turn normal 
cells into abnormal cells, which is a well-known 
paradigm in carcinogenesis. Protein profiling using 
proteomic methods can also be used to character-
ize these regulatory mechanisms. Another point 
that emphasizes the importance of protein profiling 
is that many proteins form complexes with other 
proteins and/or with nucleic acids, and exert their 
function in the presence of these molecules. 

In summary, protein profiling provides a much 
better understanding of an organism, in terms of 
structure and function. Use of protein profiling in 
the study of multiple proteins, protein forms, and 
protein families - almost always by comparing 2 dif-
ferent states (diseased vs. healthy) - is expected to 
expand our understanding of molecular mecha-
nisms. Elucidation of protein-protein interactions 
and signaling pathways, identification of biomark-
ers useful for drug development, serum profiling to 
identify patient populations that respond to various 
treatments, and eventually medical diagnostics in 
the near future can be implemented for hemato-
logical malignancies via proteomics.

Exploitation of protein profiling in leukemia 
research
Because leukemic cells lose regulation of growth 

controlling mechanisms, in most cases signaling 
pathways involving numerous proteins are altered, 
as mentioned before. When this is taken into account, 
not surprisingly, expression patterns of growth-induc-
ing and growth-suppressing genes change with 
malignant transformation [20,21]. Therefore, moni-
toring these changes is of great importance for 
understanding carcinogenesis, identifying diagnostic 
markers, and developing new therapeutics for leuke-
mia. The most widely used methods for this involve 
examination of differential gene expression in leuke-
mic cells by assessing the mRNA levels in the given 
cells. Several successful studies reported the feasibil-

ity of this approach [22-25]. On the other hand, this 
methodology comes from a reductionist point of 
view, as it neglects the dynamic nature of protein 
translation and further modifications that take place 
beyond transcription. As such, an approach involv-
ing direct proteomic methods might be a better 
choice for obtaining more accurate insight into 
what is happening at the cellular level in leukemic 
cells.

Although the initial changes that occur during the 
development of hematologic malignancies appear 
as little sparks igniting a larger fire, the majority of 
leukemias manifest with profound alterations in 
protein profiles. In some types of leukemia, growth-
suppressive genes undergo mutations and nullify 
protein synthesis completely, whereas in other 
types aberrant proteins arise due to chromosomal 
rearrangement, which is not usually seen in healthy 
cells. Those alterations are readily detectable with 
current proteomic methods. What follows are 
examples of proteins whose cellular presence 
changes most significantly with malignant transfor-
mation, and from this perspective the feasibility of 
protein profiling for the diagnosis and therapy of 
hematological malignancies becomes evident.

P53 has been perhaps the most famous protein 
for decades because of its essential role in cell cycle 
regulation, apoptosis and senescence. It is a tran-
scription factor that responds to stressful conditions 
by inducing cell cycle arrest and apoptosis. Not sur-
prisingly, it was reported that p53 is deleted or 
mutated in the majority of cancers. Experiments 
involving p53 knockout mice have shown that the 
occurrence of tumors increases with the loss of p53 
function [26,27]. In some cases inactivation of p53 
involves small changes such as point mutations [28-
30]. On the other hand, numerous other leukemias 
manifest with more global changes in the p53 pro-
tein structure. The protein can also be tagged for 
proteolytic degradation by interacting with another 
protein, MDM2 [31], or without the need of a degra-
dation protein can be inactivated by exporting back 
to cytoplasm, inhibiting its DNA-binding functions 
[32]. Major structural alterations aside, p53 can be 
inactivated by binding to other proteins [32] and by 
chemical modifications, such as phosphorylation 
and acetylation [33,34], and we know that these 
alterations are traceable using proteomic methods. 
Furthermore, signaling networks of p53 and down-
stream targets can also be examined proteomically 
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to gain more comprehensive insight into carcino-
genesis.

While p53 is a protein commonly altered in 
numerous cancers, there are some proteins that 
appear to be signature molecules for particular can-
cer types. Such proteins are important for diagnostic 
purposes and might be used in cancer therapeutics 
as highly selective targets. Chronic myeloid leuke-
mia (CML) is a wonderful example. CML is charac-
terized by accumulation of immature blasts of 
myeloid origin in the bloodstream and bone mar-
row. The main driving force of leukemogenesis in 
CML is reciprocal translocation between chromo-
somes 9 and 22, which produces a fusion protein 
(BCR-ABL) having constitutive tyrosine kinase activ-
ity, and, in turn, induces cell growth [35]. BCR-ABL 
is one of the most prominent proteins in leukemic 
cells and its overexpression is linked to chemo-
therapeutic drug resistance [36]. With the increased 
knowledge about this fusion protein, highly specific 
drugs were developed and considerable cytoge-
netic responses were delineated [37-39]. In the light 
of these advancements in leukemia therapy, it is 
obvious that identification of proteins responsible 
for malignant transformation is particularly impor-
tant for the development of efficient drugs. The cur-
rent literature has provided detailed insight into the 
pathogenesis of CML, but there are numerous other 
cancer types whose pathophysiology remains to be 
elucidated. At this point, the need for the utilization 
of proteomic methods rather than genomic meth-
odologies is clear, as it provides a deeper under-
standing of the features of leukemic cells.

The literature sheds light on the specifics of dif-
ferent types of leukemias, as the mechanism of 
CML has been described. For instance, acute lym-
phoblastic leukemia (ALL) cells were reported to 
express unique tyrosine kinases that originate from 
Abl kinase, which are thought to be important for 
malignancy [40]. In some ALL patients, chromo-
somal translocations create ABL1/NUP214 or P2RY8/
CRLF2 fusion proteins with oncogenic activity 
[41,42]. T-cell ALL cells undergo site-specific genet-
ic alterations in the TAL1 gene due to problematic 
activity of the enzyme recombinase, and as a result, 
a truncated protein with oncogenic activity is pro-
duced [43]. Translocations involving this region 
were also shown to be important for ALL leukemo-
genesis [44-46]. Similarly, KRAS2 protein with a 

genetic insertion was shown to play a role in malig-
nant transformation by activating the RAS-activated 
signaling pathway in acute myeloid leukemia (AML) 
cells [47]. Additionally, some cases of AML were 
caused by alterations in CEBPA and NPM proteins 
via mutations [48,49].

Proteins with role in the development of hemato-
logical malignancies are not confined to those 
already mentioned. There are many others identi-
fied as responsible for malignant transformation, 
and without any doubt there are many other pro-
teins whose mysteries remain unsolved. Moreover, 
understanding the complex signaling networks 
amongst the proteins is no less important than iden-
tifying the proteins themselves; therefore, it is clear 
that proteomic techniques and protein profiling are 
especially valuable for obtaining a deeper under-
standing of malignant transformation, improved 
diagnostics, and more accurate prognostic predic-
tions, and for the development of effective thera-
peutic options. Genomics has provided a consider-
able body of useful information on the alterations in 
cancer cells by identifying the genes responsible for 
tumor suppression and growth, but as long as the 
complex interactions of proteins and the dynamic 
nature of protein synthesis are overlooked, genom-
ics will be unable to establish a complete under-
standing of malignancy. 

Because the information stored in genes is 
reflected in the phenotype by proteins, assessment 
of proteins in the cell at a given time would provide 
accurate and detailed insight into the specifics of 
the cell type being investigated. Despite advance-
ments in leukemia therapy, we remain baffled by 
the complexity of cancer cells and their adaptation 
to current therapies; hence, we are still unable to 
provide an effective solution. Nonetheless, as more 
knowledge about the specifics of leukemic cells is 
obtained, such as oncogenic proteins, more effec-
tive therapies will be developed. The development 
of tyrosine kinase inhibitors is a wonderful example. 
Nowadays, survival time in CML patients is greatly 
prolonged due to the availability of these inhibitors 
[50,51]. Hopefully, as the utilization of proteomic 
techniques in leukemia research increases, promis-
ing new targets and treatment opportunities will 
emerge in a near future. The major important pro-
teins in different types of leukemias are summa-
rized in Table 1.
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Protein profiling: clinical implications
Investigating protein profiles and understanding 

the dynamic alterations of cellular proteins are of 
great importance for diagnostic and therapeutic 
purposes in clinical settings. This is because most 
diseases, cancers in particular, are reflected as 
driven by protein alterations in cells. As such, pro-
teomic methods enhance our understanding of the 
characteristics of various cancers via discovering 
new biomarkers, making it possible to discriminate 
healthy and malignant cells more accurately, devel-
opment of novel therapeutics that target altered 
protein signaling pathways, and assessment of 
what changes occur at the protein level in cells in 
response to treatment with drugs, leading to the 
evaluation of therapeutic efficacy. In fact, several 
studies reported that protein signatures were potent 
discriminators of diseased and healthy cells. Such 
an approach used with serum proteins discrimi-
nated CML cells from healthy cells. Differences in 
protein levels were identified using matrix-assisted 
laser desorption/ionization time of flight (MALDI-
TOF) analysis and spectrum comparisons showed 
that there were 31 differentially expressed proteins 
involved in cell growth, survival, and programmed 
cell death [100]. Barnidge et al. analyzed CLL 
patient samples to characterize CLL B-cell protein 
expression at the quantitative and qualitative level 
using two-dimensional liquid-chromatography cou-

pled to MALDI tandem mass spectrometry (2D-LC-
MS/MS) [101].

The power of proteomic techniques is not only 
limited to distinguishing the diseased state from the 
healthy state, but it also helps to resolve tumor sub-
types. The latter is especially important for the pre-
diction the prognostic features of cancer and for 
determining the therapeutic strategy to be adopted. 
It was previously reported that pathologic changes 
in hematological malignancies are correlated with 
the protein profiles of cells; 247 different protein 
spots were identified between the HL-60 (acute 
promyelocytic leukemia), MEC1 (B-cell chronic 
lymphocytic leukemia), CCRF-CEM (T-cell acute 
lymphoblastic leukemia), and Raji (B-cell Burkitt’s 
lymphoma) cells [102]. In another study, differen-
tially expressed serum proteins were identified in 
non-Hodgkin’s lymphoma (NHL) patients before 
treatment, lymphnoditis patients, and healthy adults 
using surface-enhanced laser desorption/ionization 
time of flight  mass spectrometry (SELDI-TOF MS) 
[103]. Significant differences were observed in dif-
ferent phases of NHL. The study showed that levels 
of 3 main proteins could be used for the early and 
differential diagnosis of NHL [103]. Differences in 
protein levels can be used as a diagnostic marker to 
characterize tumors.

In addition to its contribution to our knowledge 
of tumor subtypes, proteomics combined with 
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Table 1. Major important proteins in hematological malignancies

 Type of Hematological Malignancy Major Important Proteins

Leukemias Acute lymphoblastic leukemia (ALL) P53 (30, 52, 53), TEL/AML1 (54), E2A/PBX (PBX1) (55),
  BCR/ABL (56), MLL/AF4 (57), IGH/MYC (58), 
  TCR/RBTN2 (59), TdT (60,61), ABL1/NUP214 (41), 
  P2RY8/CRLF2 (42) and Tal1 (43) proteins

 Acute myelogenous leukemia (AML) P53 (62-66), PML/RARα (67), CEBPA (48), KRAS2 (47), 
  BAALC (68), ERG (69), NPM1 (49), RUNX1/RUNX1T1 
  (70-72) and CBFB/MYH11 (73-75) proteins 

 Chronic lymphocytic leukemia (CLL) P53 (76-78), CD5 (79), CD23 (80,81), CD38 (82) and ZAP-
  70 (83) proteins

 Chronic myelogenous leukemia (CML) P53 (84), BCR/ABL (35) and MDM2 (31) proteins

Lymphomas Hodgkin's lymphomas CD2, CD3, CD4, CD5, CD7 and CD8 (85), CD15, CD20 
  and CD30 (86,87) proteins

 Non-Hodgkin's lymphomas P53 (88, 89), CD3, CD4, CD5, CD10 (90), c-myc, BCL2 (91),
  API2/MLT (92), MALT1 (93) and Cyclin D1 (94), 
  proteins

Myelomas Multiple Myeloma N-ras, K-ras (95), P53 (95,96), c-myc (97,98), and Bcl-2 (99),
  proteins



other gene expression analyses can be used to 
characterize the tumor microenvironment, which 
has profound effects on tumor progression [104,105]. 
Identifying the characteristics of cancer subtypes 
leads to a better understanding of chemotherapeu-
tic resistance as well. Use of proteomic methods to 
identify alterations at the protein level that confer 
resistance to cancer cells and nullify current che-
motherapeutic options is therefore of great interest 
for use in the development of novel interventions 
with increased efficacy against resistance. Two-
dimensional differential gel electrophoresis (2-DE) 
coupled with mass spectrometry analysis between 
imatinib-sensitive and resistant KCL22 CML cells 
showed that there were 27 over-expressed and 24 
under-expressed proteins involved in proliferation 
and apoptosis. Such data may open new ways of 
determining novel targets for the treatment of drug-
resistant leukemias [106]. However when mRNA 
expression levels in these proteins were examined, 
similar patterns were not observed, indicating that 
post-translational control is also very important for 
different protein profiles. This observation highlights 
the importance of proteomics, in terms of illuminat-
ing what accounts for the difference between sensi-
tivity and resistance to chemotherapy in cells. As it 
helps differentiate resistant subtypes, proteomics 
techniques can be used for predicting chemothera-
peutic susceptibility [107].

The protein content of cancer cells is also sub-
ject to changes in response to treatment with drugs 
and radiation. Therefore, protein profiling can be 
utilized to compare treated cells and untreated 
counterparts to better understand the therapeutic 
mechanisms of action and possible points of inter-
vention for obtaining better responses to current 
therapies. Protein profiles are not only important for 
delineating drug mechanisms, but also for monitor-
ing minimal residual disease (MRD) in cancer 
patients treated with various forms of anti-cancer 
agents. It was reported that a panel of antibodies 
could be used in microarrays to trace disease-spe-
cific proteins in CLL patient samples that were pre-
viously treated with rituximab [108]. A broader 
analysis of several different CLL-specific antigens 
would be more accurate, in terms of identifying 
MRD, than previously adopted assessment of CD20 
expression, which cannot be measured accurately 
during the course of rituximab treatment. In addi-
tion to the current advanced techniques for the 
assessment of cellular proteins, this area is still 

open to development. For instance, 2-nitrobenzene-
sulfenyl chloride (NBS) isotope labeling coupled 
with 2-DE and mass spectrometry was shown to 
yield more reliable results than the conventional 
methods of analyzing protein levels [109].

Techniques for determining changes in protein 
profiles
Proteins are important targets for drug discovery 

and are therefore utilized in cancer research 
because there are defects in the protein machinery 
of cells undergoing malignant transformation. 
Identification of protein profiles is clinically promis-
ing in the development of potential new drugs to 
eradicate various malignancies, including, but not 
limited to, those of hematologic origin. Changes in 
protein profiles provide a wide variety of critical 
data regarding various cancers. By examining these 
alterations proteins that have a profound impact on 
the progression of diseases can be identified, mak-
ing the development of individually tailored drugs 
possible [1]. Because of its importance, recent 
technologic advances have opened a new era for 
analyzing changes in protein profiles. To date, many 
of the high-throughput protein identification and 
characterization methods developed for proteomics 
have been applied to protein profiling. Among 
them, the most widely and efficiently used ones are 
mass spectrometry, sometimes in combination with 
different chromatographic methods [110-115], pro-
tein microarray [115-118], and high-performance 
liquid chromatography laser-induced fluorescence 
(HPLC-LIF) [119, 120].

Mass spectrometry
Mass spectrometry is a technique used for the 

analysis of complex protein samples in order to 
detect a given set of proteins. Its principle depends 
primarily on separating ionized molecules accord-
ing to their mass to charge ratios [2]. Matrix-assisted 
laser desorption/ionization time of flight mass spec-
trometry (MALDI-TOF MS), liquid-chromatography 
coupled to MALDI tandem mass spectrometry (LC-
MS/MS), and surface-enhanced laser desorption/
ionization mass spectrometry (SELDI MS) are of 
great importance to applying mass spectrometry to 
clinical biomedicine. For the application of mass 
spectrometry the first step (sample preparation) is 
the resolution of proteins in complex mixtures 
obtained from whole organisms, cell lines, tissues, 
or bodily fluids. The most widely used method for 
resolution and visualization of proteins for mass 
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spectrometry is 2-DE. Chromatographic approaches 
could also be adopted for better separation of pro-
teins of interest.

Protein electrophoresis has remained the most 
effective way to resolve a complex mixture of pro-
teins since 1970s. For the case of protein profiling, 
2-DE is more applicable because complex protein 
mixtures such as crude cell lysates can be resolved 
better, not only according to molecular mass but 
also to isoelectric properties of proteins [121]. Two 
distinct characteristics of proteins facilitate resolu-
tion of protein mixtures by their net charge in the 
first dimension and by their molecular mass in the 
second dimension. In protein profiling, protein 
expressions of 2 given samples (diseased vs. healthy 
for instance) can be compared, both qualitatively 
and quantitatively. Differences in protein quantities 
are indicated by the appearance or disappearance 
of spots in 2-DE gel and quantitative information 
about protein levels can be provided by the assess-
ment of the spot intensity in the gel. Resolution and 
visualization of up to ten thousand proteins in a 
single sample via 2-DE is a powerful approach for 
the analysis of samples from a variety of sources, 
including cell lines and body fluids. Although there 
are some drawbacks to this methodology, such as 
poor reproducibility, labor intensiveness, a slow and 
tedious procedure that can’t be easily automated, 
and dependence of the results on the expertise of 
the analyst, it is still an essential component of pro-
teomics for protein profiling. 

Protein microarray
Protein microarray is a technique used in most 

biomedical applications for determining the pres-
ence and quantity of proteins in a biological system. 
It has great potential to increase the throughput of 
proteomic research. Although analytical microarrays, 
functional microarrays, and reverse phase microar-
rays are 3 types of protein microarrays currently used 
for studying the biochemical activity of proteins, ana-
lytical microarrays are typically used to profile a com-
plex mixture of proteins, in terms of measuring bind-
ing affinities, specificities, and protein expression 
levels of the proteins in the mixture [122]. It is a very 
powerful technique that can be used to monitor dif-
ferential expression of proteins for clinical diagnosis, 
prediction of prognosis, and identification of targets 
for therapy. In general, first a library of antibodies, 
aptamers, or affibodies is arrayed on a glass micro-
scope slide, and then the prepared array is probed 
with the protein solution. To date, protein profiling 

using analytical microarray has been implemented 
successfully for the assessment of responses to envi-
ronmental stress and differences between healthy 
and diseased tissues [123]. When positive and nega-
tive controls are used carefully there aren’t many 
drawbacks to this methodology, yet microarray stud-
ies are limited due to their cost.

High-performance liquid chromatography laser-
induced fluorescence
High-performance liquid chromatography laser-

induced fluorescence (HPLC-LIF) is another tech-
nique used for the detection of differentially 
expressed proteins by simultaneously recording 
spectra and chromatograms of physiological sam-
ples in a short time [124]. Though to the best of our 
knowledge this technique has not been utilized in 
hematologic malignancies, it is useful in the early 
diagnosis of certain types of cancer, including cervi-
cal cancer and oral cancer [119,120,124-126]. 

The above-mentioned technique is composed of 
the combination of laser-induced fluorescence, an 
ultra-sensitive optical method, and high-performance 
liquid chromatography. The principle of HPLC-LIF is 
based on recording the chromatographic peaks and 
corresponding fluorescence spectra at the same 
time. This makes it possible to differentiate diseased 
and healthy, treated and untreated, and/or experi-
mental and control sample protein profiles, even in 
femto/subfemtomole quantities [126]. Even though 
use of the technique is restricted, as compared to the 
others, there is no doubt that it is a very powerful and 
sensitive method [125]. 

Drawbacks of protein profiling
Although analysis of important proteins in bio-

logical systems is important, there are several draw-
backs of protein profiling due to techniques like 
mass spectrometry in combination with separation 
tools such as 2-DE [114,127,128]. First of all, these 
techniques are labor intensive and time consuming 
for the analysis of proteins. Improved robotics may 
increase the frequency with which these techniques 
are utilized, as well as their efficiency. Secondly, 
2-DE lacks the sensitivity to detect low quantities of 
proteins and therefore requires a significant quantity 
of biological material [129,130]. Additionally, most of 
the time high-quantity proteins can mask low-quan-
tity proteins that may be important biomarkers in 
hematologic malignancies. To overcome this type of 
drawback immunodepletion and multidimensional 
chromatography may be a reasonable solution [131]. 
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Through sample purification, low-quantity proteins 
may be lost due to interactions with other high-
quantity proteins; therefore, all steps of purification 
must be analyzed. Sample collection, processing, 
and, ultimately, sample measurement are also very 
crucial for the utilization of protein profiling in many 
clinical settings. Consistency, use of strict protocols, 
running replicates for each sample, and increasing 

the sample count can be a general solution to elimi-
nating such drawbacks. Other obstacles to the use 
of techniques in protein profiling can be ascribed to 
poor resolution of spots after 2-DE, non-identifica-
tion of mass spectrometry peaks, and the limitations 
of databanks for unknown proteins. Protein microar-
ray [132,133] and HPLC-LIF, alternative techniques 
for protein profiling, have fewer drawbacks when 
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Table 2. Advantages and disadvantages of protein profiling techniques

Different Techniques Advantages Disadvantages

2D Gel Electrophoresis • High resolution • Slow

 • Quantitative • Lacks automation

 • Qualitative • Poor reproducibility

 • Sample variety (cell lines and body fluids) • Labor intensive

 • Many protein analyses in a single run • Tedious procedure

  • Requires a significant quantity of sample

  • Lacks sensitivity for low-quantity proteins

SELDI-TOF MS • Fast • Limited to low-MW proteins

 • Good for diagnostic patterns of disease • Preferably used in serum samples

 • Limited resolution

 • Accuracy of quantification is restricted

MALDI-TOF MS •Fast • Limited databank information

 • Buffer/salt tolerance • Limited resolution of peaks

 • Off-line • Low dynamic range of   detection

 • Mass accuracy

 • Mixture of samples okay

 • Small and large polypeptide analysis 

Protein Microarrays • Highly informative • Difficult to achieve general binding conditions

 • Qualitative • Time consuming

 • Quantitative • Costly procedure

 • Powerful technique

 • Target specific

 • Successful in improving sensitivity and specificity 

LC-MS/MS • Straightforward protein identification • Slow, but can be automated

 • High sensitivity • Slow, but can be automated it is used two 
times

 • Good resolution • Analysis of a limited number of samples

 • Characterizes post-translational modifications 

HPLC-LIF • Powerful • Low reproducibility

 • Time efficient

 • Sensitive

 • Fast

 • High detection capacity

 • Good for use in early diagnosis



compared with the aforementioned methods, but 
they are preferred less because they require well-
trained experts. The advantages and disadvantages 
of the techniques used for protein profiling are sum-
marized in Table 2. 

Conclusion and future perspectives
Discovery of leukemia-associated protein pat-

terns is an excellent tool for aiding diagnosis, fol-
low-up treatment, and predicting clinical outcomes. 
In the future, the determination of individual protein 
profiles in hematological malignancies and other 
types of cancers, together with the investigation of 
genomic profiles is expected to contribute to the 
development of tailor-made treatments. Protein 
profiling strategies that identify the pattern of chang-
es in protein levels are therefore not only promising 
for hematological diseases, but also for other types 
of cancers, and may lead to the development of 
novel tools and interventions of unprecedented 
diagnostic and/or prognostic value.
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