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The 90◦ waveguide bend is an important component of optical circuit applications. We
propose several models for such a bend, some of them assisted by a two-dimensional
photonic crystal with a bandgap in the desired range of operating frequencies. We show
that a photonic crystal assisted bend reduces bending loss by several orders of magnitude
for transverse electric modes.
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1. Introduction

Photonic crystal waveguide components are expected to play a significant role in

photonic integrated circuit design because of the unique manner in which they

confine electromagnetic radiation within various regions of space, dictated by deli-

berate design. Hence, it’s possible to guide light along photonic crystal fibers,1

line defect waveguides (LDWG),2,3 or design high quality optical microresonators.4

Extensive research has been carried out in designing and manufacturing LDWGs

with remarkable customizable properties which makes them useful in a great variety

of optical components, such as couplers5 and add-drop filters6 among others.

One serious shortcoming of LDWGs is their large sensitivity to imperfections

introduced during manufacturing, which leads to high losses and limits their use-

fulness to guide light over long distances.7,8 Furthermore, the high dispersion of 2D

LDWGs also limits the bandwidth over which they can be used. To overcome these

difficulties, Tomiyama et al.
9 proposed using a 1D slab waveguide (1DWG) which

is not periodic in the direction of propagation, and hence is much less lossy and

has a much flatter dispersion. Light would indeed be guided with much less loss in

such a waveguide due to lesser manufacturing imperfections as a result of its much

simpler geometry, and the robustness of the 1D bandgaps to random manufactur-

ing errors.10 However, in an optical circuit, one would eventually want to bend the

light, usually through a 90◦ angle due to the confined geometry. To bend light in

such a waveguide in a trivial way would lead to unacceptably high bending losses.
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Bending light through sharp corners is another important forte of photonic crystals,

and it is the purpose of this present work to propose an effective way of bending

the light through 90◦ turns with little loss. To accomplish this one would want to

switch to a 2D photonic crystal LDWG, bend the light through the required angle,

and then switch back to the 1D slab waveguide again, possibly to travel for another

long straight segment. For a 90◦ turn, the most convenient geometry is that of a

square lattice.

There has been several optimized designs for employing a hexagonal lattice for

60◦ bends,11,12 and for 120◦ bends.3 The guidance in these studies is photonic

bandgap guidance as the index of refraction of the guiding region is lower than that

of the cladding region. Ntakis et al.
13 offer various bend designs to minimize loss

around the bend, by deforming the geometry of the bend in various ways.

In this work we use a 2D structure to demonstrate the feasibility of such a design

with TE modes. Since manufacturing silicon–silica binary photonic crystals is quite

commonplace and mature,14,15 we report results of calculations for such structures,

although clearly the approach is quite general and can be used for similar structures

with lossless components with a sufficiently high dielectric contrast.

We tried several corner elements using a square photonic crystal LDWG to

bend the light by removing one and two lines from the square lattice, with silicon

rods in a silica background and the inverse structure with silica rods in a silicon

background. When two rows of rods are removed from the 2D photonic crystal to

form a LDWG, the propagation becomes multimodal inside the LDWG at the gap

frequencies, leading to poor transmission because of increased scattering due to

mode mismatch at the interface. Therefore, we report here results for the LDWG

corner element with only one row removed, which yields the lowest overall bending

loss.

In what follows, we denote dimensionless normalized quantities with a tilde

( ˜ ). Normalized lengths will be written as x̃ ≡ 2πx/a, normalized frequencies as

ω̃ ≡ ωa/2πc, and normalized wave vectors as β̃ ≡ βa/2π, where a is the lattice

constant of the 1DWG.

2. Corner Element

In our proposed structure, shown in Fig. 1, light is bent in a 2D square lattice

LDWG, formed by removing an L-shaped single row of rods from a square lattice

of Si rods embedded in a silica background. Since the 2D photonic crystal cornering

element would be most effective, i.e., yield the least bending loss if it has a large

photonic bandgap at the range of operating frequencies, we look for the 2D lattice

with the largest gap.

For the given index contrast, this structure has a respectable 20% photonic

bandgap for TE modes (Ez 6= 0) centered at ω̃ = 0.2667 when the Si fill ratio is

0.179, or when the radius of the silicon rods, R̃ = 1.5, as shown in Fig. 2. Our

proposed system to guide light, then, has three essential elements:
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Fig. 1. The corner geometry (inset) and the geometrical details of the interface between the
1DWG and the LDWG.
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Fig. 2. The relative gap width versus the fill ratio of Si for a 2D photonic crystal made of circular
Si rods in silica (filled circles), square Si rods in silica (filled squares), and silica circular rods in
Si (blank circles). The maximum bandgap for circular Si rods occurs at the Si fill ratio of 0.179,
which corresponds to R̃ = 1.5.

(I) Single mode guiding at a particular frequency window over relatively long

distances.

(II) Coupling into a 2D photonic crystal LDWG with a single guided mode.

(III) Bending light through 90◦ in a confined geometry, which requires that the 2D

photonic crystal have a large bandgap at the operating frequency.
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2.1. 2D square lattice

Since the radiation is kept from leaking out at the corner because of the bandgap

of the 2D photonic crystal, its essential that the 2D photonic crystal have a wide

bandgap at the operating frequency. Thus, we start with selecting the 2D photonic

crystal first, and then choose the LDWG and the 1DWG elements that minimize

the bending loss. To model the 2D square lattice, we use the plane wave expansion

method which is quite satisfactory for 2D problems. For TE modes (Ex = Ey = 0,

Ez 6= 0), the solutions are of the form:

Ez(x, y, t) = E0z(x, y)e
i(k·r−ωt) , (1)

where ω is the frequency, and k is the wave vector in the first Brillouin zone (BZ).

This yields the generalized eigenvalue equation

|k+G|2Ez(G) =
ω2

c2

∑

G′

ε(G−G′)Ez(G
′) (2)

where

G =
2π

a
nxx̂+

2π

a
nyŷ , nx, ny = 0,±1,±2, . . .

is a reciprocal lattice vector, and c is the speed of light. This can be converted into

an ordinary eigenvalue problem of the form Av = (ω2/c2)v with

AGG′ = |k+G|[ε−1]GG′ |k+G′| , vG = |k+G|Ez(G) , (3)

where ε−1 is the inverse of the matrix εGG′ = ε(G − G′). For circular rods with

radius R,

ε(G) = εbδG0 + (εa − εb)
πR2

a2
2J1(GR)

GR
, (4)

where εa is the dielectric constant of the circular rods, εb that of the background,

and J1(x) is the Bessel function of order 1. For square rods of side 2R,

ε(G) = εbδG0 + (εa − εb)
4R2

a2
sin(GxR)

GxR

sin(GyR)

GyR
. (5)

The largest bandgap we find is around 20%, with circular Si rods in a silica back-

ground at a Si filling ratio of f = 0.17 and radius R̃ = 1.5. The band structure

with these parameters is displayed in Fig. 3(a). With square Si rods in a silica

background, there is a respectable 19% bandgap. The bandgap for circular silica

rods in Si is much smaller, and there were no gaps with square silica rods in Si.

Now that we know what the optimum 2D photonic crystal is for the given dielectric

materials, we can now decide what kind of a waveguide can be formed out of this

photonic crystal that will best match the 1DWG.
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Fig. 3. Band structures for the three components of the bend. (a) The band structure for the perfect 2D photonic
Fig. 3. Band structures for the three components of the bend. (a) The band structure for the
perfect 2D photonic crystal with the path traversed in the BZ shown in the inset. (b) The localized
propagation modes of a line defect waveguide with a core for a 2D photonic crystal made of silicon
rods of radius R̃ = 1.5, immersed in a silica background. The line defect is formed by removing
one row of dielectric rods and by extending the core of the 1DWG. (c) The propagation modes for
the 1DWG made of silicon slabs of thickness d̃Si = 1.125, and with dielectric constant of εa = 13
immersed in a silica background with εb = 2.25. The defect is formed by removing one row of
dielectric slabs and by placing a dielectric slab of thickness d̃ = 2. The finely spaced gray bands are
those of unguided radiation modes. The centergap frequency ω̃ = 0.2667 and the corresponding
propagation constant βa/2π = 0.78 are indicated by the cross-hair. The gray bands correspond
to nonlocalized radiation modes. The solid curves are those of localized propagation modes. All
bands are for TE modes.

2.2. The LDWG

The LDWG is formed by removing one row of Si rods and by placing a Si slab

of normalized thickness d̃ = 2, as shown in Fig. 1. The LDWG is modeled using

the supercell method with a supercell size of Ax × Ay, where Ax = a and Ay =

(2M +1)a. We take M = 30 so there are 61 unit cells contained in one supercell to

ensure that the guided mode is well contained within the supercell. For TE modes

(Ex = Ey = 0, Ez 6= 0), propagating along the x-axis with propagation vector

β = βx̂, the solutions are of the form

Ez(x, y, t) = E0z(x, y)e
i(βx−ωt) . (6)

This yields the generalized eigenvalue equation

|β +G|2Ez(G) =
ω2

c2

∑

G′

ε(G−G′)Ez(G
′) , (7)

where

G =
2π

a
nxx̂+

2π

(2M + 1)a
nyŷ , nx, ny = 0, ±1,±2, . . . .

This can be converted into an ordinary eigenvalue problem of the form Av =

(ω2/c2)v with

AGG′ = |β +G|[ε−1]GG′ |β +G′| , vG = |β +G|Ez(G) , (8)

where ε−1 is the inverse of the matrix εGG′ = ε(G−G′), with
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ε(G) = εbδG0 + (εa − εb)
d

(2M + 1)a

sin(Gyd/2)

(Gyd/2)

+ (εa − εb)
πR2

(2M + 1)a2
2J1(GR)

GR

[
M∑

j=1

2 cos(Gyaj)

]
, (9)

where the second term is due to the core region at the center of the waveguide, and

the term in square brackets is the structure factor for the cylinders.

The dispersion relation is displayed in Fig. 3(b). Since the imaginary part of the

wave vector is maximum near the center of the bandgap, the operating frequency

is expected to be around the centergap value of ω̃ = 0.2667. However, since the

incident wave is along the X-direction of the square lattice BZ, and confining light

in this direction would require a large imaginary part for the wave vector at the

X-point, an operating frequency near the center of the gap at the X-point yields a

bending loss that is appreciably less than that at the centergap frequency.

2.3. 1DWG

The band structure of the 1DWG portion is again modeled by assuming a wave of

the form

Ez(x, y, t) = E0z(y)e
i(βx−ωt) (10)

for TE modes (Ex = Ey = 0, Ez 6= 0) propagating in the x-direction with

propagation vector β = βx̂. Inserting this into Maxwell’s equations, and using

a supercell of size 2M + 1 along the y-axis, one obtains the generalized eigenvalue

equation

(β2 +G2)Ez(G) =
ω2

c2

∑

G′

ε(G−G′)Ez(G
′) , (11)

where

G =
2π

(2M + 1)a
i , i = 0,±1,±2, . . . .

This is again converted into an ordinary eigenvalue problem of the form Av =

(ω2/c2)v with

AGG′ =
√
β2 +G2[ε−1]GG′

√
β2 +G′2 , vG =

√
β2 +G2Ez(G) (12)

ε−1 is the inverse of the matrix εGG′ = ε(G−G′), with

ε(G) = εbδG0 + (εa − εb)
d

(2M + 1)a

sin(Gd/2)

(Gd/2)

+ (εa − εb)
da

(2M + 1)a

sin(Gda/2)

(Gda/2)

[
M∑

j=1

2 cos(Gaj)

]
, (13)
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where the second term is due to the core region at the center of the waveguide, and

the term in square brackets is the structure factor for the supercell.

The dispersion relation ω versus β is displayed in Fig. 3(c). The method and

some of the pitfalls have been discussed elsewhere.16 We obtain satisfactory con-

vergence for about 100 plane waves per unit cell for the LDWG and for 25 plane

waves per unit cell for the 1DWG. This requires the diagonalization of matrices of

order 6000 for the LDWG, and 1500 for the 1DWG. We used the routines in Intel

Math Kernel Library (MKL) and the AMD Core Math Library (ACML), both of

which are freely downloadable for noncommercial use.

3. Mode Matching

The band structures in Fig. 3 show that single mode operation in both the 1DWG

and the LDWG is possible for frequencies in the bandgap of the 2D photonic crystal.

However, since light passes from the 1DWG to the corner element and then, after

turning, reenters the 1DWG region, one wants minimum reflection/diffraction at

the entry and exit interfaces. To that end, two conditions are critically important:

(I) The mode profiles of the 1DWG and the LDWG must be matched.

(II) The dispersion relation ω(β) in the 1DWG and the LDWG must be matched.

These require careful tuning of the geometrical parameters d and R. Further-

more, the spacing between the 1DWG and the 2D corner element must be carefully

adjusted to ensure minimum reflection at the entry and exit interfaces. To quantify

the degree to which the mode profiles of the 1DWG and the LDWG match, we

define the relative mode profile mismatch between the two media as

δ(x) ≡

√√√√√
∫ Ay/2

−Ay/2
dy[E1z(y)− E2z(x, y)]2

∫ Ay/2

−Ay/2
dy[E1z(y)]2

,

where E1z(y) is the mode profile of the 1DWG and E2z(x0, y) is the mode profile of

the LDWG at fixed x0. We search for a value of x that minimizes δ(x). Because of

the periodicity in the x-direction, x can assume values in the interval (−a/2, a/2).

A plot of δ(x) is shown in Fig. 4. The value of δ(x) is minimum at the point

x = −a/2, and a plot of the two modes is shown in Fig. 5. So it seems that setting

the separation between the end of the 1DWG and the center of the first column

of rods in the 2DWG, dsep to a/2 would yield the best match, but we can do even

better. We made FDTD calculations for various separations and found that the

maximum transmission is obtained by setting dsep = 0.9a.

Besides matching the mode profiles, one would also want to match the dispersion

relation ω(β) in the two media. Looking at Fig. 6, we see that for frequencies within

the bandgap, the values of β differ by only a small amount at the same frequency,

while the values of the group velocity vg = dβ/dω differ by about 2% for the two

media at the centergap frequency. This is a fairly good match although one could,
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Fig. 4. The localized propagation mode Ez(y) (dashed curve), of a 1D photonic crystal waveguide
made of silicon slabs of thickness d̃Si = 1.125, and with dielectric constant of εa = 13 immersed
in a silica background with εb = 2.25, compared with Ez(−a/2, y) (solid curve), the cross-section
at x = −a/2, of the mode of the 2D LDWG at the centergap frequency ω̃ = 0.2667.
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when the spacing between the 1D waveguide and the center of the rods in the 2D structure is
≈ 0.9a.



June 28, 2011 14:27 WSPC/140-IJMPB S0217979211100072

Photonic Crystal Assisted 90◦ Waveguide Bend 2175

(a)

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

a
/2

 1DWG 
 LDWG 

(b)

 0.25

 0.26

 0.27

 0.28

 0.29

 0.3

 0.31

 0.32

 0.33

d
 /
 d

(c
)

 1DWG 
 LDWG 

(c)

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.22  0.24  0.26  0.28  0.3  0.32

d
2

 /
 d

(c
)2

a/2 c

 1DWG 
 LDWG 

˜Fig. 6. (a) The normalized propagation constant β̃ versus the normalized frequency ω̃, (b) the
normalized group velocity ṽg = vg/c = dω̃/dβ̃ versus ω̃, and (c) d2ω̃/dβ̃2 versus ω̃ plots for the
1DWG and LDWG. The dotted vertical lines mark the edges of the 2D photonic band gap. The
β values for the LDWG are the unfolded values from Fig. 3(b).
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in principle, obtain a better match by further fine tuning at the immediate vicinity

of the operating frequency inside the gap.

The second derivative d2ω/dβ2 is related to waveguide dispersion. Although not

as significant the group velocity as far as mode matching is concerned, the values

for the two media are reasonably close for the second half of the bandgap. Despite

the fact that the mismatch in d2ω/dβ2 in the lower half of the bandgap is bigger,

due to other factors discussed above, we obtain lower overall bending loss in this

frequency regime. A percentage comparison is not too meaningful since the values

are close to zero at the centergap frequency.

3.1. FDTD simulation results

The band structures calculated so far can be used to gain insight into the problem

and decide which structures hold promise, but the final step has to be the actual

time domain simulation to prove, without a doubt, that the corner design actually

works. Specifically, we would like to know exactly how much power makes it around

the bend, the rest being either reflected or radiated away at the corner element. For

that we need to compute the fluxes through a line segment with the width of the

waveguide, once before the bend and once after the bend. The FDTD simulations

have been performed using MEEP,17 which allows great flexibility in using custom

sources.

Since we are primarily interested in TE modes for which Ez 6= 0, as the source,

we use a current source of the form

J(r, t) = δ(x − xs)E1z(y, ω) exp

[
−(t− t0)

2

2σ2

]
exp(−iωt)ẑ , (14)

which is a monochromatic source of frequency ω, located at x = xs and enveloped

in a Gaussian packet with width ∆ω = 1/σ in the frequency domain. E1z(y, ω) is

the guided mode of the 1DWG at the center frequency ω. Its Fourier coefficients

are obtained by solving the eigenproblem Eq. (11), and its inverse FT is calculated

as either a sine or a cosine series depending on whether the source is even or odd.

The current source must be in the z-direction in order to excite TE modes.

It may appear tempting to instead use a point source for even modes and two

antisymmetric point sources for odd modes, for the sake of simplicity. However,

depending on the frequency, one would then have to use an unusually long straight

segment for the 1DWG before the bend, in order to have all of the unguided modes

radiate out of the 1DWG. Our mode source excites only one mode, just itself, so the

initial straight segment can be made very short, thereby significantly reducing the

simulation time, in addition to yielding much more accurate results for transmission.

The transmission of the bend then can be defined as the ratio of the total output

flux Po measured after the bend, to the total input flux Pi for the corresponding

straight WG, which is given by T = −10 log10(Po/Pi).

Since the source is Gaussian, in principle it would never “end” and the simulation

would take forever. For the flux calculations, we ran our simulations until well after
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(a)

(b)

(c)

Fig. 7. FDTD simulations of (a) single silica slab waveguide bend, and the photonic crystal

assisted bend (b) at the frequency of ω̃ = 0.23889 which is below the bandgap, and (c) at the
centergap frequency of ω̃ = 0.2667. The bending radius of the core centerline is twice the width
of the core for each case. The wave is a Gaussian with width ∆ω̃ = 0.1. In each case, the 1D
waveguide is excited with a current source that matches the guided mode at that frequency.

the fields have decayed to 1/10,000th of their peak values at the end of the waveguide

where the flux-regions have been placed. Another important parameter for FDTD

simulations is the spatial resolution, which we take to be 30 points per unit cell a of

the 1DWG. Changing the resolution to 40 points and 20 points per lattice constant

had negligible effect on our results.

In Fig. 7(a), we present a snapshot from our simulations of a single Si core

in silica, without photonic crystal assistance. As would be expected, there is large

leakage at the corner. Figure 7(b) is a snapshot with photonic crystal assistance, but

when the frequency ω̃ = 0.23889 is outside the band gap 0.240426 < ω̃ < 0.293049



June 28, 2011 14:27 WSPC/140-IJMPB S0217979211100072
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Fig. 8. Transmission through the photonic crystal assisted 90◦ bend as a function of frequency
for Rbend = d (filled squares), and for Rbend = 2d (filled circles), where d is the width of the
core region. Also shown are the transmission curves for a slab waveguide without photonic crystal
assistance for Rbend = d (blank squares), and for Rbend = 2d (blank circles). The transmission of
the photonic crystal assisted bend is largest for frequencies inside the 2D photonic crystal bandgap
which lies in the range 0.240426 < ω̃ < 0.293049, shown as a lightly shaded band. Further, within
the gap region, transmission is greatest near ω̃ ≈ 0.25, close to the center frequency of the X-gap.
At this frequency, the bending loss for Rbend = 2d is 0.0004 which corresponds to a 1000-fold
reduction compared to that of single slab waveguide with the same bending radius. The minimum
in bending loss occurs at a frequency close to the center of the X-gap rather than the center of the
total gap because the incident wave is in the X-direction inside the 2D LDWG and the imaginary
part of its wave vector in the X-direction is largest at the centergap frequency of the X-point.

of the 2D square lattice. The radiation penetrates visibly into the 2D structure and

there is serious leakage. By contrast, Fig. 7(c) is a snapshot from the simulation at

the centergap frequency ω̃ = 0.2667. This time, there is no visible penetration into

the 2D corner element, and the transmission is nearly lossless.

Figure 8 shows the transmission through the photonic crystal assisted 90◦ bend

as a function of frequency, for Rbend = d (blank squares), and for Rbend = 2d (blank

circles), where d is the width of the core region. Also shown are the transmission

curves for a slab WG without photonic crystal assistance for Rbend = d (filled

squares) and for Rbend = 2d (filled circles). The transmission of the photonic crystal

assisted bend is largest for frequencies inside the 2D photonic crystal bandgap which

lies in the range 0.240426 < ω̃ < 0.293049.
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(a) (b) (c) (d) (e) (f)

Fig. 9. Some of the alternate corner structures also considered as corner elements. (a) Silicon
square rods arranged in square lattice, in silica. (b) Silicon circular rods arranged in checkerboard
lattice, in silica. (c)–(f) Silica circular rods arranged in square lattice in silicon, with various
bending geometries.

4. Alternate Structures

We tried several other corner geometries some of which are displayed in Fig. 9.

The most successful was the silicon square rod in silica in Fig. 9(a), with the

periodicity of the square lattice. The transmission as a function of ω was prac-

tically identical to that of circular rods, displayed in Fig. 8. This result leads

us to believe that the corner geometry would be quite robust to manufactur-

ing errors as the transmission is quite insensitive to a change in shape of the

rods.

Another interesting corner element can be constructed by turning the square

lattice by 45◦, yielding the “checkerboard lattice.” The transmission for this corner

element, displayed in Fig. 10, was not as high as the similar structure in the square

lattice. This can be attributed largely to the more complicated interface between

the 1DWG and the LDWG of the corner element, which makes it difficult to match

the mode profile, resulting in increased scattering at the entry and exit interfaces

of the corner element.

The structures in Figs. 9(c)–9(f), with silica rods in a silicon background, did

not yield high transmission. This was mainly due to the fact that the propagation

in the 2D segment is single mode only over a narrow range of frequencies opened

up by a band anticrossing, shown in Fig. 11. In addition, the propagation inside the

1DWG is also multimode at the bandgap frequencies. The result is high scattering

losses at the interfaces, leading to poor transmission thus making these structures

unsuitable for consideration as a corner element.

One might be inclined to think that increasing the length of the diagonal

element, as in Fig. 9(f) might increase transmission, by making the bend more

“smooth,” but quite to the contrary, the transmission is actually reduced, because

the diagonal portion can be considered to be a different waveguide with a dif-

ferent waveguide width, with its own dispersion relation and its own mode pro-

file. Thus it introduces yet another pair of interfaces between the modes in the

X-direction and those in the M -direction for the light to scatter from. Further-

more, it supports an even mode at the frequency of interest, making the coupling

between the two waveguide segments inside the 2D photonic crystal particularly

weak.



June 28, 2011 14:27 WSPC/140-IJMPB S0217979211100072
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Fig. 10. Real-time simulation (top) and the transmission through the “checkerboard” photonic
crystal assisted 90◦ bend as a function of frequency Rbend = d (blank squares), and for Rbend = 2d
(blank circles), where d is the width of the core region. Also shown are the transmission curves for
a slab WG without photonic crystal assistance for Rbend = d (filled squares) and for Rbend = 2d
(filled circles). The transmission of the photonic crystal assisted bend is largest for frequencies
inside the 2D photonic crystal bandgap which lies in the range 0.170006 < ω̃ < 0.207217.
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Fig. 11. Band structure for the 1DWG (left), and the 2D LDWG (right) for the structure shown
in Fig. 9(c), formed by removing a row of circular silica rods in a square lattice, with R̃rod = 3. The
band anticrossing for the LDWG is indicated by the red circle. The green line and the green dot
mark the operating frequency ω̃ = 0.232 and the wave vector with an unfolded value of β̃ = 0.54.
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5. Conclusion

For TE modes in a 2D setting, we have shown that a low-loss hybrid 1D–2D wave-

guiding system, employing a square lattice for the corner element and a 1D PhC

waveguide for the straight sections, is realizable for consideration in photonic in-

tegrated circuits. The bending loss can be as little as ∼ 10−4. Among the various

geometries considered, we found that the structure consisting of circular silicon rods

embedded in a silica background yielded the highest transmission.

We considered only varying the spacing between the 1DWG and the LDWG

to optimize transmission, but a further enhancement to transmission of the low-

loss corner element proposed here could be a more sophisticated adiabatic transition

from the 1DWG to the LDWG of the corner element by using a “morphing” of sorts

as discussed by Mohtashami et al.19 This could reduce the reflection/scattering at

the interfaces, which is the major loss mechanism in our structure.

Another enhancement could be the modification of the geometry around the

bending core, another source of loss for small bending radii, by slightly displacing

or resizing some of the rods of the 2D lattice.

A further enhancement is the reduction of the size of the photonic crystal

cladding sandwiching the core in the 1DWG. We have actually repeated our cal-

culations with five slabs on either side of the core element instead of ten presented

in this work, with an accompanying reduction in the 2D corner element, and found

that transmission was only slightly reduced. This is to be expected, since in the

1DWG and the LDWG the localized propagating modes are confined to within ∼ 3

lattice constants on each side of the core element.

Finally, it remains to be seen whether a 3D version of this approach, with a slice

of appropriate thickness on top of a substrate will similarly yield low bending loss.
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