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Abstract
The problem of N vortex dynamics in annular domain is considered. The region
is canonical one and allows by conformal mapping apply results to an arbitrary
position of two cylinders in the plane. Using previous solution, obtained by the
authors in terms of the q-elementary functions [1] we now concentrate on the
Hamiltonian formulation of the problem. The integrability of the problem of
two vortices in the annular domain according to Liouville has been proved by
using canonical transformations. Different motion characteristics depending
on initial conditions are studied.

PACS numbers: 47.32.C−, 02.30.Gp, 41.20.Cv, 02.30.Ik

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Point vortex motion has been an interesting topic for hydrodynamicists for over a century.
The fact that equations of motion may be derived from a Hamiltonian makes the problem
more interesting. This was already known to Helmholtz [2] and Kirchhoff [3]. The questions
of integrability and non-integrability naturally arises when one considers the Hamiltonian
systems. We know that the problem of three vortices in the plane and special symmetric
arrangements of vortices are integrable [4]. This is related with existence of integrals of
motion in the plane: two translations and one rotation. However, the three vortex problem
becomes non-integrable in the bounded domain due to the lack of sufficient number of integrals
of motion, even for special symmetric domains as the disk and the annular domain. Moreover,
by the method of images, the boundary can be replaced by the couple of vortex images in the
first case, and by infinite set of images in the second one. This also requires additional number
of integrals of motion.

The previous study of the authors [1] deals with the problem of finding complex velocity
potential arising from the arbitrary number of vortices placed in an annular region. The
problem was solved by using the method of images for the annular domain, first discussed by
Poincaré [5], and exactly formulated in terms of q-calculus [1]. Solution in terms of elliptic
functions for one vortex problem was given by Johnson and McDonald [6] and extension to
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multiply connected domains by Crowdy and Marshall (see [7] and [8]). If we compare these
solutions with q-elementary functions approach, then the latter shows very fast convergence
and is suitable for numerical calculations.

The problem of two vortices inside and outside of circular domains were studied in [9].
In this paper we solve the two-vortex problem in the annular domain. First we briefly remind
the main steps of constructing solution in terms of q-elementary functions, for the one vortex
problem, and for the special N-vortex polygon problem. In particular, we emphasize the
divergency problem for infinite sums of vortex images arising in this approach. Then we study
the Hamiltonian structure and the integrability for N = 2 vortices in the annular domain. In
this paper, the problem is exactly solved by canonical transformations and different motion
characteristics of vortices depending on initial conditions are studied.

2. N vortices in the annular domain

We briefly repeat main steps constructing the solution [1] for the convenience of the reader.
In derivation, here we will emphasize especially the divergency problem for infinite sum of
vortex images, which we did not discuss sufficiently in [1] .

Before we discuss the details of vortices in concentric annular domains, we shall point
out that the case of eccentric circles can be reduced to the present case of concentric circles
by a linear transformation. Let us consider two eccentric cylinders with the larger circle
containing the smaller one in its interior. Without loss of generality assume that the radius of
the larger circle is unity and that its center is at the origin. The underlying idea behind the
linear fractional transformation is to find a point, a, in the interior of the small disc such that
the symmetric point of a with respect to both cylinders is the same. Hence, the mapping

k
z − a

z − 1/a
,

where k is a complex constant, will map the unique point a to the origin, its symmetric point to
infinity and eccentric circles to concentric circles. The transformation is unique except for a
multiplicative constant, but the ratio of radii of the transformed circles is always unique. This
mapping was given as an exercise in the classical monographs of Ahlfors [10] and Henrici
[11].

2.1. Complex velocity and vortex images

The problem of N point vortices with strengths κ1, . . . , κN at positions z1, . . . , zN , respectively,
in the annular domain D : {r1 � |z| � r2} is considered. The region is bounded by two
concentric circles: C1 : zz̄ = r2

1 and C2 : zz̄ = r2
2 . The complex velocity is given by the

Laurent series

V̄ (z) =
N∑

k=1

iκk

z − zk

+
∞∑

n=0

anz
n +

∞∑
n=0

bn+1

zn+1
(1)

which has to satisfy the boundary conditions at both cylinders,

[z V̄ (z) + z̄ V (z̄)]|Ck
= 0, k = 1, 2. (2)

We obtain the general solution in the form [1]

V̄ (z) =
N∑

k=1

iκk

1

z − zk

+
iκ

z

N∑
k=1

iκk

z(q − 1)

[
Lnq

(
1 − z

zk

)
− Lnq

(
1 − zz̄k

r2
1

)

+ Lnq

(
1 − r2

2

zz̄k

)
− Lnq

(
1 − zk

z

)]
, (3)
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where

Lnq(1 + z) ≡ (q − 1)

∞∑
n=1

(−1)n−1zn

qn − 1
= (q − 1)

∞∑
n=1

z

qn + z
, (4)

q ≡ r2
2 /r2

1 > 1 , 0 < |z| < q. Here b1 = iκ is an arbitrary parameter, determining point
vortex at the origin with strength κ which cannot be fixed by the boundary conditions. To fix
arbitrariness of this solution, we have to impose an additional condition. We can chose it in
the form ∮

C1

V̄ (z) dz = 0. (5)

This condition can be justified by correctness of the limiting procedure r1 → 0, r2 → ∞ to
the planar problem, so that no singularity at the origin should arise (see [12, 13]).

Expanding the q-logarithmic functions we have

V̄ (z) =
N∑

k=1

iκk

z − zk

+
iκ

z
+

N∑
k=1

∞∑
n=1

iκk

z − zkqn
−

N∑
k=1

∞∑
n=1

iκk

z − r2
1

z̄k
qn

+
N∑

k=1

iκk

∞∑
n=1

⎡
⎣ − r2

2
z̄k

q−n

z(z − r2
2

z̄k
q−n)

⎤
⎦ −

N∑
k=1

iκk

∞∑
n=1

[ −zkq
−n

z(z − zkq−n)

]
. (6)

We estimate contribution of every term in V̄ (z) to circulation (5) around C1. In the first sum
all vortices are outside of C1. The same is true for the second and the third sums, with images
laying outside of C1. For the fourth sum by the residues theorem we have

N∑
k=1

iκk

∞∑
n=1

− r2
2

z̄k

q−n

∮
C1

dz

z
(
z − r2

2
z̄k

q−n
) = 0 (7)

as well as for the last sum
N∑

k=1

iκk

∞∑
n=1

zkq
−n

∮
C1

dz

z(z − zkq−n)
= 0. (8)

It implies that in expressions (4) and (7) we can set κ = 0. However, if in the last two sums
we expand terms representing vortex images by simple fractions as

V̄ (z) =
N∑

k=1

iκk

z − zk

+
iκ

z
+

N∑
k=1

∞∑
n=1

iκk

z − zkqn
−

N∑
k=1

∞∑
n=1

iκk

z − qn r2
1

z̄k

+
N∑

k=1

∞∑
n=1

⎡
⎣ iκk

z
− iκk

z − q−n r2
2

z̄k

⎤
⎦ −

N∑
k=1

∞∑
n=1

[
iκk

z
− iκk

z − q−nzk

]
(9)

we can think to cancel positive and negative terms for infinite set of images at the origin. It
turns out that due to divergency of those sums we cannot skip the term with κ . Indeed if we
like to rearrange terms in these series we keep term κ up to the end and then fix it to satisfy
condition (5). Then we have

V̄ (z) =
N∑

k=1

iκk

z − zk

+
iκ

z
+

N∑
k=1

[ ∞∑
n=1

iκk

z − zkqn
+

∞∑
n=1

iκk

z − zkq−n

]

−
N∑

k=1

⎡
⎣ ∞∑

n=0

iκk

z − r2
1

z̄k
q−n

+
∞∑

n=0

iκk

z − r2
2

z̄k
qn

⎤
⎦ . (10)
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The set of vortex images is determined completely by simple pole singularities of the
q-logarithmic function. By identity r2

2 /qn = r2
1 /qn−1, in the above representation (10) we can

combine sums so that

V̄ (z) =
N∑

k=1

[ ∞∑
n=−∞

iκk

z − zkqn

]
+

iκ

z
−

N∑
k=1

⎡
⎣ ∞∑

n=0

iκk

z − r2
1

z̄k
q−n

+
∞∑

n=1

iκk

z − r2
1

z̄k
qn

⎤
⎦ (11)

=
N∑

k=1

iκk

∞∑
n=−∞

⎡
⎣ 1

z − zkqn
− 1

z − r2
1

z̄k
qn

⎤
⎦ +

iκ

z
. (12)

For circulation we have∮
C1

V̄ (z) dz =
N∑

k=1

iκk

∞∑
n=−∞

⎡
⎣∮

dz

z − zkqn
−

∮
dz

z − r2
1

z̄k
qn

⎤
⎦ + iκ

∮
dz

z
(13)

or collecting only images inside C1∮
C1

V̄ (z) dz =
N∑

k=1

iκk

⎡
⎣ ∞∑

n=1

∮
dz

z − zkq−n
−

∞∑
n=1

∮
dz

z − r2
1

z̄k
q−n

⎤
⎦

−
N∑

k=1

∮
dz

z − r2
1

z̄k

+ iκ
∮

dz

z
= 0. (14)

Residues in the first two sums cancel each other term by term. Then we fix constant κ as the
total circulation

κ =
N∑

k=1

κk. (15)

As a result we have next image representation

V̄ (z) =
N∑

k=1

iκk

∞∑
n=−∞

⎡
⎣ 1

z − zkqn
− 1

z − r2
1

z̄k
qn

⎤
⎦ +

i

z

N∑
k=1

κk. (16)

In the limit of the vortices outside of a cylinder with radius r1 = constant, q → ∞ and
r2 → ∞, it gives result (see the appendix)

V̄ (z) =
N∑

k=1

iκk

⎡
⎣ 1

z − zk

− 1

z − r2
1

z̄k

⎤
⎦ +

i

z

N∑
k=1

κk. (17)

coinciding with the circle theorem [13].
If in (11) instead of r1 we use expression for r2 then following the same procedure we find

that in this case we should fix κ = 0. So that we have alternative expression

V̄ (z) =
N∑

k=1

iκk

∞∑
n=−∞

⎡
⎣ 1

z − zkqn
− 1

z − r2
2

z̄k
qn

⎤
⎦ . (18)

In the limit of the vortices inside of a cylinder with radius r2 = constant, q → ∞ and r1 → 0,
it gives result

V̄ (z) =
N∑

k=1

iκk

⎡
⎣ 1

z − zk

− 1

z − r2
2

z̄k

⎤
⎦ (19)

which also coincides with the circle theorem.
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2.2. Complex potential and stream function

According to the relation

V̄ (z) = F ′(z) (20)

the complex potential of flow (16) is found in the form

F(z) =
N∑

k=1

iκk

∞∑
n=−∞

[
ln(z − zkq

n) − ln

(
z − r2

1

z̄k

qn

)]
+ i

N∑
k=1

κk ln z, (21)

or compactly

F(z) =
N∑

k=1

iκk

∞∑
n=−∞

⎡
⎣ln

z − zkq
n

z − r2
1

z̄k
qn

⎤
⎦ + i

N∑
k=1

κk ln z. (22)

and

F(z) =
N∑

k=1

iκk ln

⎛
⎝z

∞∏
n=−∞

z − zkq
n

z − r2
1

z̄k
qn

⎞
⎠ . (23)

In the second form we have

F(z) =
N∑

k=1

iκk

∞∑
n=−∞

⎡
⎣ln

z − zkq
n

z − r2
2

z̄k
qn

⎤
⎦ . (24)

The stream function ψ = (F − F̄ )/2i in terms of vortex images is

ψ(z) =
N∑

k=1

κk

∞∑
n=−∞

ln

∣∣∣∣∣∣
z − zkq

n

z − r2
1

z̄k
qn

∣∣∣∣∣∣ +
N∑

k=1

κk ln |z| (25)

in the first form and

ψ(z) =
N∑

k=1

κk

∞∑
n=−∞

ln

∣∣∣∣∣∣
z − zkq

n

z − r2
2

z̄k
qn

∣∣∣∣∣∣ (26)

in the second form.
It implies the Hamiltonian [1]

H = − 1

4π

N∑
i,j=1(i �=j)

�i�j log |zi − zj | − 1

4π

N∑
i,j=1

∞∑
n=1

�i�j log[|zi − zjq
n||zi − zjq

−n|]

+
1

4π

N∑
i,j=1

∞∑
n=−∞

�i�j log |zizj − r2
1 qn|. (27)

2.3. Equations of motion

In order to find velocity of any vortex say, at zk , we must subtract its own effect. From
Hamiltonian function (27) we get the following system of equations of motion:

żk = +
1

2π i

N∑
j=1(j �=k)

�j

zk − zj

+
1

2π i

N∑
j=1

±∞∑
n=±1

�j

zk − zjqn
− 1

2π i

N∑
j=1

∞∑
n=−∞

�j

zk − r2
1

zj
qn

, (28)

(k = 1, . . . , N).
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2.4. Motion of a point vortex in annular domain

As a first application of the above equations we consider the motion of a single vortex in the
annular domain [1]:

ż0 = iκ

z̄0(q − 1)

[
Lnq

(
1 − |z0|2

r2
1

)
− Lnq

(
1 − r2

2

|z0|2
)]

. (29)

It implies that distance of the vortex from the origin is a constant of motion. Substituting
z0(t) = |z0| eiϕ(t) to (29) we get

ϕ(t) = ωt + ϕ0 (30)

where frequency ω is a constant, depending on modulus |z0|,

ω = κ

|z0|2(q − 1)

[
Lnq

(
1 − |z0|2

r2
1

)
− Lnq

(
1 − r2

2

|z0|2
)]

. (31)

So we find that the vortex uniformly rotates around the origin,

z0(t) = |z0| eiωt+iϕ0 = z0(0) eiωt , (32)

with rotation frequency (31) depending on strength and initial position of the vortex, and the
geometry of annular domain.

3. N vortex polygons in annular domain

As is well known the system of N vortices in the plane, in addition to the energy, admits three
integrals of motion, corresponding to the pair of translations and one rotation [9, 14]. However
for our problem in the annular domain only energy and the angular momentum, corresponding
to rotation of the system, survives, (�k = −2πκk),

I =
N∑

k=1

�kzkz̄k. (33)

Conservation of angular momentum implies existence of dynamical configuration of
vortices, rotating with fixed angular velocity. We restrict consideration with the simplest case
when all circulations of vortices are equal each other �k = �, k = 1, . . . , N . We suppose that
all vortices are located at the same distance r from the center, (r1 < r < r2), at vertices of the
regular N polygon, described by roots of the unity. Then we have the solution

zk(t) = r eiωt+i 2π
N

k, (k = 1, . . . , N) (34)

with rotation frequency

ω = �

2πr2

⎧⎨
⎩N − 1

2
+

1

q − 1

N∑
j=1

[
Lnq

(
1 − r2

2

r2
ei 2π

N
j

)
− Lnq

(
1 − r2

r2
1

e−i 2π
N

j

)]⎫⎬
⎭ . (35)

For the single vortex case, when N = 1 frequency (35) reduces to the one obtained in
section 2, (31). At the geometric mean distance the last two terms in (35) cancel each other
and we obtain

ω = �(N − 1)

4πr1r2
. (36)

So at this distance the vortex polygon is rotating with the frequency, independent of parameter
q, and hence independent of the ratio r2/r1.

6
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4. Two vortices in the annular region

It is clear that the system consisting of two vortices in the annular region is integrable since
there are two integrals of motion, namely, the Hamiltonian and the angular momentum. But
the complete integration is very difficult due to the infinite sums involved in the Kirchoff Routh
function. Instead, we shall use canonical transformations to reduce the number of degrees of
variables to two and then plot the constant Hamiltonian contours.

First, by using (27) we will put the motion equations in canonical form. To do that we
transform the variables from (xi, yi) to (qi, pi) by

qk =
√

|�k|Sgn(�k)xk, pk =
√

|�k|yk, k = 1, 2. (37)

So that we get the motion equations in standard canonical form.

q̇k = ∂H
′

∂pk

, ṗk = −∂H
′

∂qk

, k = 1, 2 (38)

where

8πH
′ = −�1�2 log

[
q2

1 + p2
1

|�1| +
q2

2 + p2
2

|�2| − 2√|�1�2|
(q1q2s1s2 + p1p2)

]

−�2
1

∞∑
n=1

log

[
q2

1 + p2
1

|�1| |1 − qn||1 − q−n|
]

−�2
2

∞∑
n=1

log

[
q2

2 + p2
2

|�2| |1 − qn||1 − q−n|
]

−�1�2

±∞∑
n=±1

log

[
q2

1 + p2
1

|�1| +
q2

2 + p2
2

|�2| q2n − qn

√|�1�2|
(q1q2s1s2 + p1p2)

]

+ 2�1�2

+∞∑
n=−∞

log

[(
q2

1 + p2
1

)(
q2

2 + p2
2

)
|�1�2| − 2qnr2

1√|�1�2|
(q1q2s1s2 + p1p2) + r4

1 q2n

]

+ 2�2
1

+∞∑
n=−∞

∣∣∣∣q2
1 + p2

1

|�1| − r2
1 qn

∣∣∣∣ + 2�2
2

+∞∑
n=−∞

∣∣∣∣q2
2 + p2

2

|�2| − r2
1 qn

∣∣∣∣ (39)

where s1 = sgn(�1) and s2 = sgn(�2). Next we use the polar (canonical) coordinates (Ri, Pi)

q2
1 + p2

1 = 2R1, q2
2 + p2

2 = 2R2 (40)

arctan
p1

q1
= P1, arctan

p2

q2
= P2 (41)

and we get the new Hamiltonian and the motion equations

8πH ′′ = −�1�2 log

[
2R1

|�1| +
2R2

|�2| − 4
√

R1R2√|�1�2|
cos(P1 − P2s1s2)s1s2

]

−�2
1

∞∑
n=1

log

[
2R1

|�1| |1 − qn||1 − q−n|
]

− �2
2

∞∑
n=1

log

[
2R2

|�2| |1 − qn||1 − q−n|
]

−�1�2

±∞∑
n=±1

log

[
2R1

|�1| +
2R2

|�2|q
2n − 2qn

√
R1R2√|�1�2|

cos(P1 − P2s1s2)s1s2

]

+ 2�1�2

+∞∑
n=−∞

log

[
4R1R2

|�1�2| − 4qnr2
1

√
R1R2√|�1�2|

cos(P1 − P2s1s2)s1s2 + r4
1 q2n

]

7
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+ 2�2
1

+∞∑
n=−∞

log |2R1

|�1| − r2
1 qn| + 2�2

2

+∞∑
n=−∞

log |2R2

|�2| − r2
1 qn|,

∂H
′′

∂Pk

= Ṙk,
∂H

′′

∂Rk

= −Ṗk, k = 1, 2. (42)

The form of (42) suggests a new canonical transformation by which a cyclic coordinate is
obtained. One possible transformation, but not the only one, is

Q1 = P1 − P2s1s2, Q2 = s1s2P2 (43)

G1 = R1, G2 = R1 + s1s2R2. (44)

We see that the new Hamiltonian (64) is cyclic in Q2 and its conjugate G2, which is a constant
multiple of the angular momentum, and is a constant,

8πK = −�1�2 log

[
2G1

|�1| +
2(G2 − G1)s1s2

|�2| − 4
√

G1(G2 − G1)s1s2√|�1�2|
cos(Q1)s1s2

]

−�2
1

∞∑
n=1

log

[
2G1

|�1| |1 − qn||1 − q−n|
]

−�2
2

∞∑
n=1

log

[
2(G2 − G1)s1s2

|�2| |1 − qn||1 − q−n|
]

−�1�2

±∞∑
n=±1

log

[
2G1

|�1| +
2(G2 − G1)s1s2

|�2| q2n

− 2qn
√

G1(G2 − G1)s1s2√|�1�2|
cos(Q1)s1s2

]

+ 2�1�2

+∞∑
n=−∞

log

[
4G1(G2 − G1)s1s2

|�1�2|

− 4qnr2
1

√
G1(G2 − G1)s1s2√|�1�2|

cos(Q1)s1s2 + r4
1 q2n

]

+ 2�2
1

+∞∑
n=−∞

log |2G1

|�1| − r2
1 qn| + 2�2

2

+∞∑
n=−∞

log |2(G2 − G1)s1s2

|�2| − r2
1 qn|.

(45)

Indeed, if the angular momentum is defined as

I = �1
(
x2

1 + y2
1

)
+ �2

(
x2

2 + y2
2

)
= �1

(
q2

1

|�1| +
p2

1

|�1|
)

+ �2

(
q2

2

|�2| +
p2

2

|�2|
)

= 2s1R1 + 2s2R2

= 2s1G2 (46)

we get that G2 is a constant multiple of angular momentum. Finally, the motion equations
become

∂K

∂Q1
= Ġ1,

∂K

∂G1
= −Q̇1,

∂K

∂G2
= −Q̇2,

∂K

∂Q2
= 0.
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Figure 1. The Level curves for the Hamiltonian in XY coordinates. Vortices have unit strength
and there is no net circulation about the cylinder; κ0 = κ1 + κ2. The coordinates of the points are:
A = (1.1, 0), B = (1.2, 0), C = (1.3, 0), D = (1.8, 0), and E = (0, 1.3).

4.1. Vortices with equal strength

As a numerical example, we consider the case when �1 = �2 = 1 (s1 = s2 = 1) and
r1 = 1, r2 = 2. Note that the only effect of the radii of the annular region is to change
the ranges for the parameters and the variables of the system. We shall plot the constant H
contours to demonstrate the integrability of the system and discuss the characteristics of this
case. The variables are Q1 and G1 and the parameter is G2. By using the geometry of the
annular region, we determine the ranges for G2, G1 and Q1:

1 < G2 < 4, 1
2 < G1 < 2, −2π < Q1 < 2π. (47)

In figure 1, we fix G2 = 2 and observe that the system is integrable. The level
curves of the Hamiltonian are shown in figure 1 in a coordinate system (X, Y ), where
X = √

2R1 cos(P1 − P2) and Y = √
2R1 sin(P1 − P2). That implies we are measuring

the distance of the first vortex to the origin in the coordinate system (X, Y ) that rotates
with the second vortex. In fact, figure 1 corresponds to the Poincaré map in the system
(p, q) where the angular momentum and the Hamiltonian are first integrals of motion. So the
trajectories are plotted when the angular momentum and P2 are fixed. Inner and outer circles in
figure 1 correspond to the boundaries of the annular region. There is an elliptical singular
point in figure 2 at the point (

√
2, 0). We must pay attention to the fact that using figure 1

initial positions of vortices can not be chosen arbitrarily for angular momentum, G2, is fixed
(G2 = 2 for figure 1). Hence, it becomes clear that when one of the vortices is placed at the
point (

√
2, 0), the other vortex must be placed at the same point.

Since the coordinates in figure 1 does not correspond to the physical ones we choose five
different points in figure 1 and calculate the trajectories of vortices corresponding to those
points. In that way, we will know what kind of vortex behavior is to be expected corresponding
to different regions in figure 1. For example, if one of the vortices start off close to one of the

9
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Figure 2. Motion of vortices of unit strength around the cylinder at the origin with initial vortex
starting positions being (1.1, 0), (1.670 329, 0) and κ0 = κ1 + κ2. Continuous and dashed lines
denote the trajectories of vortices. The initial points correspond to the point A in figure 1.
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Figure 3. Motion of vortices of unit strength around the cylinder at the origin with initial vortex
starting positions being (1.2, 0), (1.6, 0) and κ0 = κ1 + κ2. Continuous and dashed lines denote
the trajectories of vortices. The initial points correspond to the point B in figure 1.

cylinders corresponding to the points A and D in figure 1, then vortices rotate in the region
without affecting each other (figures 2 and 5). If we are close to the elliptic point of figure 1,
at point C, then vortices’ orbit is the same; they rotate around the cylinder and around each

10
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Figure 4. Motion of vortices of unit strength around the cylinder at the origin with initial vortex
starting positions being (1.3, 0), (1.519 868, 0) and κ0 = κ1 + κ2. Continuous and dashed lines
denote the trajectories of vortices. The initial points correspond to the point C in figure 1.
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Figure 5. Motion of vortices of unit strength around the cylinder at the origin with initial vortex
starting positions being (1.8, 0), (1.186 592, 0) and κ0 = κ1 + κ2. Continuous and dashed lines
denote the trajectories of vortices. The initial points correspond to the point D in figure 1.

other (figure 4). In the boundary of elliptic region, at point B, vortices’ behavior is depicted
in figure 3, which is somewhat reminiscent of the behavior in figure 4. At other points, such

11
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Figure 6. Motion of vortices of unit strength around the cylinder at the origin with initial vortex
starting positions being (0, 1.3), (1.519 868, 0) and κ0 = κ1 + κ2. Continuous and dashed lines
denote the trajectories of vortices. The initial points correspond to the point E in figure 1.

as the point E where the lines passing through the origin and the vortices initial positions are
orthogonal to each other, vortices do not interact with each other (figure 6).

5. Conclusions

As a new application of our approach, that is q-logarithmic representation of the N vortex
motion problem in the annular domain, we studied the two vortex problem.

The Hamiltonian structure and the integrability of the problem of two vortices in the
annular domain, according to Liouville, has been proved using canonical transformations. We
show that vortices display different motion characteristics depending on different regions of
figure 1, where level curves of the Hamiltonian are plotted in a coordinate system that rotates
with the second cylinder. In fact, figure 1 corresponds to the Poincaré map in the system
(p, q) where the angular momentum and the Hamiltonian are first integrals of motion. To our
best knowledge, these results are new.

Appendix. Limiting cases of vortex equations

Here, we show how two limiting cases of vortex equations and Hamiltonian functions arise
from our problem. We consider the vortex equations

˙̄zk =
N∑

j=1

iκj

1

zk − zj

+
N∑

j=1

iκj

zk(q − 1)

[
Lnq

(
1 − zk

zj

)
− Lnq

(
1 − zkz̄j

r2
1

)

+ Lnq

(
1 − r2

2

zkz̄j

)
− Lnq

(
1 − zj

zk

)]
(A.1)
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and the Hamiltonian function in terms of q-exponential functions

H = − 1

4π

N∑
j=1(j �=k)

�i�j ln |zi − zj | − 1

4π

N∑
j=1(j �=k)

�i�j ln

∣∣∣∣∣∣
Eq

(
zi

(1−q)zj

)
Eq

( zj

(1−q)zi

)
Eq

( zi z̄j

(1−q)r2
1

)
Eq

( r2
2

(1−q)zi z̄j

)
∣∣∣∣∣∣

(A.2)

in two limits for q → ∞.

(1) For q = r2
2

r2
1

→ ∞ we consider r2 = const, and r1 → 0 limit, corresponding to motion
inside the circular domain with radius r2. Using asymptotic limits

lim
q→∞ Lnq(1 + z) = z (A.3)

lim
q→∞

Lnq(1 − qz)

q − 1
= z

z − 1
(A.4)

from the above system (A.2) we get

˙̄zk = 1

2π i

N∑
j=1(j �=k)

�j

zk − zj

+
1

2π i

N∑
j=1

�j z̄j

r2
2 − zkz̄j

(A.5)

which coincides with result [1]. Using asymptotic limits for q-exponential function

lim
q→∞ Eq

(
z

q

)
= 1 (A.6)

lim
q→∞ Eq

(
qz

q − 1

)
= 1 + z (A.7)

we have the limiting case of the Hamiltonian

H = − 1

4π

N∑
j=1(j �=k)

�i�j ln |zi − zj |

− 1

4π

N∑
j=1(j �=k)

�i�j ln

∣∣∣∣ 1

r2 − zkz̄j

∣∣∣∣ − 1

2π

N∑
j=1(j �=k)

�i�j ln r2 (A.8)

which differs from [1] by the last constant term.

(2) For q = r2
2

r2
1

→ ∞ we consider r1 = const, and r2 → ∞ limit, corresponding to motion
outside the circular domain with radius r1. Using the above asymptotic limits we find the
system

˙̄zk = 1

2π i

N∑
j=1(j �=k)

�j

zk − zj

+
1

2π i

N∑
j=1

�j z̄j

r2
1 − zkz̄j

+
1

2π i

1

zk

N∑
j=1

�j . (A.9)

These system also coincides with the one in [1]. For Hamiltonian function in the limit
case we have

H = − 1

4π

N∑
j=1(j �=k)

�i�j ln |zi − zj | +
1

4π

N∑
j=1(j �=k)

�i�j ln
∣∣zi z̄j − r2

1

∣∣

− 1

4π

N∑
j=1(j �=k)

�i�j ln |zi z̄j | (A.10)

which also coincides with [1].
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