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Constructing rational and multi-wave
solutions to higher order NEEs via
the Exp-function method
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In this paper, we present an application of some known generalizations of the Exp-function method to the fifth-order
Burgers and to the seventh-order Korteweg de Vries equations for the first time. The two examples show that the
Exp-function method can be an effective alternative tool for explicitly constructing rational and multi-wave solutions
with arbitrary parameters to higher order nonlinear evolution equations. Being straightforward and concise, as pointed
out previously, this procedure does not require the bilinear representation of the equation considered. Copyright ©
2011 John Wiley & Sons, Ltd.
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1. Introduction

Nonlinear evolution equations (NEEs) play a crucial role in different branches of the applied sciences. Thus, the study of NEEs is a
very active area of research. In the last four decades or so, developing powerful analytic methods for NEEs has become the focus
of common concern. Nowadays, some elegant methods are available to tackle NEEs in a straightforward manner. For instance,
homogeneous balance method [1], inverse scattering method [2], Hirota’s bilinear method [3], Backlund transformation method [4],
F-expansion method [5], symmetry method [6], sine-cosine method [7], tanh-coth method [8], first integral method [9], homotopy
analysis method [10], homotopy perturbation method [11], (G’/G)-expansion method [12], variational iteration method [13], multi-
Exp-function method [14], three-wave method [15] and so forth. Recently, He et al. [16] proposed three standard variational iteration
algorithms for dealing with differential equations, fractional differential equations, integro-differential equations, fractal differential
equations, fractional/ fractal differential-difference equations, as well as differential-difference equations arising in applied sciences.
However, there is no a single best method that can handle a specialized nonlinear problem.

Since its introduction in 2006, the Exp-function method [17] has gained much popularity because it helps one to obtain exact
and explicit solutions for NEEs in a concise manner. This method has been applied to various kinds of nonlinear problems arising
in the applied sciences, and lately more attention is paid to its adaptation, generalization, and extension; just to mention a few,
multi-dimensional equations [18--20], differential-difference equations [21], coupled NEEs [22], NEEs with variable coefficients [23],
stochastic equations [24], n-soliton solutions [25], rational solutions [26], double-wave solutions [27]. The Exp-function method
assumes an ansatz, which is based on trying rational combinations of exponential functions, involving unknown parameters to be
specified at the stage of solving the problem.

On the other hand, special types of analytic solutions have been important to understand chemical, biological and physical
phenomena modeled by NEEs. Among the possible solutions to NEEs, certain special form solutions may depend only on a single
combination of variables such as traveling wave variables. Besides, traveling waves of NEEs may be coupled with different frequencies
and different velocities. Multi-wave solutions are crucial in the sense that they may sometimes be converted into a single wave
of very high energy that propagates over large domains of space without dispersion. Therefore, an extremely destructive wave
may be produced. The tsunami is an example for this kind of phenomena. Thus, searching exact solutions with multi-velocities and
multi-frequencies for NEEs is an important research area in the applied sciences as well.
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∗Correspondence to: İsmail Aslan, Department of Mathematics, Izmir Institute of Technology, Urla, İzmir 35430, Turkey.
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As is well known, Hirota’s method [3] can be used to find such solutions if these equations can be converted into a bilinear
form. However, the bilinear forms may not exist or may not known. The application of the Exp-function method to higher order
NEEs for finding multi-wave and rational solutions is still an interesting and important issue. In this paper, we show that such
types of solutions can be constructed using the Exp-function method. The main advantage of our procedure is that the bilinear
representation for the equation studied becomes redundant. We use two distinct equations to illustrate the effectiveness of the
method. The paper is organized as follows: In the next section, we summarize the method to make the paper self-contained. In
Sections 3 and 4, we analyze our problems. In Section 5, we provide a brief conclusion.

2. The Exp-function method and its generalizations

In this section, we initiate our study by briefly reviewing the procedure. Let us consider a nonlinear partial differential equation for
a function u of two real variables, space x and time t;

P(u, ut, ux, utt, utx, uxx,. . .)=0, (1)

where P is a polynomial in its arguments and subscripts denote partial derivatives. The standard Exp-function method is based on
the assumption that a one-wave solution of Equation (1) can be expressed in the form

u(x, t)=
∑m

i=0 ai exp(i�)∑n
j=0 bj exp(j�)

, �=kx+wt+�, (2)

where m and n are positive integers to be determined by balancing the highest order terms in Equation (1); ai , bi , k and w are
arbitrary constants to be specified at the stage of solving Equation (1); � is the phase shift. To seek for rational and multi-wave
solutions to Equation (1), the ansatz (2) can be modified as follows:

For a two-wave solution, one sets

u(x, t)=
∑m1

i1=0

∑m2
i2=0 ai1i2 exp(i1�1 + i2�2)∑n1

j1=0

∑n2
j2=0 bj1j2 exp(j1�1 + j2�2)

, �l =klx+wlt+�l , l =1, 2. (3)

For a three-wave solution, one considers

u(x, t)=
∑m1

i1=0

∑m2
i2=0

∑m3
i3=0 ai1i2i3 exp(i1�1 + i2�2 + i3�3)∑n1

j1=0

∑n2
j2=0

∑n3
j3=0 bj1j2j3 exp(j1�1 + j2�2 + j3�3)

, �l =klx+wlt+�l , i=1, 2, 3, (4)

and so forth. The ansatze (3) and (4) are due to Marinakis [25].
For a rational solution, one takes

u(x, t)=
∑m

i=0 ai(�1 exp(�)+�2�)i∑n
j=0 bj(�1 exp(�)+�2�)j

, �=kx+wt+�, (5)

where �1 and �2 are two embedded constants. The ansatz (5) is due to Zhang [26]. We note that when �1 =1 and �2 =0, the
ansatz (5) agrees with the ansatz (2).

Finally, substituting the ansatze (2)–(5) into Equation (1) yields nonlinear algebraic systems for the unknown parameters. Solving
each resultant system (if possible), one can determine one-wave, two-wave, three-wave, and rational solutions to Equation (1)
provided they exist.

3. The fifth-order Burgers equation

First, let us consider the so-called fifth-order Burgers equation which reads

ut +�uxxxxx +10�(uxx)2 +15�uxuxxx +5�uuxxxx +15�(ux)3 +50�uuxuxx +10�u2uxxx +30�u2(ux)2 +10�u3uxx +5�u4ux =0, (6)

where � is a nonzero constant, and u=u(x, t). As is well known, the study of integrable hierarchies is a significant and interesting
topic in wave theory. Equation (6) appears to be a member of Burgers hierarchy in applications. For a one-wave solution, we assume
that Equation (6) admits a solution of the form

u(x, t)= a1 exp(�)

1+b1 exp(�)
, �=kx+wt+�, (7)

which is embedded in (2). Substituting (7) into Equation (6) and solving the resultant algebraic system for the unknowns a1, b1, k,
and w, we obtain the solution set

w =−�k5, a1 =kb1, (8)
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which yields a one-wave solution to Equation (6) as

u(x, t)= kb1 exp(kx−�k5t+�)

1+b1 exp(kx−�k5t+�)
, (9)

where k, b1, and � remain arbitrary.

3.1. Two-wave solutions

Suppose that Equation (6) admits a solution of the form

u(x, t)= a10 exp(�1)+a01 exp(�2)+a11 exp(�1 +�2)

1+b10 exp(�1)+b01 exp(�2)+b11 exp(�1 +�2)
, �l =klx+wlt+�l , l =1, 2. (10)

It is obvious that the ansatz (10) is embedded in (3). Substituting (10) into Equation (6) and solving the resultant algebraic system
for the unknowns a10, a01, a11, b10, b01, b11, k1, k2, w1, and w2, we get the solution set

w1 =−�k5
1 , w2 =−�k5

2 , b11 =0, a11 =0, a01 =k2b01, a10 =k1b10, (11)

which gives a two-wave solution to Equation (6) as

u(x, t)= k1b10 exp(k1x−�k5
1t+�1)+k2b01 exp(k2x−�k5

2t+�2)

1+b10 exp(k1x−�k5
1t+�1)+b01 exp(k2x−�k5

2t+�2)
, (12)

where b01, b10, k1, k2, �1, and �2 remain arbitrary

3.2. Three-wave solutions

Assume that Equation (6) admits a solution of the form

u(x, t)=

a100 exp(�1)+a010 exp(�2)+a001 exp(�2)+a110 exp(�1 +�2)+a101 exp(�1 +�3)

+a011 exp(�2 +�3)+a111 exp(�1 +�2 +�3)

1+b100 exp(�1)+b010 exp(�2)+b001 exp(�2)+b110 exp(�1 +�2)+b101 exp(�1 +�3)

+b011 exp(�2 +�3)+b111 exp(�1 +�2 +�3)

, (13)

where �l =klx+wlt+�l , l =1, 2, 3.
Clearly, the ansatz (13) is embedded in (4). After substituting (13) into Equation (6) and solving the resultant algebraic system for

the unknowns a100, a010, a001, a110, a101, a011, a111, b100, b010, b001, b110, b101, b011, b111, k1, k2, k3, w1, w2, and w3, we get the
solution set

w1 = −�k5
1 , w2 =−�k5

2 , w3 =−�k5
3 , a100 =k1b100, a010 =k2b010, a001 =k3b001,

b101 = 0, b011 =0, a011 =0, a101 =0, b111 =0, a110 =0, b110 =0, a111 =0,
(14)

which leads a three-wave solution to Equation (6) as

u(x, t)= k1b100 exp(k1x−�k5
1t+�1)+k2b010 exp(k2x−�k5

2t+�2)+k3b001 exp(k3x−�k5
3t+�3)

1+b100 exp(k1x−�k5
1t+�1)+b010 exp(k2x−�k5

2t+�2)+b001 exp(k3x−�k5
3t+�3)

, (15)

where b001, b010, b100, k1, k2, k3, �1, �2, and �3 remain arbitrary.

3.3. Rational solutions

Suppose that Equation (6) admits a solution of the form

u(x, t)= a1(�1 exp(�)+�2�)+a0 +a−1(�1 exp(�)+�2�)−1

b1(�1 exp(�)+�2�)+b0 +b−1(�1 exp(�)+�2�)−1 , �=kx+wt+�. (16)

Proceeding as before, we obtain the solution set of the resultant algebraic system as

a0 = a1b0

b1
+kb1, a−1 = kb0

2
+ a1b−1

b1
∓ k

2

√
b2

0 −4b−1b1, w =−5k�a4
1

b4
1

, �1 =0, �2 =1 (17)

which provide a rational solution to Equation (6) as

u∓(x, t)=
a1

(
kx− 5k�a4

1

b4
1

t+�

)2

+
(

a1b0

b1
+kb1

)(
kx− 5k�a4

1

b4
1

t+�

)
+ kb0

2
+ a1b−1

b1
∓ 1

2
k
√

b2
0 −4b−1b1

b1

(
kx− 5k�a4

1

b4
1

t+�

)2

+b0

(
kx− 5k�a4

1

b4
1

t+�

)
+b−1

, (18)

where a1, b−1, b0, b1, k, and � remain arbitrary.
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4. The seventh-order Korteweg de Vries equation

Second, let us consider the so-called seventh-order Korteweg de Vries equation which reads

ut +14uuxxxxx +70u2uxxx +42uxuxxxx +70uxxuxxx +280uuxuxx +70(ux)3 +140u3ux +uxxxxxxx =0. (19)

The significance of Equation (19) in applications is due to the fact that it is a member of the Korteweg de Vries hierarchy which is
a well-known family of NEEs. For a one-wave solution, we assume that Equation (19) admits a solution of the form

u(x, t)= a1 exp(�)

(1+b1 exp(�))2
, �=kx+wt+�, (20)

which is embedded in (2). Substituting (20) into Equation (19) and solving the resultant algebraic system for the unknowns a1, b1, k,
and w, we obtain the solution set

w =−k7, a1 =2b1k2, (21)

which gives rise a one-wave solution to Equation (19) as

u(x, t)= 2b1k2 exp(kx−k7t+�)

(1+b1 exp(kx−k7t+�))2
, (22)

where k, b1, and � remain arbitrary.

4.1. Two-wave solutions

Suppose that Equation (19) admits a solution of the form

u(x, t)= a10 exp(�1)+a01 exp(�2)+a11 exp(�1 +�2)+a21 exp(2�1 +�2)+a12 exp(�1 +2�2)

(1+b10 exp(�1)+b01 exp(�2)+b11 exp(�1 +�2))2
, (23)

where �l =klx+wlt+�l , l =1, 2.
It is notable that the ansatz (23) is embedded in (3). Substituting (23) into Equation (19) and solving the resultant algebraic system

for the unknowns a10, a01, a11, a21, a12, b10, b01, b11, k1, k2, w1, and w2, we get the solution set

a21 = 2b01b2
10(k1 −k2)2k2

2

(k1 +k2)2
, a12 = 2b2

01b10k2
1(k1 −k2)2

(k1 +k2)2
, b11 = b01b10(k1 −k2)2

(k1 +k2)2
,

a11 = 4b01b10(k1 −k2)2, a10 =2b10k2
1 , a01 =2b01k2

2 , w1 =−k7
1 , w2 =−k7

2 ,

(24)

which provides a two-wave solution to Equation (19) as

u(x, t)=

2b10k2
1 exp(�1)+2b1k2

2 exp(�2)+4b1b10(k1 −k2)2 exp(�1 +�2)

+2b1b2
10(k1 −k2)2k2

2

(k1 +k2)2
exp(2�1 +�2)+ 2b2

1b10k2
1(k1 −k2)2

(k1 +k2)2
exp(�1 +2�2)

(1+b10 exp(�1)+b01 exp(�2)+ b01b10(k1 −k2)2

(k1 +k2)2
exp(�1 +�2))2

, (25)

where �1 =k1x−k7
1t+�1, �2 =k2x−k7

2t+�2 and b01, b10, k1, k2, �1, �2 remain arbitrary

4.2. Three-wave solutions

Assume that Equation (19) admits a solution of the form

u(x, t)= v1(�1,�2,�3)

v2(�1,�2,�3)
, (26)

where �l =klx+wlt+�l , l =1, 2, 3, and

v1(�1,�2,�3) = a100 exp(�1)+a010 exp(�2)+a001 exp(�3)+a110 exp(�1 +�2)+a101 exp(�1 +�3)

+a011 exp(�2 +�3)+a120 exp(�1 +2�2)+a102 exp(�1 +2�3)+a012 exp(�2 +2�3)

+a210 exp(2�1 +�2)+a201 exp(2�1 +�3)+a021 exp(2�2 +�3)+a111 exp(�1 +�2 +�3)

+a211 exp(2�1 +�2 +�3)+a121 exp(�1 +2�2 +�3)+a112 exp(�1 +�2 +2�3)

+a221 exp(2�1 +2�2 +�3)+a122 exp(�1 +2�2 +2�3)+a212 exp(2�1 +�2 +2�3),

v2(�1,�2,�3) =
(

1+b100 exp(�1)+b010 exp(�2)+b001 exp(�3)+b110 exp(�1 +�2)+b101 exp(�1 +�3)

+b011 exp(�2 +�3)+b111 exp(�1 +�2 +�3)

)2

.
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It is obvious that the ansatz (26) is embedded in (4). After substituting (26) into Equation (19) and proceeding as before, we get
the solution set of the resultant algebraic system as:

w1 = −k7
1 , w2 =−k7

2 , w3 =−k7
3 , a100 =2b100k2

1 , a010 =2b010k2
2 , a001 =2b001k2

3 , (27)

a011 = 4b001b010(k2 −k3)2, a101 =4b001b100(k1 −k3)2, a110 =4b010b100(k1 −k2)2, (28)

a102 = 2b2
001b100k2

1(k1 −k3)2

(k1 +k3)2
, a012 = 2b2

001b010k2
2(k2 −k3)2

(k2 +k3)2
, b011 = b001b010(k2 −k3)2

(k2 +k3)2
, (29)

a021 = 2b001b2
010(k2 −k3)2k2

3

(k2 +k3)2
, b101 = b001b100(k1 −k3)2

(k1 +k3)2
, a201 = 2b001b2

100(k1 −k3)2k2
3

(k1 +k3)2
, (30)

a120 = 2b2
010b100k2

1(k1 −k2)2

(k1 +k2)2
, a112 = 4b2

001b010b100(k1 −k2)2(k1 −k3)2(k2 −k3)2

(k1 +k3)2(k2 +k3)2
, (31)

b110 = b010b100(k1 −k2)2

(k1 +k2)2
, a221 = 2b001b2

010b2
100(k1 −k2)4(k1 −k3)2(k2 −k3)2k2

3

(k1 +k2)4(k1 +k3)2(k2 +k3)2
, (32)

a210 = 2b010b2
100(k1 −k2)2k2

2

(k1 +k2)2
, a122 = 2b2

001b2
010b100k2

1(k1 −k2)2(k1 −k3)2(k2 −k3)4

(k1 +k2)2(k1 +k3)2(k2 +k3)4
, (33)

a121 = 4b001b2
010b100(k1 −k2)2(k1 −k3)2(k2 −k3)2

(k1 +k2)2(k2 +k3)2
,

b111 = b001b010b100(k1 −k2)2(k1 −k3)2(k2 −k3)2

(k1 +k2)2(k1 +k3)2(k2 +k3)2
, (34)

a111 = 8b001b010b100(k2
2k2

3(k2
2 −k2

3)2 +k6
1(k2

2 +k2
3)−2k4

1(k4
2 +k4

3)+k2
1(k6

2 +k6
3))

(k1 +k2)2(k1 +k3)2(k2 +k3)2
, (35)

a212 = 2b2
001b010b2

100(k1 −k2)2k2
2(k1 −k3)4(k2 −k3)2

(k1 +k2)2(k1 +k3)4(k2 +k3)2
, (36)

a211 = 4b001b010b2
100(k1 −k2)2(k1 −k3)2(k2 −k3)2

(k1 +k2)2(k1 +k3)2
. (37)

Finally, employing the determined coefficients (27)–(37) to (26), we derive a three-wave solution to Equation (19), where b100, b010,
b001, k1, k2, k3, �1, �2, and �3 remain arbitrary.

4.3. Rational solutions

Assuming that Equation (19) admits a solution of the form (16), we obtain the solution set of the resultant algebraic system as

w =−140ka3
1

b3
1

, a0 = a1b0

b1
, a−1 = a1b2

0 −8k2b3
1

4b2
1

, b−1 = b2
0

4b1
, �1 =0, �2 =1, (38)

which leads to a rational solution to Equation (19) as

u(x, t)=
4a1b2

1

(
kx− 140ka3

1

b3
1

t+�

)2

+4a1b0b1

(
kx− 140ka3

1

b3
1

t+�

)
+a1b2

0 −8k2b3
1

4b3
1

(
kx− 140ka3

1

b3
1

t+�

)2

+4b0b2
1

(
kx− 140ka3

1

b3
1

t+�

)
+b2

0b1

, (39)

where a1, b1, b0, k, and � remain arbitrary.

5. Conclusion

Seeking exact and explicit solutions with multi-velocities and multi-frequencies for NEEs is an important research area in the applied
sciences. In this study, the Exp-function method is used to explicitly construct one-, two-, and three-wave solutions, as well as
rational solutions, of completely integrable NEEs. As pointed out in [25, 26], our method has the advantage in the sense that the
bilinear forms of the equations are no longer needed. We used two different kinds of nonlinear equations to demonstrate the power
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of the method. The correctness of the obtained results is tested by substitution into the original equations; this provides an extra
measure of confidence in the results.
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