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In this paper, we show the applicability of the first integral method, which is based on the
ring theory of commutative algebra, to the regularized long-wave Burgers equation and the
Gilson–Pickering equation under a parameter condition. Our method provides polynomial
first integrals for autonomous planar systems. Through the established first integrals, exact
traveling wave solutions are derived in a concise manner.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Over the four decades or so, nonlinear evolution equations (NEEs) have been the subject of extensive studies in various
branches of applied sciences such as fluid mechanics, plasma physics, crystal lattice theory, etc. A special class of analytical
solutions, the so-called traveling waves, for NEEs is of fundamental importance because a lot of mathematical-physical
models are often described by such a wave phenomena. Thus, the investigation of traveling wave solutions is becoming more
and more attractive in nonlinear science nowadays. However, not all equations posed in these fields are solvable. As a result,
many new techniques have been successfully developed by a diverse group of mathematicians and physicists, such as
inverse scattering method [1], Painleve expansion method [2], Backlund transformation method [3], Hirota’s bilinear method
[4], symmetry method [5], Jacobi elliptic function method [6], sine–cosine function method [7], tanh–coth function method
[8], Weierstrass function method [9], homogeneous balance method [10], F-expansion method [11], Exp-function method
[12], (G0/G)-expansion method [13], further improved F-expansion method [14], etc. For more direct methods to NEEs, see
[15–18]. But, it is sometimes hard and time consuming to solve nonlinear problems with the well-known traditional
methods.

Since the nonlinear phenomena is enormously complex, it is still an open problem to develop more powerful methods to
extract new exact and explicit solutions for NEEs. Recently, Feng [19–21] proposed an effective method, which is based on
the ring theory of commutative algebra, to deal with traveling wave solutions of NEEs. The technique, which is currently
called the first integral method, has proven to be a useful tool for finding traveling wave solutions to a variety of nonlinear
problems (see, for example, [22–27] and the references therein). The basic idea of the first integral method is to find a poly-
nomial first integral (with polynomial coefficients) of an explicit form to an equivalent autonomous planar system by apply-
ing the Division Theorem for two variables in the complex domain. Taking the obtained first integral into account, one may
obtain a class of traveling wave solutions to the equation considered in a straightforward manner.

On the other hand, extending some innovative approaches to the investigation of NEEs for traveling wave solutions and
obtaining new results seems interesting and helpful to the reader in the physical, chemical, and biological communities.
Hence, we find that the applicability of the first integral method to NEEs having distinct physical structures is still an
interesting and important research problem.
. All rights reserved.
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In the present study, we focus our attention on traveling wave solutions of the regularized long-wave Burgers equation
and the Gilson–Pickering equation using the first integral method for the first time. To achieve our goal, we organize the pa-
per as follows: In the next section, we describe the method in brief. In Sections 3 and 4, we analyze our equations. Finally, we
state a conclusion in Section 5.

2. The first integral method

Let us consider a nonlinear partial differential equation for a function u = u(x, t) in the form
Pðu;ut ;ux;utt ;utx;uxx; . . .Þ ¼ 0; ð1Þ
where P is a polynomial in its arguments and subscripts denote partial derivatives. Using the transformation u(x, t) = U(n),
u(x, t) = U(n), n = kx + wt + n0, where k, w, and n0 are arbitrary constants, we can convert Eq. (1) to an ordinary differential
equation (ODE) of the form
PðU; kU0;wU0; k2U00; kwU00;w2U00; . . .Þ ¼ 0; ð2Þ
where U = U(n) and the primes denote ordinary derivatives with respect to n. Next, we introduce a new independent variable
VðnÞ ¼ UðnÞ; WðnÞ ¼ U0ðnÞ; ð3Þ
which leads to a system of ODEs of the form
V 0ðnÞ ¼WðnÞ;
W 0ðnÞ ¼ Q VðnÞ;WðnÞð Þ:

ð4Þ
In general, solving planar systems of ODEs like (4) directly is a difficult and challenging task. Hence, based on the qualitative
theory of ordinary differential equations [28], if we can find a single first integral to the system (4), then we can reduce Eq.
(2) to a first-order integrable ODE. A class of traveling wave solutions can be accordingly derived by solving this first-order
differential equation. But, there is no a systematic theory that can tell us how to find the first integrals of Eq. (4), nor is there a
logical way for telling us what these first integrals are. In order to present our results in a straightforward manner, let us here
introduce the Division Theorem for two variables in the complex domain C.

Theorem 1 (Division Theorem). Suppose that P(w,z) and Q(w,z) are polynomials in C½w; z� and P(w,z) is irreducible in C½w; z�. If
Q(w,z) vanishes at all zero points of P(w,z), then there exist a polynomial G(w,z) in C½w; z� such that Q(w,z) = P(w,z)G(w,z).

One can prove the Division Theorem either by using the complex theory of several variables [19,29] or by applying the
following Hilbert–Nullstellensatz theorem from the ring theory of commutative algebra [30]:

Theorem 2 (Hilbert–Nullstellensatz Theorem). Let k be a field and L an algebraic closure of k. Then

(i) Every ideal c of k[X1, . . . ,Xn] not containing 1 admits at least one zero in Ln.
(ii) Let x = (x1, . . ., xn) and y = (y1, . . . , yn) be two elements of Ln. For the set of polynomials of k[X1, . . . ,Xn] zero at x to be identical

with the set of polynomials of k[X1, . . . ,Xn] zero at y, it is necessary and sufficient that there exists a k -automorphism s of L
such that yi = s(xi) for 1 6 i 6 n.

(iii) For an ideal a of k[X1, . . . ,Xn] to be maximal, it is necessary and sufficient that there exists an x in Ln such that a is the set of
k[X1, . . . ,Xn] zero at x.

(iv) For a polynomial Q of k[X1, . . . ,Xn] to be zero on the set of zeros in Ln of an ideal c of k[X1, . . . ,Xn], it is necessary and sufficient
that there exist an integer m > 0 such that Qm 2 c.
Remark 1. The fact that the real field R is a subfield of the complex field C is well known. The extension of a given equation
in R to an equation in C is always possible. If the extended equation has an algebraic curve solution in C, then the intersec-
tion of the manifold of this solution and the real plane must be the algebraic curve solution of the original equation in R.
Thus, the Division Theorem stated in C can also be used in R [19].

3. The regularized long-wave Burgers equation

Let us consider the regularized long-wave Burgers equation [31] in the form
ut þ ux þ 12uux � auxx � buxxt ¼ 0; ð5Þ
which is a model equation of describing the propagation of surface water in a channel, where u = u(x, t) proportiona1 to the
vertical displacement of the surface of the water from its equilibrium position, the constants a and b denote dissipative and
dispersive coefficients, respectively. Besides, it represents a balance relation among the dispersion, dissipation and nonlin-
earity. Recently, Wang and Li [32] investigated Eq. (5) for traveling wave solutions by mean sof the so-called factorization
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technique. Now, to seek for traveling wave solutions of Eq. (5), we first make the transformation u(x, t) = U(n), n = x � wt + n0,
where w and n0 are arbitrary constants. Then, integrating the resultant equation once, we get
bwU00 � aU0 þ 6U2 þ ð1�wÞU � bwd ¼ 0; ð6Þ
where the primes denote derivatives with respect to n and d is an integration constant. Letting z = U and y = U0, Eq. (6) can be
rewritten as the plane autonomous system
dz
dn ¼ y;
dy
dn ¼ ryþ bz2 þ czþ d;

(
ð7Þ
where r = a/bw, b = �6/bw, and c = (w � 1)/bw. Suppose that z = z(n) and y = y(n) are nontrivial solutions of (7). Also, assume
that qðz; yÞ ¼

Pm
i¼0AiðzÞyi is an irreducible polynomial in the complex domain C such that
qðzðnÞ; yðnÞÞ ¼
Xm

i¼0

AiðzÞyi ¼ 0; ð8Þ
where the polynomials Ai(z) (i = 0,1, . . . ,m) are relatively prime in C with Am(z) X 0. Eq (8) is called a first integral of Eq. (7).
We note that dq/dn is a polynomial in z and y. Thus, q(z(n), y(n)) = 0 implies that dq/dn = 0. Then, by the Division Theorem,
there exists a polynomial B(z) + C(z)y in the complex domain C such that
dq
dn
¼ @q
@z

dz
dn
þ @q
@y

dy
dn
¼ BðzÞ þ CðzÞyð Þ

Xm

i¼0

AiðzÞyi

" #
: ð9Þ
We consider the case m = 2 of (8). Hence, taking Eqs. (7) and (9) into account, we get
X2

i¼0

A0iðzÞyiþ1
� �

þ
X2

i¼0

iAiðzÞyi�1ðryþ bz2 þ czþ dÞ
h i

¼ BðzÞ þ CðzÞy½ �
X2

i¼0

AiðzÞyi

" #
: ð10Þ
Equating the coefficients of yi (0 6 i 6 3) in Eq. (10) leads to the system
y3 : A02ðzÞ ¼ CðzÞA2ðzÞ; ð11Þ

y2 : A01ðzÞ ¼ CðzÞA1ðzÞ þ ðBðzÞ � 2rÞA2ðzÞ; ð12Þ

y1 : A00ðzÞ ¼ CðzÞA0ðzÞ þ ðBðzÞ � rÞA1ðzÞ � 2½bz2 þ czþ d�A2ðzÞ; ð13Þ

y0 : BðzÞA0ðzÞ � ðbz2 þ czþ dÞA1ðzÞ ¼ 0: ð14Þ
From Eq. (11), we obtain A2ðzÞ ¼ c0 exp
R

CðzÞdz
� �

, where c0 is an integration constant. Since A2(z) and C(z) are polynomials,
we deduce that C(z) = 0 and A2(z) must be a constant. For simplicity, we can take A2(z) = 1. Then, Eqs. (12) and (13) reduce to
the following equations
A01ðzÞ ¼ BðzÞ � 2r; ð15Þ
A00ðzÞ ¼ ðBðzÞ � rÞA1ðzÞ � 2ðbz2 þ czþ dÞ: ð16Þ
Balancing the degrees of A0(z), A1(z), and B(z), we can conclude that degB(z) = 0 and degA1(z) = 1. Assuming B(z) = b0 (b0 – 0)
and A1(z) = a1z + a0(a1 – 0) in Eq. (15), we obtain b0 = a1 + 2r. Thus, from Eq. (16), we have
A0ðzÞ ¼ �
2
3

bz3 þ 1
2
ða2

1 þ ra1 � 2cÞz2 þ a0ða1 þ rÞ � 2d½ �zþ k; ð17Þ
where k is an integration constant. By substituting A0(z), A1(z), and B(z) into Eq. (14) and equating the coefficients of zi

(0 6 i 6 3) to zero, we obtain the following system of nonlinear algebraic equations
z3 : �8br � 10ba1 ¼ 0; ð18Þ

z2 : �12cr � 6ba0 � 12ca1 þ 6r2a1 þ 9ra2
1 þ 3a3

1 ¼ 0; ð19Þ

z1 : �24dr � 6ca0 þ 12r2a0 � 18da1 þ 18ra0a1 þ 6a0a2
1 ¼ 0; ð20Þ

z0 : �6da0 þ 12rkþ 6a1k ¼ 0: ð21Þ
Solving the system (18)–(21) simultaneously, we get the solution set
k ¼ �15625c3 þ 3750c2r2 � 900cr4 � 216r6

187500b2 ; d ¼ 625c2 � 36r4

2500b
; a0 ¼ �

2ð25cr þ 6r3Þ
125b

; a1 ¼ �
4r
5
: ð22Þ
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Now, taking the solution set Eq. (24) into account, Eq. (8) becomes
y2 � 4r
5

xþ 2rð25c þ 6r2Þ
125b

� �
y� 2b

3
x3 þ 1

2
2c þ 4r2

25

� �
x2

�

þ 2r2ð25c þ 6r2Þ
625b

þ 625c2 � 36r4

1250b

� �
xþ 15625c3 þ 3750c2r2 � 900cr4 � 216r6

187500b2

�
¼ 0; ð23Þ
which is a first integral of Eq. (7). Solving Eq. (23), we get
y ¼ 6brð25c þ 6r2 þ 50bxÞ �
ffiffiffi
3
p

bð25c þ 6r2 þ 50bxÞ3=2

750b2 : ð24Þ
Finally, combining Eq. (7) with Eq. (24) and changing to the original variables, we obtain traveling wave solutions to Eq. (5)
as
u�ðx; tÞ ¼ � a2

25bw

exp a
5bw ðx�wt þ n0Þ
	 


1� exp a
5bw ðx�wt þ n0Þ
	 


0
@

1
A

2

þ a2

50bw
þ 1

12
ðw� 1Þ; ð25Þ
where w and n0 remain arbitrary. Our result Eq. (25) can be compared with the result of Wang and Li [32] (Example 4.2 in
there) by assigning appropriate values to the arbitrary parameters involved.

4. The Gilson–Pickering equation

Next, we consider a nonlinear third-order partial differential equations in the form
ut � euxxt þ 2kux � uuxxx � auux � buxuxx ¼ 0; ð26Þ
where e, k, a and b are arbitrary constants. In 1995, Gilson and Pickering [33] introduced Eq. (26) by considering Painlevé
analysis. Recently, Wang and Li [32] studied a class of nonlinear evolution equations, which includes (26) as a special case,
by proposing a factorization technique. Now, letting u(x, t) = U(n), n = x � ct + n0, where c and n0 are arbitrary constants, in
(26), we get
ð2k� cÞU0 þ ecU000 � UU000 � aUU0 � bU0U00 ¼ 0: ð27Þ
We take b = 1 in Eq. (27) for convenience. Then integrating the resultant equation once we obtain
ðec � UÞU00 � a
2

U2 þ ð2k� cÞU ¼ g; ð28Þ
where the primes denote derivatives with respect to n and g is an integration constant. Taking z = U and y = U0 in Eq. (28), we
get the equivalent two-dimensional Hamiltonian system
dz
dn ¼ y;

dy
dn ¼

ð2k�cÞz�a
2z2�g

z�ec ;

8<
: ð29Þ
with Hamiltonian function
Hðz; yÞ ¼ 1
4

2y2 þ zð4c � 8kþ ð2ceþ zÞaÞ þ 2ð2g þ ceð2c � 4kþ ceaÞÞInðz� ceÞ
� �

¼ h; ð30Þ
where h is a constant. We make the transformation dn = (z � ec)dg in (29) to avoid the singular line z = ec for a while. Thus,
system (29) becomes
dz
dg ¼ ðz� ecÞy;
dy
dg ¼ ð2k� cÞz� a

2 z2 � g;

(
ð31Þ
Then the system (29) has the same topological portraits as the system (31) except for the straight line z = ec. For the new sys-
tem (31), z = ec is its invariant straight line solution. We consider the case m = 1 of (8). From now on, we will omit some of the
details because the procedure is the same. Then, by equating the coefficients of yi (0 6 i 6 2) on both sides of (9), we have
y2 : ðz� ecÞA01ðzÞ ¼ CðzÞA1ðzÞ; ð32Þ
y1 : ðz� ecÞA00ðzÞ ¼ CðzÞA0ðzÞ þ BðzÞA1ðzÞ; ð33Þ

y0 : BðzÞA0ðzÞ ¼ ð2k� cÞz� a
2

z2 � g
h i

A1ðzÞ: ð34Þ
Since A1(z) and C(z) are polynomials, from Eq. (32), we deduce that C(z) = 0 and A1(z) must be a constant. For simplicity,
we can take A1(z) = 1. Then, Eq. (33) indicates that degB(z) 6 degA0(z). Thus, from Eq. (34), we conclude that
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degB(z) = degA0(z) = 1. Assuming A0(z) = a1z + a0 (a1 – 0) and B(z) = b1z + b0 (b1 – 0) in Eq. (33), we get b1 = a1 and b0 =�cea1.
Substituting A0(z) and B(z) into Eq. (34) and setting the coefficients of zi (0 6 i 6 2) to be zero, we derive a system of nonlin-
ear algebraic equations for a0, a1, c, and g. Solving the resultant system simultaneously, we get the solution set
g ¼ �1
2

ceð2c � 4kþ caeÞ; a0 ¼ �
i 2

ffiffiffi
2
p

c � 4
ffiffiffi
2
p

kþ
ffiffiffi
2
p

cae
	 


2
ffiffiffi
a
p ; a1 ¼ �

i
ffiffiffi
a
pffiffiffi

2
p : ð35Þ
where c remains arbitrary. Using the condition (35) in (8), we obtain
y ¼ � i
ffiffiffi
a
pffiffiffi

2
p x�

i 2
ffiffiffi
2
p

c � 4
ffiffiffi
2
p

kþ
ffiffiffi
2
p

cae
	 


2
ffiffiffi
a
p : ð36Þ
Combining Eq. (29) with Eq. (36) and changing to the original variables, we find traveling wave solutions to Eq. (26) (with
b = 1) as
u�1 ðx; tÞ ¼
4k� cð2þ aeÞ

a
þ 1

a
exp � i

ffiffiffi
a
pffiffiffi

2
p ðx� ct þ n0Þ

� �
; a > 0; ð37Þ

u�2 ðx; tÞ ¼
4k� cð2þ aeÞ

a
þ 1

a
exp �

ffiffiffiffiffiffiffi
�a
p ffiffiffi

2
p ðx� ct þ n0Þ

� �
; a < 0; ð38Þ
where c and n0 remain arbitrary. Our results (37) and (38) can be compared with the result of Wang and Li [32] (Example 4.1
in there) by assigning special values to the arbitrary parameters involved.

Remark 2. We analyzed our equations by assuming m = 1, 2 in Eq. (8), respectively. The discussion becomes more
complicated for the cases m = 3, 4 since the hyper-elliptic integrals, the irregular singular point theory, and the elliptic
integrals of the second kind are involved. We do not need to consider the case m P 5 because of the fact that an algebraic
equation with the degree greater than or equal to 5 is generally not solvable.
5. Conclusion

Searching for first integrals of nonlinear ODEs is one of the most important problem since they permit us to solve a non-
linear differential equation by quadratures. Applying the first integral method, which is based on the ring theory of commu-
tative algebra, we established some traveling wave solutions to the regularized long-wave Burgers equation and the Gilson–
Pickering equation. We observed that the first integral method, for discovering first integrals, can be applied to NEEs which
can be converted to a second-order ODE through the traveling wave transformation. From our results, we can see that the
technique used in this paper is very effective and can be steadily applied to nonlinear problems, especially for the ones
including non-integrable equations, arising in applied mathematics.
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