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Abstract. We show that the filamentary type structures of the cosmic web can be modeled as
solitonic waves by solving the reaction diffusion system which is the hydrodynamical analogous
of the nonlinear Schrödinger type equation. We find the analytical solution of this system by
applying the Hirota direct method which produces the dissipative soliton solutions to formulate
the dynamical evolution of the nonlinear structure formation.

1. Introduction
The large scale structure of the Universe is marked by prominent filamentary features embedded
within a weblike network, the cosmic web. Extensive N-body simulations are used to model
this complex and intricate dynamical structure. However we need to find a full analytical
formalism to understand this complex structure. Analytical methods for studying the evolution
of cosmological density perturbations which cause this intricate structure formation are classified
into two broad classes: the Eulerian and the Zel’dovich approximations. While the Eulerian
approximation provides an accurate description of the gravitational instability in the linear
regime, the Zel’dovich approximation is an exact solution of the fluid equations as long as
particle trajectories do not cross. When the trajectories cross, the velocity field becomes multi
valued and this causes non-singularities in the density field. The adhesion theory has been
proposed to avoid this velocity singularity problem in the Zel’dovich approximation. In the
adhesion approximation, when shell crossing occurs, the particles are assumed to stick to each
other by introducing an artificial viscosity term in the Burger’s equation. In the special case,
when the viscosity term tends to zero, the geometrical interpretation of the solution of the
Burger’s equation can be used to determine the skeleton of the large scale structure. In this
limit structures formed in the adhesion model are infinitely thin and the adhesion approximation
reduces to the Zel’dovich approximation outside of mass concentration.

An alternative method to these analytical approaches is based on the idea suggested by
Spiegel. He showed the correspondence between the fluid structure equations and the nonlinear
wave equations [1] and in 1993 Widrow and Kaiser were the first to apply the Schrödinger
representation to the problem of the cosmological structure formation for cold dark matter
(CDM) [2]. They developed an advanced nonlinear numerical model known as the Schrödinger
Method to follow the nonlinear evolution of the dark matter field by offering an alternative
particle mesh code. This new numerical model described the matter as a Schrödinger field
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obeying the coupled classical Schrödinger and Poisson equations. This code has been modified
by Davis and Widrow [3]. Another extension of the Schrödinger Method has been done by
Coles [4] in which he suggested that the nonlinear Schrödinger equation is a good candidate
to model CDM but, in the same paper, he pointed out that this nonlinear equation is not
easy to solve analytically. Coles and Spencer [5] demonstrated a wave mechanical approach
to solve the caustic problem in the Zel’dovich approximation, when trajectories cross and this
approach is similar to the adhesion approach except the pressure term. The pressure term in
this new approach has the same effect as the viscosity term in the adhesion theory to avoid the
singularities of the density field. By following this work, Short and Coles proposed a different
approach to study the large scale structure formation based on a wave mechanical description
of self gravitating CDM called free particle approximation [6]. They transformed the usual
hydrodynamical equations of motion into the linear Schrödinger equation and they showed that
the free particle approximation is useful into the mildly nonlinear regime and it has the same
result as the adhesion approximation.

In this study, we derive fully analytical solution of the nonlinear wave equations (nonlinear
Schrödinger type equation and the reaction diffusion equation) which are the fluid dynamical
analogous of each other [7]. To do this, first we show that the cubic nonlinear Schrödinger
type equation satisfies the cosmological fluid dynamical equations and by following the idea
suggested by Coles and Spencer [5], we assume this fluid has the gas pressure that is related to
the density via p = Kχ2, where K is a positive constant. Then we derive a complete analytical
solution of this nonlinear fluid by applying the Hirota direct method which produces the special
soliton waves called dissipatons. To do this, we obtain the nonlinear Schrödinger equation from
the fluid dynamical equation by applying the Madelung transformation and then we transform
the nonlinear Schrödinger type equation into the reaction diffusion system which produces the
soliton solutions by applying the Hirota direct method [8] to find the exact solution of the
nonlinear wave equations. It means that the filamentary type structures of the cosmic web in
the Einstein de Sitter (EdS) Universe can be modeled in a complete analytical way.

2. Fluid dynamical equations in the Einstein de Sitter Universe Ω(t) = 1
To find the analytical solution of the nonlinear wave equation, we take our starting point as the
scaled expressions of the Newtonian equations for a self gravitating perfect fluid in the comoving
coordinate system. The continuity, the Bernoulli and the Poisson equations

∂χ

∂D
+ ~∇x · χ~∇xφv = 0 (1)

∂v′

∂D
+ v′~∇xv′ = −~∇xV − 1

χ
~∇xp (2)

∇2
xφ(x, t) = 4πGa2ρuχ (3)

where G is the gravitational constant and a(t) is the scale factor. We express the equations of
motion in terms of the density excess δ or density contrast χ(~x, t), the peculiar velocity ~v(~x, t)
and the comoving gravitational potential φ(~x, t). The density contrast χ is defined by

χ(~x, t) = 1 + δ(~x, t) =
ρ(~x, t)
ρu(t)

(4)

where ρu(t) is the universal cosmic background density and D is the growth factor. In order
to describe the evolution against the background of an expanding background, it is sensible
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to describe the evolution in terms of the expansion factor a(t) or, even more convenient and
appropriate, in terms of the linear density growth factor D(t) (See [5]). In the case of an
Einstein-de Sitter Universe, we have

D(t) = a(t) (5)

The other important term in the Bernoulli equation (1) the effective potential V includes
contributions from the velocity potential φv and the gravity potential φ,

V =
3Ω

2f2D

(
φv + θ

)
(6)

with the scaled gravity potential θ defined as

θ ≡ 2φ

3Ωa2DH2
. (7)

We also introduce the comoving velocity potential φv for the scaled peculiar velocity ~v′

~v′ = ~∇xφv (8)

3. Relation between the nonlinear Schrödinger and fluid dynamical equations
The fluid equations (1) and (2) can be obtained by decomposing the nonlinear Schrödinger type
equation into its real and imaginary parts by using a special transformation called Madelung
transformation proposed by [9] in which the dark matter can be presented as complex scalar
field. The form of this transformation is given by

ψ(~x, t) =
√

χ exp
{

i
φv

ν

}
(9)

where ν is an adjustable parameter with dimension equal to that of the comoving velocity
potential φv. The scaled density function χ in (9) satisfies the relation

χ = ψψ∗ = |ψ|2, |ψ|2 ≥ 0 (10)

Note that this equality is the analogous of the probability density of the quantum mechanics.
Since we use the nonlinear theory, |ψ|2 gives the mass density of its constituent microscopic
particles at that point [10] and it is positive definite |ψ|2 ≥ 0 but not essentially unity. This gives
us the right to name the nonlinear wave equation as the nonlinear Schrödinger type equation
and it is given by the following equation

iν
∂ψ

∂a
= − 1

2
ν2∇2

xψ + V ψ + κ2 |ψ|2ψ + Pψ (11)

where P is defined as the regulation term given as

P =
ν2

2
∇2

r|ψ|
|ψ| (12)

The reason for substituting the regulation term P into the nonlinear Schrödinger type equation
is to avoid the extra term called the quantum potential in the Euler equation. Equation (11)
originally explains the dynamical evolution of the Bose-Einstein condensate in which large
fraction of the bosons occupy the lowest quantum state of the external potential and all wave
functions overlap each other where the quantum effect becomes apparent on a macroscopic
scale. Here we will use this fact to model the macroscopic wave function of bosons ψ obeys the
nonlinear Schrödinger equation. The nonlinear term κ2|ψ|2 in (11) shows that the pressure term
resulting from the inter particle interactions and κ is interpreted as the nonlinearity parameter
which is a constant value. This nonlinear parameter and the constant parameter of the equation
of sate satisfies κ =

√
K.
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4. Reaction diffusion system in the EdS Universe
We transform the nonlinear Schrödinger type wave equation into an equivalent reaction diffusion
wave equation which is the fluid analogous of equation (11) [7]. To obtain the reaction diffusion
analogous of equation (11) we define two real functions

Q+(x, a) ≡ √
χe

φv
ν , Q−(x, a) ≡ √

χe−
φv
ν (13)

These real functions and the wave function of equation (11) satisfy the following relations

−Q+Q− = χ = ψψ∗ = |ψ|2 (14)

so fluid equations (1) and (2) generated by (11) can be written as the reaction diffusion system
which is the analogous of (11)

ν
∂Q(+)

∂a
+

ν2

2
∇2

xQ(+) − κ2Q(+)Q(−)Q(+) − VQ(+) = 0

−ν
∂Q(−)

∂a
+

ν2

2
∇2

xQ(−) − κ2Q(−)Q(+)Q(−) − VQ(−) = 0 (15)

Here we represent the decoupling reaction diffusion system. The second equation in system (15)
is the time reversible of the first reaction diffusion equation and it is crucial for the existence
of the Hamiltonian structure and integrable system [7, 11]. In this study we do not take into
account the time reversible reaction diffusion equation as we do not use the negative time
values in order to have physical consistency in the large scale structure. We consider the full
nonlinear Schrödinger Poisson system in which the evolution of CDM can be fully described for
the gravitational field in terms of the cosmological model. Jones suggested an analytical model
for nonlinear clustering in which he showed that the baryonic matter driven by CDM potential
can be modeled in terms of the heat equation [12] and we know that the heat equation is the
particular case of the reaction diffusion equation. It means that we can model the evolution of
baryonic matter by solving (15) whose solution automatically gives the solution of (11) thanks
to relation (14). It is interesting to note that in the linear regime the effective potential V is
equal to zero. In fact, the conclusion of V = 0 stretches out much further into the quasi-linear
regime, for as long the Zel’dovich formalism still describes the motion of matter elements in the
Universe. Hence the first equation in system (15) is reduced to

ν
∂Q(+)

∂a
+

ν2

2
∇2

xQ(+) − κ2Q(+)Q(−)Q(+) = 0 (16)

5. Hirota bilinear form
Our approach is to find the exact solution of (16) by following the method developed by Hirota
[8]. When we apply the Hirota direct method to the reaction diffusion equation, the soliton
solutions are obtained. The crucial step of the Hirota method is a change of variables which
converts the equation of motion to an equation of Hirota bilinear type. The appropriate change
of variables is not obvious; fortunately we are guided by the change of variables which is used
for the nonlinear Schrödinger equation.

We analyze equation (16) and construct one- and two- soliton solutions. To obtain the
solution, we applied the following steps: First we make the bilinearization by applying the
suitable transformations of (16) which is

Q(+) =
1√
2

ν

κ

g+

f
, Q(−) =

1√
2

ν

κ

g−

f
(17)
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where g±(x, a) and f(x, a) are the new differentiable functions which help us to write the reaction
diffusion equation as a combination of bilinear equation. After substituting the derivatives of
the new functions Q(+)(x, a) in terms of the independent variables into equation (16)

∂Q(+)

∂a
=

1√
2

ν

κ

[
Da(g+.f)

f2

]

∇2
xQ(+) =

1√
2

ν

κ

[
D2

x(g+.f)
f2

− g+

f

D2
x(f.f)
f2

]

where D is called the Hirota D-operator or the Hirota derivative which is defined as

Dn
x(g±.f) =

n∑

l=0

(−1)l
(

n
l

)
g±(n−l)xflx

= g±nxf − ng±(n−1)xfx + ... + (−1)ngfnx (18)

where the subscripts indicate the partial differentiation and dot (.) is multiplication symbol.
Hence equation (16) can be expressed as the following pair of the Hirota bilinear equations

(
νDa +

ν

2
D2

x

) (
g+.f

)
= 0

D2
x (f.f) = −g+g− (19)

6. Perturbation analysis of the soliton solutions
To find the solution of equation (16) in terms of one-, two- ...etc soliton waves the Hirota
perturbation method has been applied. To do this, we use two different differential functions
defined in transformation (17) g and f . Let us define them as

g+ = ε0g+
0 + ε1g+

1 + ε2g+
2 + ... (20)

and

f = ε0f0 + ε1f1 + ε2f2 + ... (21)

where g+
0 and f0 are non zero constants and fi, g+

i , i = 1, 2, ...N are exponential functions. We
insert f and g into the Hirota bilinear form (19) of equation (16).

6.1. One soliton solution
First we can take f = 1 + ε2f1 and g = εg±1 where fi = gi = 0 for all i ≥ 2 and they are
exponential functions. For a nontrivial solution, f0 and g±0 should not vanish at the same time.
At first let us examine the Hirota perturbation on the bilinear system and make the coefficients
identically zero. The coefficient of ε’s gives us

ε0 : D2
x(1.1) = 0 (22)

ε1 :

(
νDa +

ν2

2
D2

x

)
(g+

1 .1) = 0 (23)

ε2 : 2D2
x(1.f1) = −g+

1 g−1 (24)

ε3 :

(
νDa +

ν2

2
D2

x

)
(g+

1 .f1) = 0 (25)

ε4 : D2
x(f1.f1) = 0 (26)

Recent Developments in Gravity (NEB XIV) IOP Publishing
Journal of Physics: Conference Series 283 (2011) 012039 doi:10.1088/1742-6596/283/1/012039

5



and then by the coefficient of ε1, we can easily show that g±1 = ±eη±1 satisfies the differential
form and here we choose the form of the function η1 as η1

± = p±1 x ± Ω±1 t + η±0 . Hence again
using the same form we find the following relations between the parameters of the η±1 which is

Ω±1 = −ν

2
p±2

1 (27)

then η1
± = p±1 x∓ ν

2p±2
1t + η±10 so we get the solution as

g±1 = ±eη±1 , f = 1 + eη+
1 +η−1 +γ (28)

where γ is defined in the following form

γ ≡ ln
1
2

1(
p+
1 + p−1

)2

Then the solution of the RD system has the form

Q+(x, a) =
1√
2

ν

κ

eη+
1

1 + eη+
1 +η−1 +γ

, Q−(x, a) = − 1√
2

ν

κ

eη−1

1 + eη−1 +η+
1 +γ

(29)

This solution admits the exponentially growing and decaying components known as dissipation.
It is useful to note that adiabatic parameter κ defines two different families of solutions of
system (15) depending on the sign of κ. For κ > 0, the solution of equation (16) is given by a
bright soliton, corresponding to a local maximum of the scaled density distribution χ = |ψ|2.
For κ < 0, the solution of reaction diffusion (16) is given by a dark soliton, corresponding to a
local minimum in the scaled density distribution. Here we investigate the bright soliton solution
to obtain the density function of the local maxima represented as filaments. Hence the scaled
density function can be written as

−Q+(x, a)Q−(x, a) = ψψ∗ = |ψ|2 =
1
2

ν2

κ2

eη+
1 +η−1

(
1 + eη+

1 +η−1 +γ
)2 (30)

which is equal to the density contrast

χ =
ν2

κ2

k2

cosh2
[
kx + ν

2vkt + η+
0 +η−0

2 + 1
2γ

] (31)

where k is represented as wave number and v is the velocity of the dissipative soliton

k ≡ p+
1 + p−1

2
, v ≡ p−1 − p+

1

The scaled density function shows the perfect soliton wave shape presented as filamentary type
structure. When we change the parameters p+

1 and p−1 we can see the different type of solitonic
wave type structures which bear a striking geometric resemblance to the filaments of the cosmic
web. One soliton solution provides the information of the distribution of the scaled density in
terms of the expanding scale factor a(t), in other words, it shows the evolution of the scaled
density function in the EdS Universe in Figure 6.1.
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Figure 1. 3D plot of the scaled density function χ represented by one soliton solution of the
reaction diffusion equation in terms of κ = 1/

√
2 with parameters p−1 = −0.1 and p+

1 = 0.121.

6.2. Two soliton solution
We give the analytical expression of two soliton solution of the RD system. Hence to find two-
soliton solution, we take f = 1 + ε2f1 + ε4f2 and g = εg1 + ε3g2 where ηj

± = p±j x∓ ν
2p±j

2
t + η±j0,

j = 1, 2. Note that here fj = gj = 0 for all j ≥ 3. At first we substitute f and g into the
equation (19) and we try to make the coefficients of εm, m = 0, ..., 8 to vanish. By following the
Hirota method we obtain the two soliton solution

ε0 : D2
x(1.1) = 0 (32)

ε1 :

(
νDa +

ν2

2
D2

x

)
(g+

1 .1) = 0 (33)

ε2 : 2D2
x(1.f1) = −g+

1 g−1 (34)

ε3 :

(
νDa +

ν2

2
D2

x

)
(g+

1 .f1 + g+
2 ) = 0 (35)

ε4 : D2
x(2f2 + f1.f1) = −(g+

1 g−2 + g+
2 g−1 (36)

ε5 :

(
νDa +

ν2

2
D2

x

)
(g+

1 .f2 + g+
2 .f1) = 0 (37)

ε6 : D2
x(f1f2 + f2.f1) = −g+

2 g−2 (38)

ε7 :

(
νDa +

ν2

2
D2

x

)
(g+

2 .f2) = 0 (39)

ε8 : D2
x(f2f2) = 0 (40)

By following the same way as in the one soliton solution, we obtain g

g± = ±[eη±1 + eη±2 + eη+
1 +η−1 +η±2 +α1 + eη±1 +η+

2 +η−2 +α2 ] (41)

where parameters α1 and α2 are defined as

α1 ≡ ln
1
2

(
p+
2 − p+

1

)2

(
p+
1 + p−1

)2 (
p+
2 + p−1

)2
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α2 ≡ ln
1
2

(
p+
2 − p+

1

)2

(
p+
1 + p+

2

)2 (
p+
2 + p−2

)2 (42)

and the general form of function f is

f = 1 + eη+
1 +η−1 +γ11 + eη+

2 +η−1 +γ21 + eη+
1 +η−2 +γ12 + eη+

2 +η−2 +γ22

+eη+
1 +η−1 +η+

2 +η−2 +ξ (43)

where the parameters are defined as

γ11 ≡ ln
1
2

1(
p+
1 + p−1

)2

γ12 ≡ ln
1
2

1(
p+
1 + p−2

)2

γ21 ≡ ln
1
2

1(
p+
2 + p−1

)2

γ22 ≡ ln
1
2

1(
p+
2 + p−2

)2

ξ ≡ ln
1
4

∣∣∣p+
2 − p+

1

∣∣∣
4

(
p−2 + p+

2

)2 (
p+
1 + p−1

)2 ∣∣∣p+
1 + p−2

∣∣∣
4

Then the scaled density function in terms of the two soliton solution (6.2) can be written as by
applying (41) and (43) into the relation (14)

χ =
1
2

ν2

κ2

g+g−

f2
(44)

7. Conclusion
In this study we show a methodology for dealing with the nonlinear Schrödinger type equation
and the reaction diffusion equation which are derived from the cosmological fluid equations.
This special methodology is called the Hirota direct method and by applying this method to
the nonlinear Schrödinger or its hydrodynamical analogous the reaction diffusion equation, we
obtain the analytical solution of these nonlinear systems. Due to the nature of the Hirota
method which is based on the perturbation approximation, the solution of the reaction diffusion
equation and the nonlinear Schrödinger type equation produce the dissipative soliton type waves
called dissipatons. When we increase the order of the perturbations in the Hirota method from
one-soliton solution to N- soliton solutions, these waves show striking similarity to the intricate
structure of filamentary type features of the cosmic web in 2 + 1 dimension. Apart from the
filamentary structures represented as local maxima of the density field called bright solitons
depending on the positive nonlinear term κ, we can construct the structures of the local minima
called dark solitons and these dark solitons can be represented as empty negative density regions
called voids around the filaments.

It is necessary to note that in this study we have focused on the detailed calculations of one
soliton solution and added the graphics for two-soliton solutions because of the complexity of
the calculations. We will give the technical details of the higher order solutions in the future
paper.
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Figure 2. Contour plots of the scaled density or the density contrast function for two soliton
solution of the reaction diffusion equation at the red shift values z = 0.1, 0.05, 0 in the phase
space (from left to right). We can easily see that the scaled density of the filaments increase
with respect to time evolution which means that the matter merges through the bridges into
the filaments. In the late time steps, these matter bridges disappear because of the merging of
the matter into the high density regions/lumps.
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