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Bisphenol A [BPA, 2,2,-bis (hydroxyphenyl) propane] is one of the highest-volume chemicals produced
worldwide. It is detected in body fluids of more than 90% of the human population. Originally
synthesized as an estrogenic compound, it is currently utilized to manufacture food and beverage
containers resulting in uptake with food and drinks. There is concern that exposure to low doses of
BPA, defined as less than or equal to 5 mg/kg body weight /d, may have developmental effects on
various hormone-responsive organs including the mammary gland. Here, we asked whether perinatal
exposure to a range of low doses of BPA is sufficient to alter mammary gland hormone response later
onin life, with a possible impact on breast cancer risk. To mimic human exposure, we added BPA to the
drinking water of C57/Bl6 breeding pairs. Analysis of the mammary glands of their daughters at
puberty showed that estrogen-dependent transcriptional events were perturbed and the number of
terminal end buds, estrogen-induced proliferative structures, was altered in a dose-dependent fash-
ion. Importantly, adult females showed an increase in mammary epithelial cell numbers comparable
to that seen in females exposed to diethylbestrol, a compound exposure to which was previously
linked to increased breast cancer risk. Molecularly, the mRNAs encoding Wnt-4 and receptor activator
of nuclear factor kB ligand, two key mediators of hormone function implicated in control of mammary
stem cell proliferation and carcinogenesis, showed increased induction by progesterone in the mam-
mary tissue of exposed mice. Thus, perinatal exposure to environmentally relevant doses of BPA alters
long-term hormone response that may increase the propensity to develop breast cancer. (Molecular
Endocrinology 25: 0000-0000, 2011)

NURSA Molecule Pages™: Nuclear Receptors: PR; Ligands: Bisphenol A.

isphenol A [BPA, 2,2,-bis (hydroxyphenyl) propane]
Boriginally synthesized as a chemical estrogen (1), is a
high-volume chemical with a global production of 4 mil-
lion tons in 2006 (2). It is used, in particular to manufac-

ISSN Print 0888-8809 ISSN Online 1944-9917

Printed in U.S.A.

Copyright © 2011 by The Endocrine Society

doi: 10.1210/me.2011-1129 Received June 10, 2011. Accepted August 15, 2011.

Mol Endocrinol, November 2011, 25(11):0000-0000

ture food and beverage containers from which it can leach
out. Its pervasive presence in the environment leads to
continuous exposure of the human population (3). Up-
take is mostly via food and drinks as well as through
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dental fillings and skin contact with thermal paper,
widely used for receipts (4).

To date, regulatory bodies in the United States and
European Union support safety of low-dose BPA expo-
sure, defined as less than or equal to 5 mg/kg-body weight
(bw)/d, the lowest dose used in standard toxicological
tests, with a US Enivironmental Protection Agency calcu-
lated reference dose of 50 ug/kg-bw/d (5). A number of
studies in rodents raise the concern that exposure to low
doses of BPA may have developmental effects in various
hormone-responsive organs, including the mammary gland,
with potential consequences for public health (6-8).

In particular, the hypothesis that perinatal exposures
to hormonally active compounds may affect breast cancer
risk has been put forward. It is supported by observations
made on women exposed to diethylstilbestrol (DES) in
utero. This estrogenic compound was widely adminis-
tered to pregnant women in the 1950s and 1960s. The Food
and Drug Administration banned DES when uterine expo-
sure to the drug was linked to clear-cell vaginal adenocarci-
noma in teenage girls (9). Recently, DES daughters were
found to have increased breast cancer risk, with a relative
risk of 1.83 after age 40 (10-12). Many of the developmen-
tal abnormalities in the reproductive tract observed in hu-
man patients were recapitulated in mice and rats by perina-
tal DES exposure (9, 13) suggesting that rodents can be
valuable models for assessing the endocrine disruptive ef-
fects of such compounds. Studies in CD-1 mice and rats have
linked exposure to low doses of BPA to changes in mam-
mary gland development and an increased propensity
to develop mammary carcinomas (6, 7, 14, 15).

Based on these and other concerns, Canada and the
European Union banned the use of BPA in baby bottles,
yet no general consensus to change current regulations
has been reached. The issue is complicated; any assess-
ment of endocrine function is complex and for any bio-
logical endpoint the number of confounding factors is
large. Hence, large sample sizes are required. Establishing
dose-dependent effects, an essential part of standard tox-
icological assessments, can require enormous numbers of
mice and render costs prohibitive.

To assess whether perinatal exposure to low-dose BPA
in environmentally relevant conditions affects the mammary
gland hormone response, we mimic human exposure, most
of which occurs by mouth via food and beverage contain-
ers, by adding BPA to the drinking water of breeding
C57Bl6 mice. We test a range of doses below those used in
standard toxicology testing (5 mg/kg-bw/d) including es-
timated daily uptake by formula-fed infants (Fig. 1A). To
evaluate the long-term impact of this exposure on the
mammary gland hormone response, we used novel exper-
imental endpoints such as single-cell analysis by flow cy-
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tometry and hormone exposure experiments on freshly
isolated organoids, which facilitate statistical analysis.
We find that perinatal exposure to environmentally relevant
BPA levels has dose-dependent effects on the response to
estrogens during puberty and that it alters long-term the
response to progesterone with increased mammary epi-
thelial cell numbers in adult females. Molecularly, we
identify increased induction of the central mediators of
progesterone function, wnt-4 and receptor activator of
nuclear factor B ligand (RANKL). Hence, perinatal ex-
posure to environmentally relevant doses of BPA has
long-term effects on the mammary gland with implica-
tions for breast cancer risk that need to be carefully
evaluated.

Results

Experimental setup

To mimic continuous human BPA exposure via the
oral route, BPA was added to the drinking water of
C57Bl/6 breeding pairs at doses ranging from 2.5 ug/liter
to 5 mg/liter. Based on average water intake and average
weight (see Materials and Methods), this corresponds to
0.6 pg to 1.2 mg/kg-bw/d (Fig. 1A). As a point of refer-
ence, the US Department of Health and Human Services
estimates daily BPA intake in formula-fed infants to 1-13
pg/kg-bw/d. We included DES (0.12 or 1.2 ug/kg-bw/d)
another estrogen receptor (ER)a agonist as a positive con-
trol. Women exposed to DES in utero were shown to be at
increased risk for breast cancer after age 40 (10-12).

The female offspring thus exposed in utero and postna-
tally through milk was transferred to a BPA- and DES-free
environment at weaning (d 24 = 1). For each BPA concen-
tration, four different mothers were used. Because dam
treatment results in a single exposure group, we analyzed
only one daughter per litter for any given experimental end-
point. To obtain a total number (n) of 18-20 animals per
treatment group, the experiment was performed in triplicate.

Pubertal expression of estrogen-dependent genes
Exposure to low doses of oral BPA had no significant
effect on litter size, sex ratio, or body weight at weaning
(Supplemental Fig. 1, A-C, published on The Endo-
crine Society’s Journals Online web site at http://mend.
endojournals.org). We then analyzed mammary glands
during puberty, more specifically at 30 = 1 d of age, when
estrogens drive development (16). Because BPA interacts
with the ERa and ERB and can affect estrogen-induced
transcription (17), we assessed mRNA expression levels
of two well-characterized estrogen target genes, the
progesterone receptor (PR) (18) and amphiregulin (19);
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FIG. 1. Perinatal BPA exposure and pubertal mammary gland development. A, Range of BPA doses used in the present study expressed as daily
uptake (ug/kg-bw). Regulatory benchmarks and estimated human exposure are indicated. B-D, Quantitative RT-PCR analysis of relative mRNA
expression of the estrogen-regulated genes PR, SLPI, and amphiregulin as well as ERa in mammary glands of females exposed perinatally to BPA or
DES. Values were normalized to cytokeratin 18 (n =18-20 per condition). E and F, Stereomicrograph of a whole-mounted inguinal mammary
gland of 30-d-old, unexposed female showing epithelial structures with TEB. E, Scale bar, 1 cm. Higher magnification of growing ductal tips;
arrowheads point to TEB. F, Scale bar: 1 mm. G, Effect of BPA and DES on adjusted TEB numbers. The black curve represents median smooth.
Note, daughters of mothers with a daily intake of 3 wg BPA/kg-bw show an increase in numbers of TEB, which is statistically significant. To
evaluate statistical significance, t values were determined because the denominator degrees of freedom used to penalize certainty when
computing F statistics were unknown given the multilevel data (* indicates statistical significance). NOAEL, No observed adverse effect level.



4 Ayyanan et al. BPA Alters Mammary Gland Hormone Response

in addition, we monitored the mRNA specifying secretory
leukoprotease inhibitor (SLP1), a gene we identified as an
estrogen-controlled gene in pubertal mammary glands
(Ciarloni L., and C. Brisken, unpublished observations).
Parental daily uptake of 0.12 pug DES/kg-bw resulted in
increased PR (Fig. 1B) and decreased SLPI (secretory leuko-
protease inhibitor) (Fig. 1C) mRNA expression but did not
significantly affect amphiregulin or ERa mRNA expression
(Fig. 1, D and E). Similarly, daily uptake of 3, 120, and 1200
wng/kg-bw BPA resulted in dose-dependent effects on PR and
SLPI mRNA expression (Fig. 1, B and C) that were statisti-
cally significant and comparable to DES at 1200 ug/kg (n =
18-20). As with DES exposure, ERae mRNA expression was
not affected by BPA exposure (Fig. 1E). Ampbhiregulin
mRNA expression in BPA-exposed females showed a trend
toward a nonmonotonic response, as frequently seen in hor-
monal responses, which was, however, not statistically sig-
nificant (n = 18-20) (Fig. 1D). Thus, perinatal low-dose
BPA exposure perturbs estrogen signaling in the puber-
tal mammary gland with positive and negative effects
on the transcription of distinct ERa-regulated genes.

Terminal end buds (TEB)

Estrogen-induced cell proliferation during puberty
concentrates at the ductal tips. As a result, they enlarge
and form club-like structures that measure between 1.5 to
10 times the diameter of the subtending ducts and are
called TEBs (Fig. 1, F and G). To assess whether perinatal
BPA exposure affects estrogen function, we determined
TEB numbers in a large cohort of mice (n = 10-49 per
dose) and analyzed parameters that could potentially con-
found the analysis. As expected, body weight, one of the
factors that determine puberty onset and ovarian estrogen
secretion, correlated with number of TEBs, Pearson coef-
ficient 0.31, P = 1.86e-06 (Supplemental Fig. 2A). Incon-
sistent effects were observed with different litters and
between the three experiments (Supplemental Fig. 2, B
and C). Perinatal exposure to BPA resulted in a statisti-
cally significant increase in adjusted TEB numbers at a
dose of 3 ug/kg-bw (t = 2.31) (Fig. 1H). When all BPA
doses were considered interdependently as a nonmono-
tonic function, more specifically, an excess-substrate in-
hibition function (Supplemental Fig. 2D), and placed as a
regressor in a linear mixed effect model, the effect of BPA
was significant (t value 3.46) (Supplemental Fig. 2E).

Mammary cell number in adult females

Next, we examined the long-term outcome in adult
mammary glands. In light of the low cell proliferation
rates characteristic of the mammary epithelium of adult
females that are furthermore susceptible to cyclic changes,
difference in proliferation indices due to BPA exposure
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would be difficult to discern. Hence, we assessed cumulative
changes in proliferation vs. cell death by quantifying total
mammary cell numbers at 3 months of age. To reduce vari-
ation, mammary glands from two to three control or BPA-
exposed females were pooled and processed in parallel to
isolate single cells (20) for each sample point and counted in
triplicate by an automated cell counter. A control mouse had
on average 1.6 million cells. In glands from BPA-exposed
females, cell numbers were on average 50% higher than
in the controls; this increase was statistically significant
with both low (6/12 ug/kg-bw/d) and relatively high
(600/1200 pg/kg-bw/d) parental daily intake (Fig. 2A).
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FIG. 2. Perinatal BPA exposure and mammary cell populations in
adulthood. A, Relative cell numbers in mammary glands from 3-
month-old BPA- or DES-exposed or control animals. For each count,
two to three animals were pooled per condition. Number of
independent experiments is n = 5 f for DES exposure, n = 20 and n =
6, for 6/12 and 600/1200 wg/kg-bw BPA exposure, respectively. B,
FACS analysis of single cells derived from mammary glands of exposed
and unexposed females. The proportions of distinct cell populations
characterized by distinct cell surface antigens are plotted over BPA and
DES exposure doses (indicated values are in mg/kg-bw/d). Mammary
epithelial cell compartments, luminal (CD24 high) and basal (CD24
low) and the percentage of fibroblasts (CD140a) and combined
population of immune and endothelial cells (cocktail: CD45 and CD31)
were not significantly altered with P > 0.06 for all conditions (from left
to right: luminal, P = 0.34/0.67/0.44; basal, P = 0.07/0.42/0.94;
fibroblasts, P = 0.29/0.58/0.34; immune/endothelial, P = 0.12/0.17/
0.68). Each dot represents one mouse; experiments were performed in
triplicate. Bars represent median values. ctrl, Control.



Mol Endocrinol, November 2011, 25(11):0000-0000

C p<.00002 D wnt-4
@ 80 p<0.01 P p=0.04
FJ ?’0 g ] 18 o
[&] | ==
T 60 1 | D 16 | I
= [0)
- + 14
5 W 2 12 l
1 (i |
2w L
B 30 1 o 081
D ol = 0.6 1
e o L 04
o 10 e -
2 02
0 T - 04 .
ctrl BPA ctrl BPA ctrl BPA
6 month-old 12 month-old
E RANKL 3
§ 67 p=0.03
35 1 § s R
30 - o A
c o 4
S 25 < -
S 20 c 3 o
© S
» S
g 109 H I ;i .
5 1 .S:J 1
o 1M i AN Al = |
C 'BPA C "BPA C "BPA C "BPA pos —
1 2 3 4
experiment number
5 p=0.01
F Wnt-4 £ 16
“8 14 a
8 9 E £ s
71 o 1.2 o
S 61 S
= | 5
S ° S 08
o 4 4 =
= 3 B 086
3 2 4 é 0.4
11 E 02
k c: —T
0+C BPA" T C BPA " C ' BPA " C 'BPA’ =:
1 2 3 4

experiment number

FIG. 3. Perinatal BPA exposure alters response to progesterone. A and B, Histological sections of
right inguinal mammary glands from control (panel A), or BPA-exposed (6 wg/kg-bw/d) (panel B),
12-month-old females, stained with antibody against PR. Scale bar, 50 mm. C, Bar graphs
showing percentage of PR-positive luminal epithelial cells in mammary glands of unexposed and
BPA-exposed females at 6 and 12 months of age (n = 5-7 per condition). More than 500 cells
were counted in three distinct sectors. D, Basal levels of Wnt-4 mRNA are increased in the
mammary glands of BPA-exposed (6 ug/kg-bw/d) females vs. their age-matched unexposed
controls (n = 12). E and F, Bar graphs showing induction by R5020 of RANK (panel E) and Wnt-4
MRNA (panel F) in unexposed females (solid bars) and in daughters of parents with a daily intake
of 6 ug/kg-bw BPA (open bars). Four independent experiments are shown. Ratios of RANKL and
Wnt-4 mRNA induction in response to R5020 treatment between control and BPA-exposed
animals are shown in right panels. Note, BPA exposure results in a significant increase in Wnt4
and RANKL induction. Bars represent mean values * sp of triplicate RT-PCR. ctrl, Control.
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Mammary glands from DES-exposed
females showed a 70% increase in
cell number.

Organoids consist of both luminal
and basal mammary epithelial cells and
contain. in addition, various stromal cell
types. Analysis of dissociated mammary
glands for multiple cell-surface antigens
by fluorescence-activated cell sorting
(FACS) revealed no change in the ratio of
luminal (CD24 high) vs. basal (CD24
low) epithelial, as well as distinct stromal
cell populations such as fibroblasts
(CD140a+), hematopoetic (CD45+).
and endothelial cells (CD31+) in BPA-
or DES-treated compared with control
mice (Fig. 2B) indicating a proportional
increase of various cell types.

PR and downstream signaling
mediators

Progesterone is a major proliferative
signal in the adult mammary gland (21)
and is likely to play an important role
in cancer development. The PR is ex-
pressed on subset of mammary epithe-
lial cells. and the hormone acts via
paracrine mechanisms (22). Immuno-
histochemistry for PR revealed a pro-
nounced increase of PR-positive cells
within the luminal epithelial popula-
tion (Fig. 3, A and B) of BPA-exposed
animals (6 wg/kg-bw/d). The percent-
age of PR-positive cells was 32.3 =
12.4 and 35.6 = 5.9% in 6- and 12-
month-old unexposed mice, whereas it
was increased to 54.3 + 5.3 (P < 0.01)
and 66.5 = 8.4% (P < 0.00002) in ex-
posed animals, respectively (Fig. 3C).

Wnt-4 and RANKL are important
downstream mediators of progester-
one function (21, 23), both of which
have recently been implicated in the
control of stem cell function (24, 25).
Additionally, RANKL has been linked
to mammary carcinogenesis (26, 27).
Analysis of mRNA expression in mam-
mary glands from 12 age-matched adult
females revealed statistically significant
increase in Wnt-4 mRNA levels in BPA
(6 mg/kg-bw/d)-exposed animals (Fig.
3D). RANKL expression, however,
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varied over several orders of magnitude between individ-
ual mice so that statistically significant differences be-
tween control and BPA-exposed females could not be
assessed.

To circumvent the problem of quantifying changes in
RANKL expression and to determine whether the in-
creased cell number in BPA-exposed animals reflects in-
creased responsiveness to progesterone, we harvested
mammary glands from 3-month-old female offspring of
exposed (6 pg/kg-bw/d) and unexposed mothers and
briefly homogenized the tissue. Subsequently, the samples
were subjected to gentle enzymatic dissociation (see Ma-
terials and Methods) for 6 h, either in the presence of the
progesterone agonist 20 umol R5020 or vehicle. Real-
time RT-PCR of the resulting organoids revealed that
both RANKL and Wnt-4 mRNA were consistently in-
creased by the R5020 treatment (Fig. 3, E and F, solid
bars). The extent of the induction of RANKL mRNA was
on average 320% and of Wnt-4 mRNA on average 30%
higher in the BPA-exposed than in control tissue (Fig. 3, E
and F, right panels). Thus, perinatal exposure to BPA
enhances the transcriptional response to progesterone in
the adult mammary gland.

Discussion

The present study reveals that perinatal BPA exposure has
long-term developmental effects on the mammary gland
in C57/Bl6 mice. Our findings are consistent with and
extend previous studies in CD1 mice and rats (6, 7, 14).
Munoz-de-Toro et al. (14) exposed pregnant dams to 25
and 250 ng BPA/kg-bw/d through sc implantation of an
osmotic pump. They observed that the number of TEBs is
increased in the offspring at 30 d. Our finding that TEB
number is increased in offspring from mice exposed to
600 ng and 3 pg/kg-bw/d orally is in line with this. Im-
portantly, whereas we found that BPA-exposed animals
have higher numbers of PR expressing mammary epi-
thelial cells at 6 and 12 months of age than unexposed
controls, in CD1 mice a similar difference was already
detected in 30-d-old females. Moreover, Western blotting
of protein lysates from mammary glands of 50-d-old rats
that had been exposed postnatally to BPA revealed in-
creased expression of PR (7). Taken together, a picture
emerges, in which perinatal exposure to BPA results in
increased PR expression resulting in increased sensitivity
to this hormone. This, likely, accounts for the increased
transcription of wnt-4 and RANKL mRNAs we observed
and possibly the increased cell number we described. Sim-
ilarly, the increased side branching observed in
4-month-old BPA-exposed CD1 females (14) and the
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increased susceptibility to 7,12-dimethylbenz(a)an-
thracene-induced carcinogenesis (7) may result from an
enhanced response to progesterone (27).

Our study illustrates difficulties and complexities in-
volved in discerning perturbations of endocrine function.
Expression analysis of three different estrogen-controlled
genes PR, SLPI, and amphiregulin, in the pubertal glands
of exposed animals, with 18-20 animals sampled per
group, revealed statistically significant effects only for the
former two genes at the highest dose tested. Interestingly,
the graphical representation suggests differential, dose-
dependent effects; PR expression shows a tendency to
increase and SLPI expression shows a tendency to de-
crease with increasing doses of BPA whereas amphiregu-
lin expression, as a function of parental BPA intake, can
be described as nonmonotonic. We speculate that an in-
crease in sample size might have revealed these tendencies
as statistically significant.

The differences observed at the level of individual gene
expression highlight the dilemma of finding robust read-
outs for endocrine disruptors. Indeed, because we used a
more complex, biological readout, namely the number of
TEB, which reflects estrogen-induced cell proliferation
mediated by amphiregulin (28), we found statistically sig-
nificant effects only at one dose (3 pg/kg-bw/d) although
we had used more doses and had adjusted for con-
founding factors. However, as we considered all doses
interdependently, based on an excess substrate-inhibi-
tion function, the effect of BPA was highly significant (t =
3.46). This highlights the need for large datasets and
mathematical modeling to discern dose-dependent ef-
fects in an inbred mouse strain under controlled exper-
imental conditions.

Progesterone is the major proliferative stimulus in the
adult mouse mammary gland, and exposure to this hor-
mone is increasingly recognized as a risk factor in human
breast carcinogenesis. Our finding that mammary epithe-
lial cell numbers are increased in adult females exposed to
different low doses of BPA early in life suggests increased
sensitivity to progesterone in exposed animals. This find-
ing is of concern, in particular, as the effects of BPA on cell
numbers are comparable to those of DES, a compound
uterine exposure to which has been linked to increased
breast cancer risk (10-12). As a likely molecular mecha-
nism underlying the increased proliferative response to
progesterone, we find increased expression of Wnt-4 in
the mammary tissue of exposed females and increased
induction of both RANKL and WNT-4 mRNA in re-
sponse to progesterone stimulation. Both factors have
been implicated in the stimulation of stem cell prolifera-
tion, and their downstream signaling pathways are dereg-
ulated in mammary carcinogenesis (25-27). Whether the
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enhanced mRNA induction in response to progesterone is
attributable to the increased number of progesterone
receptor-expressing cells and/or reflects an enhanced
transcriptional response in individual hormone receptor-
positive cells remains to be addressed.

In the present study, BPA exposure occurred in utero,
through the placenta, and during prepubertal life, through
milk. This points to persistent, epigenetic changes as a
mechanism underlying the effects observed in adult fe-
males; these may occur in the mammary epithelium itself
and/or other tissues that, in turn, affect the mammary
gland, such as the pituitary gland or the ovaries. Whether
there is a particular developmental window during which
BPA exposure causes the changes we observed and
whether pre- or postnatal exposure is critical remains to
be addressed. Our study did not test effects of prolonged
exposure throughout adulthood, which may or may not
enhance the observed effects.

Exposure of pregnant CD1 dams to 2.4 ug/kg-bw/d
BPA resulted in increased body weight of their daughters
at weaning (29), an effect we did not observe. However,
we noticed an increase in body weight in the daughters of
mothers exposed to low-dose BPA later in life (data not
shown). This discrepancy may be related to genetic
differences between the two strains, as illustrated by
previous observations that effects of perinatal BPA ex-
posure were more pronounced in CD-1 than in C57Bl/6
mice (30).

Taken together, our findings indicate that perinatal
exposure to doses of BPA that are currently considered
safe for the human population can have long-term, mea-
sureable biological effects on the mouse mammary gland.
In the course of the experiments in which we followed
mice up to more than 1 yr we did not observe palpable
tumors, suggesting that BPA exposure is not sufficient to
cause mammary carcinomas. We note that the C57Bl/6
mouse strain used for our studies has no predisposition to
mammary carcinogenesis (31). Therefore, it is conceiv-
able that similar exposures might result in more striking
changes in other mouse strains. In light of the high prev-
alence of breast cancer, with one in eight women affected,
however, minor increases in relative risk, that could result
from an increased response to progesterone, although
seemingly unimportant at the level of an individual, could
have a major impact at the population level.

Clearly, it is impossible to extrapolate our findings in
mice directly to other species. Nevertheless, the rodent
models, 7.e. different mouse and rat strains, have provided
many insights about mammary gland development and
mammary carcinogenesis. In light of our observation that
BPA and DES have some comparable effects on the mam-
mary gland of C57Bl/6 females, direct or indirect, the
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possibility that low-level BPA exposure, may cause an
elevated breast cancer risk in the human population as did
DES cannot be discounted but should be further explored.

Materials and Methods

Mice

All mice were maintained and handled according to Swiss
guidelines for animal safety. C57BL6/] mice were bred in a
BPA-free environment using polysulfone cages and bottles, au-
toclaved water, and no paper towels. Breeding pairs consisting
of a male and two females were randomly assigned to treatment
groups within each cohort. Male pups were killed at 10 d of age.
Depending on the litter size, one or two females per litter were
killed at 30 = 1 d of age (two females used if five or more females
exist). The remaining females were kept for analysis at later time
points. Female pups were weighed at weaning (24 *+ 1 d) and
randomly housed to have multiple treatments in the same cage.
Experiments were repeated three times. Five consecutive litters
were used for analysis, and all animals born were tracked in
relation to mother and littermates, date of birth, litter size, age at
termination of males, weight and age at weaning, and at termi-
nation of females. Weight was determined at 30 = 1 d. Right
inguinal mammary gland was whole mounted, and the left one
was processed for RNA extraction after lymph node removal.

Stocks of BPA (Sigma, St. Louis, MO) (25 mg/ml) and DES
(Sigma) (50 mg/ml) were prediluted in dimethylsulfoxide
(Sigma) so that final concentration was always 200 ul dimeth-
ylsulfoxide/liter water.

Cell counts, progesterone treatment, and FACS

Mammary cell preparations were performed as described
elsewhere (20). Cells were counted using Casy TT Cell Counter
Analyzer (Roche, Reutlingen, Germany). Two-tailed, paired
Student’s ¢ test was used to calculate statistical significance; P
values were indicated on the figures. For progesterone treat-
ment, enzymatic digestion with Collagenase 0.25% is per-
formed in the presence of ethanol or R5020 (Sigma) for 6 h at 37
C, and organoids are flash frozen for RNA isolation after a PBS
wash. For FACS analysis, biotinylated anti-CD31, anti-CD435,
biotinylated or APC conjugated anti-CD140a (eBiosciences, San
Diego, CA), phycoerythrin, or fluorescein isothiocyanate con-
jugated anti-CD24 (BD Biosciences, Palo Alto, CA) were used.
Streptavidin-allophycocyanin  and  Streptavidin-Alexa 750
(eBiosciences) were used to detect biotinylated antibodies. Anal-
yses were done on BD LSR II Flow Cytometer System (BD
Biosciences).

Statistical analysis

Statistical analysis is performed using R environment (32).
Observed TEB data are modeled in Mixed-Linear Effect Model
with Ime4 package [Bates D. and M. Maechtler, 2010, Package
“Ime4”, http://cran.r-project.org/web/packages/Ime4/Ime4.pdf
(accessed November 2010)]. For noninterdependent BPA dose
analysis, effects of fixed-factor weight with random-factors gen-
eration and experiment number were assessed on control mice
and subsequently subtracted from observed TEB to compute
adjusted TEB. Adjusted TEB were then modeled with factorized
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BPA doses. For interdependence, BPA doses were modeled as a
nonmonotonic function in which coefficients A, B, and C were
optimized using a nonlinear model. In the resulting Mixed-Ef-
fect Linear model of TEB weight figured as fixed factor and
generation and round figured as random factors.

BPA measurements

BPA concentration was measured by ultra-performance lig-
uid chromatography coupled to a tandem mass spectrometer
(UPLC-MS/MS). BPA was undetectable in autoclaved water (de-
tection limit, 0.08 ug/liter), water from commercial Evian plas-
tic bottles (Evian-eau MQ in bottles made with BPA-free plastic)
was used as negative control and positive control was our 50 pg
BPA/liter bottle (measures 57.1 ug/liter).

BPA administration

BPA was added to the drinking water of C57Bl/6 breeding
pairs at doses ranging from 2.5 mg/liter to 5 mg/liter. To deter-
mine BPA intake, water consumption in nine cages was mea-
sured over four consecutive weeks, and 27 breeding animals
were weighed. Average daily water intake and average weight
are measured as 7.17 ml and 31.13 g, respectively. Hence, cal-
culated average water intake of 230.32 ml/kg-bw/d is similar to
previously published values (34). Based on this calculation, 50
pg/liter of BPA used in the study is equivalent at 50%0.23 = 11.5
ug/kg-bw/d consumption. Calculated values were rounded up
for simplicity.

Mammary gland whole mounts as described
elsewhere (16)

MRNA isolation and quantitative RT-PCR

Total RNA extraction and cDNA synthesis were performed as
described (20). Real-time RT-PCR was performed with SYBR
Green PCR Core Reagents (Quanta Biosciences, Gaithersburg,
MD) on automated 7900HT Real-time System (Applied Biosys-
tems, Foster City, CA) with liquid handling system (Hamilton)
used to prepare 384-well reaction plates. All reactions were
done in triplicate. All expression levels were normalized to
cytokeratin 18. For each condition RANKL and Wnt4 induc-
tion were calculated by comparing ethanol-treated samples
with R5020 treated samples. Relative increases in induction
were computed as the ratio of inductions in response to R5020
in control and BPA-exposed animals. For all results, two-tailed,
paired Student’s ¢ test was used to calculate statistical signifi-
cance; P values were indicated on the figures. Primers are as
follows: ERa , 5'-GCACAAGGGTCAGAGAGATG-3' and 5'-
ATAGATCATGGGCGGTTCAG-3’; PR, 5'-GGTGGAGGTC
GTACAAGCAT-3’ and 5'-CTCATGGGTCACCTGGAGTT-
3'; Amphiregulin, 5'-GCCATTATGCAGCTACTTTGGAGC-
3"and §'-TGTTTTTCTTGGGCTTAATCACCT-3'; Wnt4, 5'-
AGGAGTGCCAATACCAGTTCC-3" and 5'-CAGTTCTCCA
CTGCTGCATG-3'; CK18, 5'-CAAGATCATCGAAGACCT
GAGGGC-3" and 5'-TGTTCATACTGGGCACGGATGTCC-
3';36B4,5'-GTGTGTCTGCAGATCGGGTA-3"and 5'-CAGA
TGGATCAGCCACGAAG-3'; RANKL, 5'-ACCAGCATCAA
AATCCCAAG-3' and 5'-AAGGGTTGGACACCTGAATG-3';
SLPI, 5'-CACAATGCCGTACTGACTGG-3’ and 5'-GACAT-
TGGGAGGGTTAAGCA-3'.
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Histological examination and
immunohistochemistry

Glands fixed with 4% paraformaldehyde were paraffin em-
bedded. Sections (4 um) were stained with anti-PR (1:400)
(Neomarkers, SP2, Fremont, CA) after antigen retrieval in ci-
trate buffer and revealed with Vectastain Elite kit (Vector Lab-
oratories, Burlingame, CA) on DiscoveryxT (Ventana Medical
Systems, Tucson, AZ). Pictures were acquired with a Leica
DM2000 microscope (Leica, Inc., Deerfield, IL) and Pixelink
PL-A622C camera. Two-tailed, paired Student’s # test was used
to calculate statistical significance; P values are indicated on the
figures.
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