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This study deals with a review of planar scissor structural mechanisms (SSMs) and reports on how they can be easily trans-

formed from a stowed to a deployed configuration. These mechanisms have an important transformation capacity of their

extension and rotation properties, and many examples have been proposed that vary in size, type and geometry. Although

there are many studies dealing with designing new planar or spatial SSMs and their calculation methods, there is no systema-

tic study demonstrating the basic typologies, geometric principles, design rules and constraints of such SSMs. Further, cur-

rent calculation methods are based on the inductive approach in which the dimension of one scissor unit (SU) is given, but the

span of the whole structure is found later according to the number of SUs that are used to assemble the structure. However,

this approach is not convenient for architectural applications, because it requires a deductive approach in which the dimen-

sions and required number of SUs are calculated according to defined span length. On the basis of this concept, this article,

first, analyses the geometric design of SSMs systematically in terms of their possible configurations and then develops trig-

onometric calculation methods for different types of SSMs, using a deductive approach.
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INTRODUCTION

A planar scissor structural mechanism (SSM) is formed by

scissor units (SUs). Each SU consists of two straight bars

that are connected to each other at their intermediate points

by a revolute joint. Called a scissor hinge, this revolute

joint allows large geometric transformations. By altering

the location of the scissor hinge, three distinct basic unit

types are obtained: translational, polar and angulated units

(Figure 1). For translational units, unit lines that connect

the upper and lower nodes of one SU must be parallel and

remain so during deployment. On the other hand, for polar

and angulated units, they intersect at a single point. The

difference between these two unit types is that angulated

units consist of two identical angulated bars, whereas polar

units consist of straight ones.

The concept of scissor structures was first introduced in

1961 by Spanish architect Pinero. Using simple SUs,

Pinero designed various reticulated planar and spatial grids

as mobile theatres, pavilions and exhibition buildings

(Pinero, 1961). Pinero’s structures have needed additional

cables to be stabilized at their final configurations. In

1974, Zeigler solved this problem and proposed a self-

supported dome-shaped scissor structure that does not

require additional members for stabilization. Pinero’s and

Zeigler’s ideas have lead other researchers to investigate

similar structures. For instance, Clarke (1984) developed a

novel spatial unit called the ‘Trissor’, by intersecting three

SUs; he designed a hemispherical dome, using this new

unit. Escrig and Valcarcel developed new spherical grid

structures composed of two-way and three-way scissors

and proposed several connection details for these designs

(Escrig, 1984, 1985; Escrig and Valcarcel, 1986b, 1987).

Following the studies of Escrig, Chen et al. (2002) and

Gutierrez and Valcarcel (2002) developed two-way spatial

scissor systems in order to obtain planar or dome-like

scissor shells. Beside the employment of scissor systems as

portable roof structures, Kwan (1995) and Kwan et al.

(1993) used scissor systems in space technologies and devel-

oped satellite panels with planar polar scissors. He used

additional cable elements to move and fix the system.

Hoberman (1990) made a considerable advance in the

design of scissor structures when he developed the angulated

element. While it is not possible to design radially deploying
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closed-loop structures with translational or polar units

because of their deployment behaviours, it can be designed

with angulated units (Buhl et al., 2004). Hoberman designed

the Iris Dome and Hoberman Sphere, using the angulated

element. Hoberman’s pioneering idea of the angulated

element lead You and Pellegrino (1997) to make further pro-

gress on scissor structures. They investigated the multi-

angulated element whose elements have more than one

kink angle. Gan and Pellegrino (2003, 2006) improved the

design of Hoberman, explained the geometry of structural

mechanisms in analytical and numerical ways and proposed

several novel concepts.

In addition to these key studies, there are also some other

innovative works on scissor structures: For instance,

Kokawa and Hokkaido (1997) designed a convertible

scissor structure called Cable Scissors Arch (CSA), which

consists of three-hinged arch scissors and zigzag flexible

cables with pulleys installed at connection points between

the SUs. By winding up the cable, using a winch, CSA can

lift up and fall down. Van Mele et al. (2007) have combined

scissor structures with membrane structures and designed

novel canopy and covering systems. Atake (2000) has con-

nected SUs spatially and developed a novel spatial scissor

system. This novel system can constitute scissor shells as

well as polyhedral geometries. Because of its spatial geome-

try, this system is very convenient for use as a structural

element. Akgün et al. (2010a) developed modified scissor-

like element (M-SLE) and designed a transformable planar

scissor roof structure. This adaptive structure can form

various shapes without changing the size of the covered

area. They adapted the principles of M-SLE to spatial

polar scissor systems and developed a scissor shell that can

transform from various double curved and arch-like shapes

(Akgün et al., 2010b). In addition to these studies, polygonal

hyperboloids of Al Khayer and Lalvani (1998), Florin

System of Dieguez and Cozar (1998) and the master thesis

of Block (2003), which integrates scissor systems, pneumatic

muscles and membrane systems, are other remarkable

examples of innovative designs of deployable scissor

structures.

Besides research on the development of new SUs and

mechanisms, some studies have focused on explaining the

geometric, structural and kinematic behaviours of the

current examples. As pioneers in this area, Escrig and Val-

carcel (1987, 1993) derived foldability conditions for

scissor structures and developed matrix calculation programs

to analyse the stress and movements in the deployed con-

figuration (Escrig and Valcarcel, 1986a). Using purely geo-

metric approaches, Zanardo (1986) and Langbecker (1999)

investigated the planar scissor systems and extended the

foldability condition of Escrig to determine the foldability

of translational, cylindrical and spherical configurations

and to analyse their kinematics. Furthermore, Langbecker

designed several models of positive and negative curvature

structures, using compatible translational units. Krishnapillai

generalized the concept of Zeigler and found a number of

configurations satisfying the requirement of zero-stress in

folded and deployed configurations (Gantes, 2001).

Further, Gantes and his colleagues investigated scissor struc-

tures systematically and developed quantitative design and

geometric principles for both planar and spatial scissor struc-

tures (Gantes et al., 1993, 1994; Gantes and Konitopoulou,

2004). Patel and Ananthasuresh (2007) have explained the

geometry and kinematics of scissor systems based on angu-

lated elements and plates. Finally, Kaveh and Davaran

(1996), Nagaraj et al. (2009) and Zhao and Feng (2009)

made a deep geometric and kinematic analysis of planar

and spatial SUs and simple grids, using matrix-based

methods. In fact, many calculation methods for designing

both planar and spatial SSMs have been developed using

simple geometric approaches based on trigonometric, ana-

lytic or matrix methods. Rather than reviewing these sol-

utions one by one, this article seeks to present a basic

geometric design methodology using a basic trigonometry

that may be easily adapted to architectural applications of

such systems.

The review discussed above shows that many types of

SSMs have been discovered. Each type has different deploy-

ment configurations. Such configurations are directly related

to the type of SUs that are used to assemble the structure. For

Figure 1 | Basic scissor units (SUs)
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instance, rectilinear SSMs are obtained using translational

units whereas curvilinear ones are generated using polar

units. On the other hand, using angulated units, both recti-

linear and curvilinear SSMs can be obtained. To understand

geometric design principles of such SSMs, it is necessary to

examine general deployability conditions of scissor struc-

tures and analyse basic unit types of translational, polar

and angulated in detail.

GENERAL DEPLOYABILITY CONDITION

The crucial part of the overall design process of deployable

scissor structures is its geometric design, because, it not

only consists of choosing a desired geometric shape, but

also includes the selection of the type of basic unit. There

are some geometric conditions (deployability constraints)

for foldability of planar SSMs using translational or polar

units. One of these requirements of scissor structures is

that the configuration is capable of being stored in a

compact shape. As shown in Figure 2, SUs will have one

dimension in the compact shape; therefore, B0, C0, A1, B1,

C1, A2, B2, C2, A3, B3 and C3 will be collinear. The distance

between C1B1 can be found using the cosine rule

a2
i þ b2

i � 2aibi cosðuiÞ ¼ a2
iþ1 þ b2

iþ1

� 2aiþ1biþ1 cosðuiþ1Þ ð1Þ

In the compact shape ui ¼ uiþ1 ¼ p, thus, the above

equation is reduced to

ai þ bi ¼ aiþ1 þ biþ1 ð2Þ

Derived by Escrig, this equation states that the sum of the

lengths of bars on both sides of the unit line should be

equal. However, Escrig’s equation can be applied to units

composed of straight bars, and not to those of angulated

bars. Hence, it uses purely a geometric approach and does

not guarantee that stresses will be kept to an acceptable

level during the deployment process under the condition

that the materials and the sizes of members’ change (Rosen-

feld and Logcher, 1988).

SU TYPES

Translational units
Consisting of SUs with straight bars, rectilinear SSMs can

only translate without any rotation. The main rule to meet

this condition is that all unit lines must be parallel to each

other during and after the deployment process. According

to bar lengths and the location of scissor hinge, there can

be various types of rectilinear SSMs. Some of these types

are investigated in this study.

The first type of rectilinear SSM consists of SUs whose

bars are identical and whose scissor hinge is located at the

midpoints of the bars (Figure 3). By interconnecting such

SUs, a rectilinear SSM that constitutes a perfect planar

surface is generated. This SSM is called lazy tong (De Tem-

merman, 2007). Its condition can be formulized as

ai�1 ¼ bi�1 ¼ ai ¼ bi ¼ aiþ1

¼ biþ1 ¼ � � � ¼ an ¼ bn ¼ l ð3Þ

To solve the system, at least three of these variables

should be determined: span of the whole system (S),

span of one SU (s), number of SU (N), angles between

bars (u), deployment angle (b), unit thickness (t) and the

length of bars (L). For the structure in Figure 3, the known

parameters are L (2l), S and u. It should be noted that

angles u and b are same for each SU. s can be found using

the formula

s ¼ 2l cos
u

2
ð4Þ

After finding s, N can be easily calculated. Further, b can

be derived according to the cosine rule of triangle A1B0B1,

N ¼ S

s
ð5Þ

Figure 2 | Deployability condition for SUs
Figure 3 | Rectilinear SSM with identical bars and with scis-
sor hinges at their midpoints
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b ¼ cos�1 1� s2

2l2

� �
ð6Þ

The unit thickness t can be found using Pythagoras’

theorem of triangle C1A1D1. Further, coordinates of the

Nth SU are calculated according to origin B0 of the system:

t ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � s2

4

r
ð7Þ

xBN
¼ xCN

¼ N2l cos
u

2
ð8Þ

yBN
¼ 0 and yCN

¼ 2l sin
u

2
ð9Þ

The second type of rectilinear SSM consists of SUs whose

bar lengths are different, but again the scissor hinge is at the

midpoints of the bars. In this type, the system still translates

and unit lines of hinges remain parallel during the deploy-

ment process (Figure 4). The conditions for this type can

be written as

ai�1 ¼ bi ¼ aiþ1 ¼ biþ2; . . . ; an ¼ bnþ1 ¼ l1

bi�1 ¼ ai ¼ biþ1 ¼ aiþ2; . . . ; bn ¼ anþ1 ¼ l2
ð10Þ

The known parameters for Figure 4 are S, L1 (2l1), L2 (2l2)

and u (u1 þ u2). To solve the system, unknown parameters of

s, t, N and b of SUs should be found according to the refer-

ence system whose origin is at point B0:

s ¼ 2l2 cos u1 ð11Þ

N ¼ S

s
ð12Þ

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 þ l22 � 2l1l2 cos u

q
ð13Þ

b ¼ p� u ð14Þ

When N numbers of SUs are connected to the system, the

coordinates on the Nth point are:

xBN
¼ xCN

¼ Nð2l2 cos u1Þ ð15Þ
yBN
¼ Nðð2l2 sin u1Þ � tÞ ð16Þ

yCN
¼ t þ Nðð2l2 sin u1Þ � tÞ ð17Þ

By combining the geometric principles of the first and

second types of rectilinear SSMs, the third type is obtained

(Figure 5). In this type, bar lengths of one SU are different

and the scissor hinge is at the midpoints of the bars, as in

the second type. The system translates as it does in the

first type, but the construction method is completely different

from that of the first two types, because the basic SU is not

repeated through the SSM. The latter unit is connected to the

previous one by reversing the last unit. Because all unit lines

are parallel to each other and remain so during the deploy-

ment, the system forms a planar surface. Its condition is that

ai�1 ¼ bi ¼ aiþ2 ¼ biþ1 ¼ aiþ3

¼ biþ4 ¼ aiþ6 ¼ biþ5 ¼ l1

bi�1 ¼ ai ¼ biþ2 ¼ aiþ1 ¼ biþ3

¼ aiþ4 ¼ biþ6 ¼ aiþ5 ¼ l2

ð18Þ

The given parameters of SSM in Figure 5 are S, L1 (2l1),

L2 (2l2) and u (u1 þ u2). Because the construction parameters

of this SSM are same as those of the second type of recti-

linear SSM, the unknowns of system s, N, t and b can be

found using Equations (11)–(14). The coordinates of the

Figure 4 | Rectilinear SSM with different bars and with scissor
hinges at their midpoints

Figure 5 | Rectilinear SSM with different bars and with scissor
hinges at their midpoints
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Nth points of SUs are:

xBN
¼ xCN

¼ Nð2l2 cos u1Þ ¼ Nð2l1 cos u2Þ ð19Þ
yB2N
¼ 0 and yB2Nþ1

¼ ð2l2 sin u1Þ � t ð20Þ
yC2N
¼ t and yC2Nþ1

¼ 2l2 sin u1 ð21Þ

The fourth type of rectilinear SSM possesses arbitrary bar

lengths and a scissor hinge eccentrically placed (Figure 6). In

this type, each unit has different bar lengths and its scissor

hinge is located randomly. Nevertheless, the unit lines are

still parallel and translate without rotation. The condition

for this type can be written as

ai�1 ¼ bi�1 ¼ l0; ai ¼ aiþ1 ¼ bi ¼ biþ1

¼ l1; . . . ; an ¼ anþ1 ¼ bn ¼ bnþ1 ¼ ln ð22Þ

While s and t are same for each SU in the first and second

type of rectilinear SSMs, it varies in arbitrary units, but

angles u and b remain constant. Based on u and L, the

span and the unit thickness of Nth SU can be calculated as:

sN ¼ ðln þ lnþ1Þ cos
u

2
ð23Þ

tN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l2nð1� cos uÞ

q
ð24Þ

The x coordinates of the Nth SU can be found according to

origin B0 of the system. However, it is hard to generalize a

formula for the y coordinates of the Nth unit, owing to the

changing unit thicknesses. Therefore, it is calculated accord-

ing to reference system A0:

xBN
¼ xCN

¼ cos
u

2
[ðl0 þ l1Þ þ ðl1 þ l2Þ

þ ðl2 þ l3Þ þ � � � þ ðln þ lnþ1Þ] ð25Þ

yBN
¼ yCN

¼+
tn

2
ð26Þ

The rectilinear SSMs examined above are commonly used

for portative furniture elements such as foldable chairs or

tables and for deployable structures such as tents and cano-

pies. Because they are very simple mechanisms, they can

easily be adapted to large-scale architectural applications.

Polar units
A polar unit is formed with units of straight bars by moving

the scissor hinges away from the midpoints of the bars. By

this means, scissor hinges of the system generate a curvature

during deployment. The top and bottom hinges and the

scissor hinges lie on concentric circles. The unit lines inter-

sect at the centre of these circles at angle w, which varies

as the unit deploys. The intersection point moves closer to

the unit as the curvature increases (You and Pellegrino,

1997).

Two types of curvilinear SSMs can be generated. The first

type is with identical bars, with scissor hinges eccentrically

placed (Figure 7). The deployability condition for this type is

ai�1

bi�1

¼ ai

bi

¼ aiþ1

biþ1

¼ � � � ¼ an

bn

ð27Þ

The bars are identical; therefore, it can be written that

ai�1 ¼ ai ¼ aiþ1 ¼ � � � ¼ an ¼ l1

bi�1 ¼ bi ¼ biþ1 ¼ � � � ¼ bn ¼ l2
ð28Þ

In designing a curvilinear SSM with fixed span, the span of

the whole system (S), the height (h) and segment angle (w)

should be defined to find the length of bars (L), the number

of SU (N), unit thickness (t), deployment angle (b), radius of

the base curve (Rb) and SSM’s angle (a). In this method,

first, Rb and a are calculated based on the S and h. According

to Pythagoras’ theorem and the law of sinus for MOB5 triangle:

Rb ¼
4h2 þ S2

8h
ð29Þ

a ¼ 2 sin�1 S

2Rb

� �
ð30Þ

Figure 6 | Rectilinear SSM with arbitrary bar lengths and with
scissor hinges eccentrically placed

Figure 7 | Curvilinear SSM with identical bars and with scis-
sor hinges eccentrically placed
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After finding Rb and a, the base curve is divided into

angular portions with polar unit lines that intersect at

centre O. The number of portions may be variable, but w

must be the same for each segment so as to obtain a

regular curvilinear system. According to determined w, N

is found as

N ¼ a

w
ð31Þ

To find the length of the bars, the dimension of t needs to

be determined. According to chosen t, the radius of the outer

curve (Ro) and then the length of the bars can be calculated as

R0 ¼ Rb þ t ð32Þ

Polar units have identical bars (L), but are divided into

two unequal semi-bars, l1 and l2. Therefore, the length of

the bar is equal to

L ¼ l1 þ l2 ð33Þ

L can be found using the cosine rule to the B2OC3 triangle

in Figure 8:

L2 ¼ R2
b þ R2

0 � 2RbR0 cos w ð34Þ

It is possible to write Equations (35) and (36) through the

similarity of triangles:

Rb

R0

¼ m

n
ð35Þ

l2

l1
¼ m

n
ð36Þ

Equating (35) and (36),

Rb

R0

¼ l2

l1
) l1 ¼

R0

Rb

l2 and l2 ¼
Rb

R0

l1 ð37Þ

Substituting Equation (33) into (37) results in

l1 ¼
LR0

Rb þ R0

and l2 ¼
LRb

Rb þ R0

ð38Þ

To find b, the parameter of m should be calculated:

m ¼ l2 sin
b

2
ð39Þ

m ¼ Rb sin
w

2
ð40Þ

By equating (39) and (40), b is obtained as

b ¼ 2 sin�1 Rb

l2
sin

w

2

� �
ð41Þ

To understand its deployment behaviour and to show its

geometric transformation capacity, a model of curvilinear

SSM, which consists of SUs whose bars are identical and

scissor hinges are eccentrically placed, was constructed

(Figure 9). Such SSMs may offer viable solutions for archi-

tectural applications due to their deployment behaviour that

provides great advantages of speed and of ease of erection

and dismantling in comparison to conventional ones, and it

is easier to expand or remove the structures when necessary.

Furthermore, they become self-standing structures by adding

an extra link to the system; therefore, large supports on the

ground are not required. This property increases the feasi-

bility for this kind of SSM to be used as tents or portative

shed covering.

The second type of curvilinear SSM is with arbitrary units

(Figure 10). These units have different bar lengths, and their

scissor hinges are not located at the midpoints of the bars. Its

condition is

ai�1

bi�1

=
ai

bi

=
aiþ1

biþ1

= � � �= an

bn

ð42Þ

In this type, lengths of bars can vary. However, the

lengths on both sides of the unit lines should be equal to

each other so as stay in accordance with the general deploy-

ability conditions:

ai ¼ aiþ1; bi ¼ biþ1; aiþ2 ¼ aiþ3;

biþ2 ¼ biþ3; . . . ; an ¼ anþ1; bn ¼ bnþ1

ð43Þ

Suppose that the parameters of S and h are the same as the

first type of polar unit above. Rb and a can be found accord-

ing to S and h. However, the base curve should be divided

into unequal angular portions to obtain arbitrary SUs. This
Figure 8 | A segment of curvilinear SSM in Figure 7
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means that each SU will have different L, t and w, but that u

and b will remain the same. Therefore, it is difficult to gen-

eralize solutions and rules for arbitrary systems. It requires

the use of matrices because of the numbers of unknown

parameters.

Angulated units
Discovered by Chuck Hoberman, therefore known as Hober-

man units, angulated units consist of two identical angulated

bars rather than straight ones. Each angulated bar has a

central kink of amplitude v. The segment angle (w)

between two angulated bars is constant during deployment,

whereas it varies in polar units (Jensen, 2004). While the

kink angle v is initially independent of the segment angle

w, as shown in Figure 11, in extension the relationship

between w and c can be written as

c ¼ w

2
ð44Þ

Equation (44) shows that angulated units can be used for

radially deploying closed-loop structures. While

translational and polar units show rectilinear and curvilinear

deployments, angulated units are capable of retracting to

their own perimeters.

Two different types of SSMs can be derived, according to

the assembly method. In the first type, unit lines intersect at

centre O. To generate a radially deployable closed ring struc-

ture, angulated units should be connected at their end nodes

of BN and CN. Using the geometry of polar units with con-

stant bar lengths and scissor hinges in Figure 7, the geometry

of angulated units can be derived (Figure 12). Therefore,

unknown parameters of angulated units can be easily calcu-

lated according to those parameters that are shown in

Figure 7. The condition for this angulated unit is

ai�1 ¼ bi�1 ¼ ai ¼ bi ¼ aiþ1

¼ biþ1 ¼ � � � ¼ an ¼ bn ¼ l ð45Þ

For the same length of span (S) and height (h) as described

above in Figure 7, the radius of the base curve (Rb), the

radius of the outer curve (Ro), the length of bars (L),

Figure 9 | Model of curvilinear SSM with identical bars and with scissor hinges eccentrically placed

Figure 10 | Curvilinear SSM with arbitrary units
Figure 11 | Angulated unit
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SSM’s angle (a), deployment angle (b) and segment angle

(w) of angulated units can be found. According to A3B2K tri-

angle in Figure 13,

w

2
þ bu

2
¼ b

2
) bu ¼ b� w ð46Þ

The law of sinus for C3KB3 triangle gives

t

sin u
¼ l2

sin d
) d ¼ sin�1 l2

t
sin u

� �
ð47Þ

For C3A3B3 triangle, it can be written that

m ¼ w

2
þ d ð48Þ

uu ¼ p� 2m ð49Þ

Using sinus in the C3A3B3 triangle, the length of the bar

can be calculated as

t

sin uu

¼ l

sin m
) l ¼ t

sin m

sin uu

ð50Þ

Considering the geometric principles of angulated units,

an architectural model was built (Figure 14). To stabilize

the system, two partial ring SSMs were connected to each

other. By parallel multiplication of each system, such

SSMs may be used for architectural applications such as tem-

porary buildings, emergency shelters, exhibition halls, sport

venues or for military applications.

In the second type of angulated units, unit lines are paral-

lel to each other and remain so during the deployment. To

keep the unit lines parallel, angulated units should be con-

nected at their end nodes of BN and BNþ1. By this means,

the SSM translates. As shown in Figure 15, the entire

system is a segment of a circle whose centre lies at point O

and whose segment angle is w. The condition for this type is

ai�1 ¼ bi�1 ¼ ai ¼ bi ¼ aiþ1

¼ biþ2 ¼ � � � ¼ an ¼ bn ¼ l ð51Þ

To solve the system, at least three parameters should be given.

The known parameters are w, R0 and the number of SUs in

one segment (Ns). According to Equation (44), the bar geometry

has to be such that c ¼ w=2. Therefore, the kink angle is

v ¼ 180� 2c ð52Þ

The unknown parameters of Rb1, bu1, uu1, Rb2, bu2, uu2,

Rb3 and bu3 can be calculated as follows:

Rb1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l2ð1� cos vÞ

q
ð53Þ

bu1 ¼ 360� 2v ð54Þ
uu1 ¼ v� bu1 ð55Þ

Rb2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l2ð1� cos uu1Þ

q
ð56Þ

bu2 ¼ 360� ð2uu1 þ bu1Þ ð57Þ
uu2 ¼ v� bu2 ð58Þ

Rb3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l2ð1� cos uu2Þ

q
ð59Þ

bu3 ¼ 360� ð2uu2 þ bu2Þ ð60Þ

The sum of R1, R2 and R3 is equal to

R0 ¼ Rb1 þ Rb2 þ Rb3 ð61Þ

By solving Equation (61), l can be found.

Figure 12 | Partial radially deployable closed ring SSM with
angulated units

Figure 13 | A segment of radially deployable closed ring SSM
in Figure 12
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ASSEMBLIES OF MIXED UNITS

This section aims to construct planar SSMs with mixed SUs

with respect to the general deployability condition. Using

three types of SUs in different combinations, it is possible

to construct new SSMs in different forms. Such planar

SSMs lead to the design of 3D scissor structures for

further architectural applications. In the light of this assump-

tion, a few planar models were constructed.

The following examples are generated by determining the

position of scissor hinges or of bar lengths based on the

general deployability condition. In the first example, bars

are identical and the location of pivot points is constant,

but scissor hinges are not located at the midpoints of the

bars (Figure 16).

To construct such mixed SSM, first, an SSM with O1

centre is designed. Then, by reversing the first SSM, a

second SSM with O2 centre is generated. These two SSMs

are connected to each other at points B6 and C6. As in

Escrig’s equation, the sum of the lengths of the bars is

equal on both sides of the unit line that passes through O0

and O1. Therefore, l1 þ l2 ¼ l2 þ l1.

Figure 16 | Curvilinear SSM with identical polar units

Figure 14 | Model of partial radially deployable closed ring SSM with angulated units

Figure 15 | Rectilinear SSM with angulated units
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A second example of mixed units is composed of two

SSMs whose curvatures are different (Figure 17). Both

SSMs have the same bar length L, but the location of

scissor hinges is different. The bar length of SSM whose

centre is O0 is L ¼ l1 þ l2 whereas it is L ¼ l3 þ l4 in the

second SSM whose centre is O1. The curvatures of these

SSMs depend on the lengths of l2 and l3. In this example,

l3 , l2. To comply with the general deployability condition,

the sum of the lengths of the bars on both sides of the unit

line that passes through O0 and O1 must equal to each

other. Therefore, l1 þ l2 ¼ l3 þ l4.

The SSMs in Figures 16 and 17 can be used as deployable

roof structures or portative walls that can offer different cur-

vilinear geometries.

The third mixed SSM is composed of one translational

part and two polar parts (Figure 18). The bar lengths are

L2 ¼ 2l2 þ l4, L2 ¼ 2l2 þ l4, L3 ¼ l2 þ l3 and L4 ¼ l3 þ l4.

Up to points A3 and A4, the SSM translates because unit

lines 1, 2 and 3 are parallel to each other and remain parallel

during the deployment. The sums of the lengths of the bars

are equal on both sides of unit lines 2 and 3. Therefore,

l2 þ l2 ¼ l2 þ l2. The translational part and the polar part

whose centre is O0 are connected to each other at points B2

and B2
0. The sum of the lengths of the bars is equal on

both sides of the unit line that passes through O0 and B2.

Thus, l3 þ l4 ¼ l3 þ l4.

As can be understood from SSMs in Figures 16–18,

various geometries can be obtained by the attachment of

different SUs. By using these combinations, not only archi-

tectural elements and building components but also various

furnitures and tools can be developed.

CONCLUSION

This article has systematically analysed the geometric

principles and design methods of planar SSMs with

respect to their basic typologies, design rules and con-

straints. It has been demonstrated that deployment

behaviours of SSMs are related to the basic unit types of

translational, polar and angulated units, which are used

Figure 17 | Curvilinear SSM with two different polar units

Figure 18 | Curvilinear SSM with translational and polar units
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to assemble the entire structure. Each unit type has been

examined in detail. Conditions to obtain different types

of rectilinear and curvilinear SSMs have been discussed.

According to the given parameters of SSMs, unknown par-

ameters of the system have been calculated using basic

trigonometry.
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