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Abstract. We present the effect of mergers, a term which we use to mean a temporary alliance, in the
dynamics of the three-agent model studied by Ben-Naim, Kahng and Kim and by Rador and Mungan.
Mergers are possible in three-agent games because two agents can combine forces against the third player
and thus increase their probability to win a competition. We implement mergers in this three-agent model
via resolving merger and no-merger units of competition in terms of a two-agent unit. This way one
needs only a single parameter which we have called the competitiveness parameter. We have presented an
analytical solution in the fully competitive limit. In this limit the score distribution of agents is stratified

and self-similar.

1 Introduction

The use of methods inspired from physical principles has
recently been of wide utility in studying various systems.
Models with explanatory and predictive powers have been
applied to biological, social, political, economical, animal
behavioural and many other phenomena. The common
property of these models is that they all involve a collec-
tion of agents interacting with a well defined set of rules.
The set of rules may describe a competition for earning a
game, for exchanging an attribute say money, energy or
points, or for instance to fight for a position in space.

Recently such a model based on two-agent units
of competition was introduced and applied to sports
data [1-3]. Later that model is generalized utilizing three-
agent units of competition providing qualitative under-
standing of emerging social structures [4]. That model be-
ing deterministic did cover the full range of possibilities.
The analysis of [5], where the entire phase space of three-
agent games is studied, revealed new social structures.

In the present paper we study an intriguing extension
of the three-agent model; the possibility that two agents
could merge forces against the third one. In [4,5] it was
shown that the competitive subspace of three-agent games
yields a continuous point gain rate for agents. Implement-
ing mergers into the model we find that the agents con-
dense at particular values of income rate. That is, as a re-
sult of mergers the society of agents becomes stratified.
In the limit where the model becomes the most competi-
tive the distribution for income rate becomes self-similar.
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We first review the main results of [5] to introduce the
three-agent model. The remaining parts of the manuscript
is devoted to the study of merger dynamics.

2 Review of three agent games

In this chapter we will review the dynamics of three-agent
games to have a structured manuscript. We shall omit
various details as those were already discussed in depth
in [5]. We shall however add emphasis on some aspects
that are not discussed in the mentioned paper and also
highlight points relevant for the next chapter where we
will extend the model with mergers.

Let us consider a collection of N agents with a given
distribution of points where N > 1. We pick three of them
randomly and order their points say as L > M > S. We
shall give one point to one and only one agent according
to the following rules,

o [L>M>S}) = {P, T, Q)

o {L=M>5S}={"3", P37 Q}
o {L>M=58} = {P, 719 19}
o {L=M=5} = {5, 5 3}

Here the lists on the right represent the winning proba-
bilities of the teams with points listed on the left. In view
of later chapters we refer to this model as the single rule
model emphasizing the fact that there are no conditions on
the points other than their ordering. As can be inspected,
cases when some agents have equal points are resolved on
the basis of equal likelihood. Also the fact that after every
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game one agent surely advances requires the normalization
of the probabilities

P+T+Q=1.

Now let us denote the probability to pick an agent with
point x at a particular time as f,, this should really be
taken as a shorthand notation for f(z,t). After a competi-
tion some teams might leave this region towards x +1 and
some teams might enter it from x — 1 by winning a com-
petition in either case. This suggests the following local
conservation law

df . ’
b S Lo fdy Wi =100

vy’

_Zfzfyfy’ W(;v,y,y/) (1)
Yy’

Here W (z,y,y’) denotes the probability that the agent
with point x will win against two others with points y and
y’. The microscopic rules above completely define what W
is. Furthermore, the right hand side is cubic in f. This is
so because N is large and in this limit the probability
to pick three agents with points say x,y,z is very well
approximated by the product f,f,f. being exact in the
limit N — oo.
Since

Zfzzlv

it is immediate that (1) also implies, as it should, the
global conservation of the total number of teams, as can
be checked by performing a sum over .

The time variable in (1) has an arbitrary scaling which
can be compensated by an overall factor in the definition
of W since the former, in essence, represents a rate. The
natural scale is such that the average points of teams is
given by,

j(t)Efom:; (2)
=0

meaning that, on average, each team participates in a sin-
gle game while we increment the time variable by one unit.
As only one of the participating teams in a unit of com-
petition wins and advances its score by one, equation (2)
follows. One can equivalently say that the average speed
with which agents increase their points is 1/3. This nor-
malization also means that the maximum theoretical point
an agent could have acquired at time ¢ is simply ¢.

The presence of sums over the discrete indices on the
right hand side of (1) results in a coupled set of differen-
tial equations. For the model at hand these can be much
simplified by defining

x—1
Fo=> fu (3)

Here z* represents the smallest point below which there
are no agents. Since in our model agents do not lose points,
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this value does not change in time and is defined by the
initial point distribution via the requirement f, = 0 at
t =0 for < z*. Without loss of generality on can take
z* = 0 and confine the points to positive values'. Also,
from the definition of F, the following is immediate

fw: w+1_Fm' (4)
Summing (1) over 2 we obtain
dF,
g = fe Y Wl —1y.y) fy fy- (5)
vy’
We note that
fz—lzw(z_layvy/) fy fy (6)

Y,z

yields the probability that a team with score z —1 will win
any possible choice of single competition with two other
teams. Working out the sum using the rules represented
by W we get the final form of the master equation,

dF,
dt = _fw—l [PF12_1 + Q(l - F1)2 + 2TF1—1(1 - Fm)}
Y I L N
1
- 3 S—l' (7)

The terms on the first line of (7) represent the bulk of in-
teractions between three players with different scores. The
second and third lines represent the cases where two play-
ers have identical scores and the last term represents the
case when all the teams have the same score. The effect
of terms denoting units of competition where one picks
some agents with equal score are irrelevant for the late
time dynamics of the system as they die out in time?. We
will call these type of terms the interface terms and the
rest as the bulk terms. So as time goes by, in a thermody-
namic limit where the number of teams ranges to infinity,
the majority of the contributions to the dynamics will be
governed by the bulk terms. On the other hand as time
goes by, almost every team will accumulate a certain num-
ber of points which, in general, will be much larger than
a single point. These considerations allow one to go to a
continuum limit where the terms like F},_; are expanded
in terms of the derivatives. A first order approximation,
where one considers only the bulk terms, results in the
following,
OF _ _OF Gipy= -9 ®)
or ox ox
! One can also say that negative points are meaningless.
However forcing positive points and mathematically being able
to do so are different things. If there is a shift symmetry in
the equations z* can be chosen to be 0 without altering the
asymptotic behaviour of the system. If however there is no such
symmetry one simply mandates positive points at initial data.
For the single rule model we have a shift symmetry but this
will not be the case for the merger model. We elaborate more
on this in Section 4.
2 See for instance [1] for a detailed discussion.



291

T. Rador and R. Derici: Merger dynamics in three-agent games

Equ:

F(z)

1/4

al Areas

Fig. 1. Representative solutions of the sin-
gle rule model relevant to our discussion. For
P = 1 we have an example of C'~ solution
which in this instance is simply F(z) = /.
For T'= 1 we have an example of C’; regime;
the curve is Fi(z) = (1 — /1 — 22)/2 upto the
value of zg = 3/8 given by Rankine-Hugoniot
condition. There is a single jump here, so we
have F; = 1/4 and F, = 1. The effect of the
jump condition can be interpreted geometri-

with
G'(F)=PF*+2TF(1-F)+Q(1—-F)%2  (9)

We will refer to this approximation as the hydrodynamical
limit. We would like to mention that with this limit we
still have £ = ¢/3, which corroborates the omission of the
interface terms.

At this point we would like emphasize that the hydro-
dynamical limit for any model involving the struggle of
three agents as a unit of competition will take the form

OF  OF L OF OF ,

for a given function W (z,y,y").

In [5] the solutions to (8) was studied via the method
of characteristics, for all cases satisfying P+ T + Q = 1,
with the initial condition F'(z,0) = ©(x) meaning that all
agents starts with zero points. As is well known this is the
Riemann problem. The asymptotic solutions was found to
have the form F(z,t) = F(x/t) as it is usually the case
with hyperbolic equations coming from conservation laws.
In our normalization of the time variable the maximum
possible theoretical point an agent can have at time ¢ is
simply ¢, thus z = x/t satisfies 0 < z < 1. Furthermore

one can show that z = ¢/3 yields
1
/ dzF(z) =2/3.
0

In terms of the variable z = x/t one can recast (8) into

dF

dz
subject to the requirements, which we have discussed, that

2+ PF?+2TF(1-F)+Q(1—F)’] =0, (10)

F has to satisfy. The solutions fall into the following cat-

egories

cally as shown in the plot to the right.

Regime C :for P>T > Q and T < 1/3,
Regime C°: for T =1/3 > Q,

Regime C*: for T >1/3 and P > T,
Regime C3: for P < T and Q < 1/3,
Regime S: for Q@ > 1/3 > P,

Regime Cg: for @ > T and P > 1/3.

Here the superscripts +, — refer to the fact that F(z) has
a positive or negative second derivative respectively. The
superscript 0 refers to a linear curve®. The subscripts S
mean that the solution has a shock singularity. This hap-
pens when F(z) becomes double valued in z and hence
the solution must be resolved via a jump. If F' starts at F;
to the left of the shock and ends at F), to the right of it
the location of the jump is given by the Rankine-Hugoniot

condition

G(F) - G(F,) _ AG

- 11
F_F AR (11)

zZ8 =

which is simply restating the fact that the number of
agents leaving the shock is equal to those that enter it.
In geometrical terms this means that the area between
the curve F'(z) and z = zg to the left of the shock is equal
to that area to the right of the shock.

We shall not study all types of solutions mentioned
above; for our discussion on mergers we only need to draw
attention to regimes C'~ and C;‘. To do so we refer the
reader to Figure 1 where C'~ is represented for P = 1 and

C;' for T = 1.

3 This case is identical to a two-agent model. Since the mid-
dle agent advances with the mean speed of the whole collection
of agents, it is as if it is not there.
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Table 1. Winning probabilities of the three agents with points L > M > S for no-merger tournaments and for various possible
merger cases in terms of the competitiveness parameter p defined in the text. Cases where there are equalities of points can be
read from this table using the equal likelihood prescription described in Chapter II. For instance if M = S the probability to

win for each is (T + Q)/2.

No-merger LM merger LS merger  MS merger MS merger MS merger
L+M>S L+S>M M+S<L M+S>L M+S=L
P p’+pq/3 p? P p q 1/2
T Apq/3 Pq q pq P p/2
Q ¢ +pq/3 q Pq q pq q/2

3 Merger dynamics

The model presented in the previous section has a single
set of rules (the set X = {P,T,Q}) that only depends on
the ordering of points. A straightforward generalization
of this model can be to extend the rules so that we have
various sets of probabilities and to provide a selection rule
so as to define which set should be applied for a particular
choice of agents. This selection rule should of course be
a condition on the points of the agents other than their
ordering.

3.1 Implementing mergers

The idea of mergers is meaningful only if the game is com-
petitive, where higher points are favoured. In this respect
two agents can merge points and act as a single agent
against the third one. If the allied agents lose, the third
player gets the point. If on the other hand the allied agents
eliminate the third player we still have to resolve a sin-
gle winner. These considerations hint at the necessity to
construct the rules of the three-agent step in terms of a
two-agent unit of competition. If this is so achieved, after
winning against the third player the agents that partici-
pated in the merger can turn against each other and play
the same two-agent unit to decide which one of them will
receive the point.

However, if the selection rule does not allow a merger,
we have a generic three-agent step which we should take to
be competitive as well to be in accord with the philosophy
of the idea of mergers. Such a set of rules too can be
established in terms of a two-agent unit of competition.
In [5] it was shown that a natural way to achieve this is to
let each three agents play a single two-agent match with
each other: that is to have a tournament. All two-agent
matches in this tournament are decided based only on
how many whole tournaments the agents have won before:
during the tournament the tournament wins of each team
(which is simply the associated points L, M and S of the
participants) is kept constant but they accumulate match
points depending on the tournament wins. The winner
of the tournament is the agent with largest number of
accumulated match points. As usual ties are decided on
the basis of equal likelihood.

So we have established how to implement mergers and
no-mergers for each particular three-agent competition in

terms of the rules of a two-agent unit of competition. Hav-
ing approached the problem in this way we need to use
only a single parameter; the winning probability of the
higher score agent in the two-agent struggle. Let the rules
for the two-agent unit be {l > s} — {p, ¢}: the agent with
point [ shall get the match point with probability p = 1—gq.
This unit is competitive if p > 1/2. After straightforward
analysis we arrive at Table 1.

We see that various cases of mergers are possible and
we need a selection rule as we have argued. The simplest
and most natural selection mechanism which is also in ac-
cord with the overall competitive nature of our model is
to let two agents merge if and only if both their probabil-
ities to win the unit of competition increase with respect
to the no-merger case. We assume that our agents are not
smart and incapable of a long term strategy; they simply
respond to an increase in the probability to win the three-
agent unit at hand. From the table it is evident that the
agent with the highest point L will never find it profitable
to merge neither with M nor with S. Also S will find it
not feasible to merge with M if M +.S < L. This leaves us
with MS mergers with either M +S > L or M + S = L.
Using the selection rule stated we find that if p > 3/4
mergers are feasible for those agents participating in it?.
Analysing further we can also discover that a merger unit
is rejected if L = M > S, we remind the reader however
that this is an interface term.

With the analysis above we have full knowledge of the
function W(x,y,y’) introduced in the previous chapter.
Other than this difference the mathematical set-up of the
merger model is completely analogous to the single rule
model of the previous chapter.

3.2 The model

The analysis of the previous section amounts to the fol-
lowing rules, where to be explicit at the expense of being

4 In fact M 4+ S > L case only requires p > 3/5. The higher
value 3/4 quoted in the text comes from the M + S = L
case. This term is an interface contribution and thus will rep-
resent terms with higher derivatives or higher powers of the
first derivative of F'. Consequently this term is less and less
important in the asymptotic future of the stem. However in a
simulation it occurs in the early stages if all the agents starts
out with the same points so it is honest to include it in the
analysis of the selection rule.
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redundant, all the details, including the surface terms, of
the model are summarized.

o L >M>S5and M+ S < L no merger unit with rules
Y ={PT,Q}

e L >M > S and M + S > L merger unit with rules
2/ — {‘P/7CZ'V/7 Q/}7

@]

L>M >S5 and M+ S = L merger unit with rules
E/I — {‘P/I7 T/I, Q/I};
L = M > Sno merger unit with rules { “37, 737 Q};
L> M= Sand M+ S < L no merger unit with rules
P T+Q T+Q \.
y 2 2 )

o O

)

oL>M=S5and M+ S > L merger unit with rules
Pl T’+Ql T’+Ql .
’ 2 2 )
oL>M=S5and M + S = L merger unit with rules

77 TN+ 1 TN+ 1 .
{P ) QQ ) QQ )

o L = M = S equally likely unit with rules {é, é, é .
with the definitions P = p? + pq/3, T = 4pq/3 and Q =
q*+pq/3 for no-merger units, P’ = ¢, 7" = p? and Q' = pq
for merger units with M +S > Land P’ =1/2,T" =p/2
and Q" = ¢/2 for merger units with M +.5 = L.

It is important to note that if only rules X or X’ are
applied unconditionally during the simulation, the result-
ing distribution is in the C~ or C;‘ regime respectively of
the single rule model. As the reader could have already
guessed, this is somewhat evident since the set X' favours
the leading agent whereas the set X’ prefers the middle
agent. Therefore when mergers are implemented the two
rules are in conflict with each other. This effect is much
more pronounced if we let the system approach the limit of
full competitiveness by letting p — 1 in which case prob-
abilities converge to ¥ = {1,0,0} and X’ = {0,1,0}°. We
thus expect on general grounds that, if there is no preva-
lence of a single rule in the game the resulting dynamics
of the system should emerge from this dialectical conflict
as something that is neither a C~ nor a C¢ solution but
a new state which bears aspects of both.

Now we have, as usual,

8;} =—fo1 ) ) W= Ly.y)fyf- (12)
y oy

However in contrast to the single rule model the sum above
is very complicated which we do not duplicate here. In the
hydrodynamical limit we still have,

. (13)

5 One may observe that in the limit where p = 1 the proba-
bility for the agent with the lowest point to win remains zero
merger or no-merger and thus one may infer that this player
has no incentive to participate in a merger with the middle
agent. However letting p = 1 — 6 and expanding the probabil-
ities to first order we see that Q = 6/3 and Q' = 6. Thus the
lowest lagger triples its chances to win in merging no matter
how close to zero its winning chances are.
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The particulars of it, however, are complex as expected
(we have suppressed the time dependence of F’s to have
a readable expression):

G'[F] = P'[F*(z) — F*(z/2)] + PF*(z/2) + 2(P — P')

. ,
< / 0 T =)+ 20 F(20) — F)] Fiw)

+OT [ — F(22)] F(z) + 2(T — T / - dy(?;

x Fly—z)+ Q' [1+ F?(z) — 2F (z)F (2x)]
~2Q11 - Feo F@) +2Q-Q) [ v’y

X Fly—2). (14)

As a check we see that letting P/ = P and T = T we
recover the single rule model. This equation has all the
complicating adjectives one can attach, the most impor-
tant being non-locality, and a direct approach as that of
solving for characteristics is not obvious. Nevertheless the
dependence on x/2 and 2z in (14) are suggestive and have
a rather simple interpretation; an agent with point x is
protected against mergers of two others if the points of
those are both smaller than z/2 and similarly an agent
with point 2z is protected against mergers of two agents
with points less than x. These games will have to be no-
merger units of competition.

One can also show that the ansatz F(z,t) = F(z =
x/t) of the single rule model is still applicable here®. The
only concern could be the integrals but they are easily
transformed accordingly. For instance,

|l Fe-n= [Car©re-o. 0s)

1 Z1

where ¢ = y/t.

3.3 Numerical analysis

In view of the obvious difficulty of (14) we resorted to nu-
merical simulations with the hope that they may provide
us with clues. To achieve this end we simulated the mi-
croscopic system from p = 0.750 to p = 1.000 in steps of
0.001. For each of these, we take a collection of N = 106
agents and we ended the simulation when on average each
agent had played about 6.5 x 10° games meaning, in our
normalization, that we stopped the run when time vari-
able t is 2 x 107. The initial condition for all the runs was
F(z,0) = O(x).

To start the exposition of numerical results we invite
the reader to analyse Figure 2. One important aspect one
can immediately realize is that upto about p = 0.76 the
resulting distribution is exactly the same as a pure C;

5 This is a consequence of the fact that we have
W (az,ay,ay’) = W(x,y,y’) for either the single rule or the
merger model. This in turn means that the equation has
r — ax and t — at symmetry.
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L |---- p=0.79 | i
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03+ | p=0.81 et |
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Nl | p=0873 ,
e
0.2 —
0.1 —
| . | Fig. 2. (Color online) Results of the nu-
merical simulation for various values of
0 L Pl | | the competitiveness parameter p. For a de-
0 0.1 0.4 0.5  tailed analysis we refer the reader to the

game. This can only happen if the game is dominated
with mergers and no-mergers never happen; so essentially
we have a single rule game. Let us call the location of
the jump zr and denote point where F' vanishes as zp.
Mergers can globally dominate if and only if zp < 2zp,
which simply implies that for any choice of three agents
M + S > L. So for this case we can use the results of the
single rule model to predict when zr = 2z7, which yields
po = (V13 +1)/6 = 0.76759 in accordance with the simu-
lations. After this point we see that the number of agents
in the vicinity of z;, increase’. This happens because af-
ter the transition we have zg > 2z7, and hence the agents
accumulated at the jump discontinuity becomes protected
against mergers of the agents around 2y and some agents
slide down the slope. These agents able to merge no more
against the the bunch at zg lag faster than before. Increas-
ing p emphasizes this effect. Later on during the excursion
to higher values of p, to the right of z;, a flat plateau ap-
pears. Let us call the position of the left tip of this plateau
as zp. The emergence of this plateau coincides with the
condition zr = 2zp at around p = 0.801. This means
that the bunch condensed on the discontinuity at zr be-
comes completely protected from mergers of agents to the
left of zp. Furthermore since zp < 2zj, the games played
among agents to the left of zp are all merger dominated
and thus locally® of type C’;L. Increasing p further we see
that another condensation of agents occurs at zp, which
itself shifts to the left as p takes on higher values. We
have turned around full circle and the solution consists of
a right bunch condensed at zgr and a left bunch sitting at
values less than or equal to zp. The local structure of this
left bunch is similar to the the whole structure when p was

7 Needless to say zr and z;, are changing as p increases. As
can be expected on general grounds zr moves to the right and
z1, moves to the left.

8 That is if we consider only the games between agents sitting
in the left bunch.

text.

less than pg. As the reader could have guessed a further
excursion to higher values of p repeats this process and we
end with a seemingly self-similar pattern. Our numerical
analysis indicates that as p — 1 this pattern repeats itself
ad infinitum.

To recapitulate we refer to Figure 3 where we have pro-
vided representative solutions relevant to our discussion.
There, the solutions we have presented are those that have
a qualitative stability. That is, the location and the heights
of the shocks and the form of the leftmost group will alter
as we change p but the number of shocks will be constant
for a while during such an excursion. We shall call these
shocks bunches and label them as B,, withn =0,1,2...
where n = 0 represents the rightmost bunch. The leftmost
bunch is not a pure shock but a combination of a shock
and a rarefaction wave since it is locally a C& solution.
The transitions between those solutions are complicated
and bear the full complexity of (14) which is somewhat
impenetrable. As can inferred from Figure 3, the most
important aspects of these solutions are

— The games among the players of only a single bunch
B,, are all mergers, since the points of these agents are
localized around a particular value.

— All players in a bunch B,, are protected from mergers
of two players in J,,, B, since the localized points
of each bunch is larger than twice that of those to the
left of it.

3.4 Self similar behaviour of the model

In view of the discussion above, for values of p larger than
about 0.81, we can separate the equation into two parts:
one valid near the condensation of the rightmost bunch
(the forerunner agents) and one for the rest of the bunches.
All we need is the interaction of these two parts. From
the numerical study we know that the rightmost bunch
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N L 4
A% L 4
04— —
02— _
07 . P N S N S S AN S S Fig. 3. (Color online) The qualitatively
0 0.2 0.4 0.6 0.8 1 stable (see text) solutions of the merger

is completely protected from mergers of two agents not
in this bunch and that the games within this bunch are
merger dominated. Let us start with the generic form of
the equation

OF  OF , L OF OF

As we have mentioned for the merger model we can recast
this in terms of z = z/t

dF

(16)

(—z+G'[F])=0

OF OF
//dydnyyy)ayay,,

(17a)
(17b)

where the integrals are over the whole domain of points.
Let us denote the rightmost bunch as By and all the
agents not in this bunch as By. The points of the agents
in By are coalesced near a value xo(t) which is at least
twice as large as the largest point of the agents in By,.
Therefore the equation for By can be written as

OFy, Ry ) L OF OF
5 = o //dydyW(w,y,y)

By By’ (18)

where in evaluating W we should remember that x is near
xg. We end up in

dF, oF, ,

ot = ox 90 (19)
with
Go = P'(Fy — &1)* + 27" (Fy — &1)(1 — Fy) + Q'(1 — Fy)?

+ 2Py (Fy — ®y) + 2701 (1 — Fy) + PP7. (20)

Here @1 represents the total number of agents in By,. That
is, Fy starts at @1 to the left of By and ends at 1 to the

model for various number of bunches.

right. The first line above are the self games of the right-
most bunch. The second line represents games where two
agents are in By and one in By. The third line represents
games where only one agent is selected from By.

For values of © < x¢/2 we are in Bj,. Denoting the
cumulative function in this region as F,(x,t) we get

OF; oFy, _,
o Oz 91 (21)
with
OF, OF,
gL—//dydnyyy)ay oy (22)
+2T(1 — @) Fp +2Q(1 — &1)(P1 — Fy)
-l—Q(l—Q')l) . (23)

Now F, starts from 0 and ends at @, and the second
(third) lines in the equation above represents picking two
(one) agents from By. The first line represents the games
where all agents are in By.

There is resemblance to self-similarity in (22): the first
line looks like the original equation but the interaction
terms with the bunch By spoils this correspondence since
By, can still gain points via these terms. However in the
extreme competitiveness limit p — 1 these terms are ab-
sent since T, @Q and @’ all vanish. That is, agents in B
will only gain points against themselves and will simply
remain idle during any competition with the bunch By.
Conversely bunch By will use By, as a definite source of
points. In this limit (22) becomes

Gy = //dydy’W(%y,y’)aFL O

oy oy’ (24)

Let us recall however that the maximum value Fy, can take
is @1. Defining Fj, = F1,/®; and using the ansatz z = x/t
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for a solution, the equation becomes

dF. ,
C?Z(Z) [‘ gz% + gL} =0

This has exactly the same form as the original equation
if we also let 2 — ®%z which one could interpret as scal-
ing of x. However unless the initial condition can be par-
titioned this way, we can not say that the solution will
resolve itself into a self-similar shape. The initial data we
use F(x,t) = O(z) can be partitioned this way because
O(ax) = O(z). In conclusion if F(x,0) = O(z) we expect
self-similar behaviour in the solution when p = 1 via the
scaling we have described above. The procedure of extract-
ing the rightmost bunch is somewhat similar to renormal-
ization procedure and the decoupling mechanism in field
theory where after integrating out high energy degrees of
freedom we end up with a new theory. If the original the-
ory is said to be non-renormalizable the new theory is
different. If otherwise the new theory is similar in form to
the original except quantities in it like fields, coupling con-
stants etc. are scaled it is called a renormalizable theory.
We see an analogy here; the extraction of the rightmost
bunch yields the same form of equations for p = 1 and dif-
ferent otherwise. Thus within this sense we can say that
for p =1 and with F(z,0) = ©(z) the model is renormal-
izable. The effect of this renormalization yields the scaling
of F via F — &1 F and that of z via 2 — 2®7.

Given these circumstances we can repeat the renormal-
ization procedure described above infinitely many times
after which we shall end up with infinitely many bunches
B, localized around z,, containing f,, = &, —®,,+1 agents.
As expected, at each step the scaling should be achieved
via the same number @1 = ¢ if there is to be self-similarity
at all. The protection of B, against mergers of any two
players in Bjs, mandates that z, > 2z,,1. Reiterating
this procedure we find the equation obeyed for agents in
B,, to be

dF,,
dz

(25)

[~z —2F,(2)® + 2F,(2)®,, + ®5,,] =0.  (26)
This can only be resolved via a shock, the location of which
is found via the Rankine-Hugoniot condition

1
(¢%+1 + ¢n¢n+1 + @%)

3 (27)

Zn =
Since at each step we scale with the same number ¢ we
have

b, = " (28)

Which in concert with the protection mechanism men-
tioned means that ¢ < 1/v/2 and implies the following

(29a)

2n
Zp = 2o,

1
20 = 3(902 +o+1). (29b)

We are one equation away from a solution. A concept we
may use is the stability of the solution at large times. To
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this end one can ask the following question; how can the
bunch By knows that it is the leading bunch in a self-
similar pattern? To answer it let us assume the existence
of a further bunch B_;. Using the scaling we expect the
number of agents in this bunch to be 1/¢ — 1. Now the
location of By will be stable if and only if the games lost
to B_1 only by By equals the games won against agents
in UgsoBr again only by By. This can only happen if
the number of agents in B_; equals the number of agents
below By meaning 1/¢ — 1 = . These considerations
allows us to find

o= V5 - 1, (30a)
2
2
zZo = 3 (30b)

Thus ¢ is the reciprocal of the Golden Ratio and zq is
just twice the value of the mean speed of the entire sys-
tem. So a player in the rightmost bunch is, in the mean,
on the verge of being protected from mergers of any two
randomly picked agents from the entire collection. The
simulation results for which F(z,0) = ©(z) are in very
good agreement with this theoretical prediction.

It is interesting to contrast the model with mergers and
the single rule model without mergers. The comparison is
in Figure 4. One important aspect we realize is that the
effect of implementing mergers does not affect the global
behaviour of the problem; the model with mergers is like
a discretization of the curve F'(z) = /z and thus overall
competitiveness is still there. However the local behaviour
is completely different; we have stratification of agents.
Or in a different language we have the formation of dis-
tinct social classes. It is rather interesting to observe this
behaviour when we, in effect, increased the overall com-
petitiveness of the model. As we have mentioned before
this effect is a consequence of the conflict between mergers
living in the C’;‘ regime and no-mergers being in the C~
class of solutions were the simulations run unconditionally
as a merger or no-merger single rule model respectively.

3.5 Restricted mergers

The merger model we have presented represents a very
coercive environment of competition and it is not readily
susceptible to analytical study for arbitrary p. The main
reason for this is its high non-locality. This non-locality
is present because the two lowest laggers are allowed to
merge in all cases even when M + S = L + 1. One could
wish to contemplate other schemes of mergers where this
effect is less pronounced. One way to do this is to regu-
late mergers. Here we present a model which is the most
restricted. Let us remember that at time ¢ the theoretical
maximum point is just t. Now let us pick three agents and
order their points as L > M > S and let us allow mergers
only if S > t/2; this makes sure that the competition is
a merger unit since we always have L < ¢t and thus it is
always true that M +.5 > L. In such an approach mergers
will be represented in W via a term like ©(x — ¢/2) which
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will become @ (z—1/2) for the asymptotic behaviour where
as usual z = z/t. The equation becomes

ng [~z + G'(F)] = 0, (31)
with
PF? 4 2TF(1 - F)+ Q(1 — F)?
for z<1/2
G'(F)={ PF?+ (P' - P)(F - F)?+2TF(1-F)
+2T'1-F)F-F)+Q'(1-F)?
for z>1/2
(32)

and with F' = F(1/2). This equation is local and thus can
be studied analytically in much the same way as the single

merger model and of the single rule model.

rule model. Here we only present the solution for p =1 to
compare it with the unrestricted merger model.

Vz z< )
F(z) = ;(x/2+11—2¢1—z) é§z<§zr (33)
2r < z

where we have

_ 1
F=

V2

2v2 -1
Zr = .

2

Which is in very good agreement with numerical simula-
tions. We see that the solution for z < 1/2 is the same
as that of the single rule model. The comparison for the
full range of z is given Figure 5. As the reader could have
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guessed the stratification effect is non-existent but the ten-
dency of the curve to approach that regime, had mergers
were unrestricted, is apparent.

4 Digression on initial conditions
Let us remember that the generic form of the equation

governing the dynamics of three-agents games, in the hy-
drodynamical limit, is

OF  OF
ot _me
OF OF
/ — / /
G[F]—// dy oy ay,W(x,y,y)-

For the single rule model of Chapter I. the integrals re-
solve into a simple polynomial of F. The reason for such
a simplification is, for the model mentioned, the fact that
W, being only a function of the ordering of points, con-
tains only terms like ©(L — M)O(M — S) and thus obeys

(34a)
(34b)

W(az, ay,ay’) = W(z,y,y)
Wz —b,y—by —b)=W(z,y,y).

The first of these equations means that the equation will
be invariant under the combined transformations x — ax
and t — at which makes it possible to assume an ansatz
F(z/t) since F(x,0) = ©(x) also obeys this symmetry.

_ Now let us shift F' by a constant ¢ such that F' =
F + ¢ with ¢ = —(T — Q)/(1 — 3T). Since the single
rule model obeys (34b) one can also perform a Gallilean
transformation® on the independent variables of the form
t =tand x = #—zpt. Choosing zo = Q—(T—Q)?/(1-3T)
the equation becomes

OF _OF
_ = —(1-3T)F?
ot ( ) oz’
which can be recast as
OF  0G(F)
ot~ o (352)
awy =", (35b)

where G(F) is strictly concave for (1 — 3t) > 0. If on
the other hand (1 — 3t) < 0 one can make G(F) strictly
concave by doing £ — —z.

After these transformations the initial condition be-
comes F(z,0) = O(&)+¢ which still represents a Riemann
problem. It is a known fact that the solutions to equations
of type (35) converge in the infinite time limit to the so-

9 Under the Gallilean transformation alone the equation is
transformed into 4F [~z + zo + G'(F)]. That is, the z variable
which in principle represents the speed of agents is shifted by
a constant.

The European Physical Journal B

lutions of the Riemann problem!? if the initial condition
obeys F(Z,0) = Fy, for some = < xy, and F(%,0) = Fg
for some © > xp where F1, and Fr are constants. Now,
the dependent variable F' is the normalized cumulative
of a globally conserved quantity; the number of agents.
Therefore for a generic initial distribution of points we
have F(z,0) = 0 for x < 0 and F(z,0) = 1 for some
x > xr. We thus infer that for the single rule model the
time asymptotics of F' is independent of the initial condi-
tions'!. These considerations also apply to the restricted
merger model we have studied since in principle it has the
same general form as the single rule model.

For the merger model without restrictions we still have
the symmetry in (34a) which allows us to make the F'(x/t)
ansatz if the initial condition obeys F'(az,0) = F(z,0).
Unfortunately the shift symmetry in (34b) is absent be-
cause mergers are implemented via terms of the type
O(L—M)O(M—S)O(M+S—L). This makes the equation
highly non-local and in particular the Gallilean transfor-
mations will take it to an entirely different form. None
of the theorems presented in the mentioned papers above
hold and one would expect a strong dependence of the
time asymptotics on the initial data; an observation which
we have substantiated with numerical simulations.

5 Discussion

The unrestricted merger model we have presented has in-
teresting properties. The most important being the strat-
ification of the entire society of agents. The bunch that
has the largest number of agents (this number is (1 — ) ~
%32) is also the bunch with the largest rate of point gain.
However this point gain is only two thirds of the maximum
possible rate. On the other hand all the agents other than
the first bunch are earning slower than the mean rate. The
number of agents living below this mean is slightly lower in
the single rule model where mergers are not implemented.
Furthermore from our solution it is clear that the number
of agents in a bunch f,, satisfies f,, = f,—1 — fn+1, that is
the number of agents in a bunch is like a derivative in the
sense of the bunches.

It is tempting to speculate that the merger model we
have presented could have applications to natural or social
phenomena. The stratification phenomenon being present
in various systems. For instance one could argue that a
bunch, in essence, represents a single entity, the number
of agents in it simply meaning that it has more activity in
taking part in games. From this perspective one may inter-
pret the merger model as one of explaining monopoly for-
mation after a period of competition between companies.
Stratification is also present in natural systems. Another
tempting interpretation could be the stratification of the
collection of entire living species in terms of their genetic

0" See for instance [6-8].

' For generic initial data F(z,0) of the type mentioned in
the text the simulations converge to that of F(z,0) = ©(x)
after a comparatively larger number of Monte-Carlo cycles.
An estimate of this time is presented for instance in [9].
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material. If there is a competition mechanism complexi-
fied with mergers like the one described in this work one
could hope to gain qualitative understanding of the forma-
tion of different strata of living organisms. Agents could
be units of genetic material and the competition could be
for taking part in the genetics of a (new) species.

The emergence of the stratification mechanism can be
interpreted in the following way. The rules of mergers yield
a complicated and non-local system. The equations are
so complicated that they can not be resolved via smooth
functions and the only possible escape is the formation of
various shocks; there must be a solution since we are sim-
ply simulating a Monte-Carlo system with a well defined
microscopic model. We believe this to be true for other
systems of conservation laws, coming from well defined
microscopics, where the equations become non-local.

Note added in proof

We would like to thank an anonymous referee for drawing
our attention to truels, a three person generalization
of duels. An overview of the mathematics of truels
can be found in [10]. To discuss possible parallelisms
between truels and the three-agent units of competition
in our model we would first like to emphasize obvious
differences. To do so we first would like to contrast a
two-agent unit with a duel. In models we have studied in
this work the outcome of a two-agent unit is determined
by a single probability p representing the probability
for the agent with the largest point to win. Even if
there is only one unit of point difference the agent with
the largest point acquires the same higher probability.
It is therefore the difference between the agents that
determine their fate not any intrinsic quality of the
agent'?. Another difference is that in truels, depending
on the rules of engagement, there may be more than one
survivor which is in contrast with our model since we
allow only one agent to receive the point. This difference
is somewhat minor and may be cured by demanding
that the truel must end with a single survivor!. Yet
another problem in assessing an analogy is that in most
flavours of truels the worst shooter is the likely winner,
in that sense truels also provide an example to survivor
of the least fit. So what we understand as competitive
in our work is not the same in truels. Aside mergers in our

12 One can contemplate schemes where the probabilities are
calculated from the points of agents but the equations that
result from these models are first of all too complicated and
second they do not shed further light on the general aspects of
models of the type discussed in this paper.

13 No one has to die really, the truel may be performed with
paint-ball guns.
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three agent games the agent with the largest point always
has the largest probability to win. Even in mergers the
mergees are likely to win because their points are added
and they become momentarily better than the agent with
the largest point in the triplet.

To reiterate on mergers, there seems to be examples of
truels where the best strategy for the worst two shooters is
to aim at the most skilled agent until it is eliminated. After
that they may turn towards each other. In this sense we
seem to have an analogy. To keep this addendum short we
would like to remind the reader that we have resolved all
our three-agent units of competition, merger or no-merger
in terms of two-agent units. If truels are also resolved in
terms of duels one can draw an analogy but this takes us
away from the generic authenticity of truels. Truels are
intriguing because strategical thinking yields results that
are qualitatively different than duels, so the wisdom of
going from two players to three lies here. In our approach
the main emphasis of considering three agents is that they
allow mergers in the simplest sense of the word and give
a further meaning to competitiveness.

References

1. E. Ben-Naim, F. Vazquez, S. Redner, Eur. Phys. J. B 26,
531 (2006)

2. E. Ben-Naim, F. Vazquez, S. Redner, J. Quant. Anal.
Sports 2 (2006)

3. E. Ben-Naim, F. Vazquez, S. Redner, J. Korean Phys. Soc.
50, 124 (2006)

4. E. Ben-Naim, B. Kahng, J.S. Kim, J. Stat. Mech. P07001
(2006)

5. T. Rador, M. Mungan, J. Phys. A: Math. Theor. 41,
055002 (2008)

6. P.D. Lax, Hyperbolic Partial Differential FEquations,
Courant Lecture Notes (2006), Vol. 14, ISBN-13: 978-0-
8218-3576-0

7. T. Liu, K. Nishihara, J. Differ. Equ. 133, 296 (1997)

8. T. Liu, A. Matsumura, K. Nishihara, STAM J. Math. Anal.
29, 293 (1998)

9. T. Nakamura, STAM J. Math. Anal. 34, 1308 (2003)

10. D.M. Kilgour, S.J. Brams, Mathematics Magazine 70, 315
(1997)



	Introduction
	Review of three agent games
	Merger dynamics
	Digression on initial conditions
	Discussion
	References

