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Application of the exp-function method
to nonlinear lattice differential equations
for multi-wave and rational solutions
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In this paper, we extend the basic Exp-function method to nonlinear lattice differential equations for constructing
multi-wave and rational solutions for the first time. We consider a differential-difference analogue of the Korteweg–de
Vries equation to elucidate the solution procedure. Our approach is direct and unifying in the sense that the bilinear
formalism of the equation studied becomes redundant. Copyright © 2011 John Wiley & Sons, Ltd.
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1. Introduction

Nonlinear lattice differential equations (NLDEs), also known as differential-difference equations, are used in distinct branches of
nonlinear physical/mathematical sciences. To name a few examples, biophysics, condensed matter physics, mechanical engineering,
and fields such as molecular crystals, atomic chains, currents in electrical networks. Their crucial role has motivated scientists to
develop many integrable NLDEs [1--3]. Contrary to difference equations that are being fully discretized, NLDEs are semi-discretized
with some (or all) of their space variables discretized while time is usually kept continuous. Hence, NLDEs can be assumed as hybrid
systems. In recent years, the problem of solving NLDEs analytically has been initiated. Finding special types of exact solutions, such
as traveling waves, have been important to understand biological, chemical and physical phenomena governed by NLDEs.

Traveling waves may be coupled with distinct velocities and distinct frequencies. Multi-wave solutions are important because
they may sometimes be converted into a single soliton of very high energy that propagates over large domains of space without
dispersion. As a result, an extremely destructive wave (tsunami for instance) may be produced. Hence, finding exact and explicit
solutions with multi-velocities and multi-frequencies for NLDEs has become an attractive research area nowadays. However, the
methods commonly used are usually restricted and cannot be used for numerous realistic scenarios. Hirota’s method [4] can be
used to search for such solutions if the equations considered can be transformed into a bilinear form. But, there is no guarantee
that the bilinear forms are known or exist.

In 2006, He and Wu [5] introduced the basic Exp-function method for finding exact solutions of nonlinear evolution equations
(NEEs). Currently, this method has gained much popularity. As a result, the method has been applied to various kinds of nonlinear
problems in science and engineering [6--11], and recently more attention is paid to its adaptation, generalization, and extension;
for instance, differential-difference equations [12], NEEs with variable coefficients [13], stochastic equations [14], coupled NEEs [15],
n-soliton solutions for NEEs [16--19], rational solutions for NEEs [20]. It is also worth mentioning that in the comprehensive survey
studies [21--23], the basic Exp-function method has been considered as a very reliable technique for solving a wide class of nonlinear
problems. The present paper is a worthwhile contribution to this effort as well, because the applicability of the basic Exp-function
method to NLDEs for multi-wave and rational solutions still remains an interesting and important unstudied problem.

Our objective in this study is twofold: First, to stress the power of the basic Exp-function method in tackling NLDEs for higher
order wave solutions as well as rational solutions. Second, to extend it to a differential-difference Korteweg–de Vries equation for
the first time. The remainder of this paper is organized as follows. In Section 2, we state the procedure in brief. In Section 3, we
analyze our problem. A conclusion is given in Section 4.
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2. Methodology

Let us consider an NLDEs for a function un =u(n, t) of the form

�un

�t
=P(. . . , un−r , un, un+r ,. . .), (1)

where P is a polynomial with constant coefficients and r is fixed (not depending on n). Equation (1) is discrete in the space variable
n and continuous in the time variable t. There are no restrictions on the level of shifts or on the degree of nonlinearity in Equation.
(1). The basic Exp-function method is based on the assumption that the solutions of Equation (1) can be expressed as

un =
∑p

i=0 ai exp(i�)∑q
j=0 bj exp(j�)

, �=dn+kt+�, (2)

where p and q are the positive integers to be determined; ai , bj , d, and k are arbitrary constants to be specified; � is an arbitrary
phase shift. Substituting the ansatz (2) into Equation (1) and balancing the highest order terms one can determine the constants
p and q. Clearly, the ansatz (2) corresponds to a one-wave solution of Equation (1). To seek for a multi-wave (N�2) solution of
Equation (1), the ansatz (2) can be modified as follows:

un =
∑p1

i1=0

∑p2
i2=0 ai1i2 exp(i1�1 + i2�2)∑q1

j1=0

∑q2
j2=0 bj1j2 exp(j1�1 + j2�2)

, �l =dln+klt+�l , l =1, 2, (3)

which corresponds to a two-wave solution of Equation (1)

un =
∑p1

i1=0

∑p2
i2=0

∑p3
i3=0 ai1i2i3 exp(i1�1 + i2�2 + i3�3)∑q1

j1=0

∑q2
j2=0

∑q3
j3=0 bj1j2j3 exp(j1�1 + j2�2 + j3�3)

, �l =dln+klt+�l , i=1, 2, 3, (4)

which corresponds to a three-wave solution of Equation (1), and so on. To obtain a rational solution for Equation (1), the ansatz (2)
can be further modified as

un =
∑p

i=0 ai(�1 exp(�)+�2�)i∑q
j=0 bj(�1 exp(�)+�2�)j

, �=dn+kt+�, (5)

where �1 and �2 are the two embedded constants. It is obvious that when �1 =1 and �2 =0, the ansatz (5) turns out to be the
ansatz (2).

Finally, substituting the ansatze (2)–(5) into Equation (1) leads to nonlinear algebraic systems for the unknown parameters. Solving
each resulting system (if possible), one can obtain one-wave, two-wave, three-wave, and rational solutions to Equation (1) assuming
that they exist.

3. Application

In this section, we generalize our procedure to a differential-difference analogue of the Korteweg–de Vries equation [24, 25] which
reads as

�
�t

(
un

1+un

)
=un− 1

2
−un+ 1

2
. (6)

Equation (6) was derived from the Volterra system and related to a sort of ladder circuit [2].
First, we assume that Equation (6) admits a solution in the form

un = a1 exp(�)

(1+b1 exp(�))2
, �=dn+kt+�, (7)

which is embedded in the ansatz (2). Substituting (7) into Equation (6) and solving the resultant algebraic system for the unknowns
a1, b1, d, and k, we obtain the solution set

k =exp

(
− d

2

)
(1−exp(d)), b1 =exp

(
d

2

)(
exp

(
− d

2

)
−1

)2
a1, (8)

which leads to a one-wave solution of Equation (6) as

un =

(
exp

(
d

2

)
−1

)4
a1 exp

(
dn−exp

(
− d

2

)
(exp(d)−1)t+�

)
((

exp

(
d

2

)
−1

)2
+a1 exp

(
dn−exp

(
− d

2

)
(exp(d)−1) t+ d

2
+�

))2
, (9)

where d, a1, and � remain arbitrary.
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Second, we suppose that Equation (6) admits a solution of the form

un = a10 exp(�1)+a01 exp(�2)+a11 exp(�1 +�2)+a21 exp(2�1 +�2)+a12 exp(�1 +2�2)

(1+b10 exp(�1)+b01 exp(�2)+b11 exp(�1 +�2))2
, (10)

where �l =dln+klt+�l , l =1, 2. It is obvious that the ansatz (10) is embedded in the ansatz (3). Substituting (10) into Equation (6)
and solving the resultant algebraic system for the unknowns a10, a01, a11, a21, a12, b10, b01, b11, k1, k2, d1, and d2, we obtain the
solution set

k1 = exp

(
− d1

2

)
(1−exp(d1)), k2 =exp

(
− d2

2

)
(1−exp(d2)) , (11a)

a10 = exp

(
− d1

2

)(
exp

(
d1

2

)
−1

)2
b10, a01 =exp

(
− d2

2

)(
exp

(
d2

2

)
−1

)2
b01, (11b)

a11 = 2 exp

(
− d1 +d2

2

)(
exp

(
d1

2

)
−exp

(
d2

2

))2
b01b10, (11c)

b11 =
(

exp

(
d1

2

)
−exp

(
d2

2

))2(
exp

(
d1 +d2

2

)
−1

)−2
b01b10, (11d)

a21 = exp

(
− d2

2

)(
exp

(
d1

2

)
−exp

(
d2

2

))2(
exp

(
d2

2

)
−1

)2(
exp

(
d1 +d2

2

)
−1

)−2
b01b2

10, (11e)

a12 = exp

(
− d1

2

)(
exp

(
d1

2

)
−1

)2(
exp

(
d1

2

)
−exp

(
d2

2

))2(
exp

(
d1 +d2

2

)
−1

)−2
b2

01b10. (11f)

Finally, employing the determined coefficients (11a)–(11f) to (10), we derive a two-wave solution for Equation (6), where b01, b10,
d1, d2, �1, and �2 remain arbitrary

For a rational solution, we suppose that Equation (6) admits a solution of the form

un = a1(�1 exp(�)+�2�)+a0 +a−1(�1 exp(�)+�2�)−1

b1(�1 exp(�)+�2�)+b0 +b−1(�1 exp(�)+�2�)−1 , �=dn+kt+�. (12)

Following the same procedure, we obtain the solution set of the resultant algebraic system as

k =− d(a1 +b1)2

b2
1

, a0 = a1b0

b1
, a−1 = a1b2

0

4b2
1

− 1

4
a1d2 − 1

4
b1d2, b−1 = b2

0
4b1

, �1 =0, �2 =1, (13)

which leads to a rational solution for Equation (6) as

un = a1

b1
− b3

1(a1 +b1)d2

(b0b1 −2(a1d(a1 +2b1)t−b2
1((n−t)d+�)))2

, (14)

where a1, b1, b0, d, and � remain arbitrary.

Remark 1
Of course, we could search for N(�3)-wave solutions for Equation (6) in a parallel manner. However, the calculation procedure
becomes tedious and more complicated since more constraint equations need to be satisfied. It is also worth pointing out here that
compared with the results of [26], our findings seem to be more general in the sense that they contain more arbitrary parameters.
In addition, unlike the procedure of [26], our approach does not require a dependent variable transformation to convert the original
equation into an equation in the so-called bilinear form.

Remark 2
We verified the results of (9), (10), and (14) by back-substitution, this provided an extra measure of confidence in the results. There
have been some occasions when solutions obtained by the Exp-function method might be misleading [27--29]. Thus, it is crucial to
have a eagle-eyed solving mode when the basic Exp-function method is used.

4. Conclusion

We studied a new problem of finding multi-wave and rational solutions to NLDEs via some known generalizations [16--20] of the
basic Exp-function method. To achieve our goal, we focused on a differential-difference Korteweg–de Vries equation. We confirmed
that the model supports one-wave, two-wave, and rational solutions. We observed that Hirota’s dependent variable transformation
becomes superfluous in our approach.
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