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Iterative operator splitting method for capillary formation model
in tumor angiogenesis problem: Analysis and application
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SUMMARY

Iterative operator splitting method is used to solve numerically the mathematical model for capillary
formation in tumor angiogenesis problem. The method is based on first splitting the complex problem into
simpler sub-problems. Then each sub-equation is combined with iterative schemes. The algorithms are
obtained by applying the proposed method to the given model problem. The explicit local error bounds
are derived to show consistency. We also explained the stability by constructing the stability functions.
The obtained numerical results show that iterative splitting method provides high accuracy and efficiency
with respect to other classical methods in the literature. Copyright � 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The iterative splitting is a recent popular technique which is based on first splitting the complex
problem into simpler differential equations. Then each sub-equation is combined with the iterative
schemes, each of which is efficiently solved with suitable integrators, see [1–6]. In this paper,
we deal with the iterative operator splitting scheme for the numerical solution of the nonlinear
capillary formation model in tumor angiogenesis problem.

The biological model problem, see [7–9], is well suited for iterative operator splitting method
since the model can be reduced to advection–diffusion–reaction problem after making a suitable
transformation. This model problem has been solved by the method of lines in [10] and the tau
method in [11], but they deal with more complicated systems. Since the proposed method is based
on the decomposition idea, it is more attractive and more easy to apply for such models.

We also deal with the convergency analysis of the proposed method. In [1], the consistency
and stability of this method are studied based on the matrix representation. In this paper, the
local error bounds are derived for each iteration. The stability function is also obtained in the
same manner to explain stability. Our analysis shows that the iterative splitting method provides
uniformly convergent solution for the model problem.

The paper is organized as follows. Our mathematical model, capillary formation in the tumor
angiogenesis problem, is introduced in Section 2. In the next section, the algorithm of the iterative
splitting method is described. The application of our method to the mathematical model is given
in Section 4. The error bounds are derived in Section 5. In Section 6, we deal with the stability
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CAPILLARY FORMATION MODEL IN TUMOR ANGIOGENESIS PROBLEM 1741

analysis for proposed method based on A-stability by constructing stability functions [3]. The
numerical results are presented in Section 7. Finally, we discuss our results in conclusion part.

2. MATHEMATICAL MODEL

The mathematical model for capillary formation in tumor angiogenesis is originally presented
in [7]. In this model, Levine et al. [7] used the cell transport (chemotactic) equations and developed
the model by using the theory of reinforced random walk derived by David [8] and this model
was recently used by Othmer and Stevens [9] to model fruiting bodies.

In this model, Levine et al. [7] introduces the following initial boundary value problem and this
problem describes the endothelial cell movement in capillary.
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, x ∈ (0,1), t ∈ (0,T ], (1)

where T is the total time. Initial condition is given by

u(x,0)=1, x ∈ (0,1), (2)

and boundary conditions are given by
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where f (x) is the so-called transition probability function that has the effect of biasing the random
walk of endothelial cells and is given by

f (x)=
(

a+ A1xk(1−x)k

b+ A1xk(1−x)k

)�1 ( c+1− A2xk(1−x)k

d +1− A2xk(1−x)k

)�2

. (5)

In this initial boundary value problem (1)–(4), u(x, t) is the concentration of Endothelial Cells,
D is the cell diffusion constant and a, b, c, d , A1, A2, k, �1, �2 are some arbitrary constants,
see [10, 11].

3. ITERATIVE OPERATOR SPLITTING METHOD

Consider the abstract Cauchy problem

u′(t) = (A+ B)u(t), t ∈ [0,T ], (6)

u(0) = u0, (7)

where A and B are linear operators and u0 is the initial condition.
The method is based on iteration by fixing the splitting discretization step size � on time interval

[tn, tn+1]. The following algorithms are then solved consecutively for i =1,3, . . . ,2p+1.

u′
i (t) = Aui (t)+ Bui−1(t) with ui (t

n)=un, (8)

u′
i+1(t) = Aui (t)+ Bui+1(t) with ui+1(tn)=un, (9)

where un is the known split approximation at the time-level t = tn and u0 ≡0 is our initial guess.
The split approximation at the time-level t = tn+1 is defined as un+1 =u2p+2(tn), see [1, 4].
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The iterative operator splitting can be proposed as an effective solver method for large systems
of partial differential equations. This is because the local splitting error of the method can be
reduced by using more iterations. All operators are used together in each iteration, resulting in
better presentation of the physical problem. Larger time-steps are possible in each iterative step due
to separate equations. In addition, CPU time can also be reduced by solving the splitted problem
instead of full problem. The details can be found in [1, 2, 4–6].

4. APPLICATION OF ITERATIVE SPLITTING METHOD TO MATHEMATICAL MODEL

In this section, first we make a transformation to the mathematical model and have a simple
equation. Second, we split this equation into two parts, then apply suitable difference approximation
techniques for each derivatives and have linear bounded systems. Finally, we combine these systems
with iterative schemes and apply the midpoint rule.

Considering Equation (1), it can be written as

D
�
�x

(
u

�
�x

(
ln

u

f (x)

))
= D

�
�x

(
u

(
u′

u
− f ′(x)

f (x)

))
(10)

and by setting F(x)= f ′(x)/ f (x), we have the simplified form

ut = D(uxx −(uF(x))x ). (11)

The initial condition is

u(x,0)=1, x ∈ (0,1), (12)

and boundary conditions (3), (4) become

D

(
�u

�x
−uF

)∣∣∣∣
(0,t)

= 0 for t>0, (13)

D

(
�u

�x
−uF

)∣∣∣∣
(1,t)

= 0 for t>0. (14)

We split the equation

ut = D(uxx −ux F − Fx u) (15)

into two parts as follows:
Diffusion part is

ut = Duxx (16)

and advection-reaction part is

ut =−Dux F − DFx u. (17)

We then combine these equations by using the iterative splitting algorithm as follows:

ui = D(ui )xx − D((ui−1)x F − Fx ui−1), (18)

ui+1 = D(ui )xx − D((ui+1)x F − Fx ui+1), (19)

where i =1,3, . . . ,2p+1.
To solve these iterative schemes, we need initial and boundary conditions that are given as

follows: For initial condition, we have

um =1, 0�m�N , (20)
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and for boundary conditions (13), (14), we have

D

(
�u0

�x
−u0 F0

)
= 0 for t>0, (21)

D

(
�uN

�x
−uN FN

)
= 0 for t>0, (22)

where m defines the spatial discretization step and N is the spatial discretization number. The
derivatives in Equations (21), (22) are approximated by using backward and forward difference
formulas. The central difference approximation for each derivatives uxx and ux are taken into
account for each grid point (xm, t) as follows:

�2u

�x2

∣∣∣∣∣
(xm ,t)

≈ 1

h2
(um+1(t)−2um(t)+um−1(t)) (23)

and
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≈ 1

2h
(um+1(t)−um−1(t)), (24)

where h is the spatial stepping and m =0,1, . . . , N .
After assembling the unknowns of (23) and embedding the boundary conditions (21), (22), we

have the following system of equations:

uxx = A1u, (25)

where

A1 = 1

h2

⎛
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,

and after assembling the unknowns of (24), we obtain the following system:

ux = B1u, (26)

where

B1 = 1
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.

We fix the functions F(x) and F ′(x) at each discretization point m =0,1, . . . , N and have

F(x)=

⎛
⎜⎜⎜⎜⎜⎝

F(x0) 0 . . . 0

0 F(x1) . . . 0

...
...

. . .
...

0 . . . 0 F(xN )

⎞
⎟⎟⎟⎟⎟⎠ , F ′(x)=

⎛
⎜⎜⎜⎜⎜⎝

F ′(x0) 0 . . . 0

0 F ′(x1) . . . 0

...
...

. . .
...

0 . . . 0 F ′(xN )

⎞
⎟⎟⎟⎟⎟⎠ .

Note that we use central difference approximation for each F ′(xm).

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2011; 27:1740–1750
DOI: 10.1002/cnm



1744 N. GÜCÜYENEN AND G. TANOĞLU

After redefining Equations (18), (19), we have linear bounded systems

u′
i = Aui + Bui−1, (27)

u′
i+1 = Aui + Bui+1, (28)

where A= D A1, B =−DF(x)B1 − DF ′(x).
We then solve Equations (27), (28) by using the midpoint method on each subinterval [tn, tn+1]

where n =0,1, . . . , M . Hence, the algorithms can be read as:

un+1
i =

(
I − �

2
A
)−1((

I + �

2
A
)

un
i + �

2
B
(

un
i−1 +un+1

i−1

))
, (29)

un+1
i+1 =

(
I − �

2
B
)−1((

I + �

2
B
)

un
i+1 + �

2
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, (30)

where � is the time discretzation step. We start iteration with i =1, initial guess u0(t)=0 and initial
conditions u1(t)=u0 and u2(t)=u0.

5. ERROR ANALYSIS OF ITERATIVE SPLITTING METHOD
TO MATHEMATICAL MODEL

The local splitting error bounds are derived explicitly in the first theorem and we compare the errors
of the iterative splitting method with the midpoint rule with respect to the midpoint rule without
splitting in the second theorem. Here, A and B are linear bounded operators, where A, B : X → X ,
X is a Banach space considered with suitable matrix norm ‖·‖. (In this study, X is equal to Rn×n .)

Theorem 5.1
Let A, B ∈L(X ) be given linear bounded operators. The Cauchy problem is in (6). Then the
problem has a unique solution. The error bounds of the iterations (8), (9) are given by

for i odd

‖�i‖�(K1.‖A‖)
i−1

2 .(K2.‖B‖)
i+1

2 .‖�0‖ t i

i!
, (31)

for i even

‖�i‖�(K1.‖A‖)
i
2 .(K2.‖B‖)

i
2 .‖�0‖ t i

i!
, (32)

where ‖�0‖ is the difference between the exact solution and initial guess, ‖exp(At)‖�K1,
‖exp(Bt)‖�K2 for t�0.

Proof
The algorithms of the method are given by

u′
i (t) = Aui (t)+ Bui−1(t), (33)

u′
i+1(t) = Aui (t)+ Bui+1(t), (34)

with initial conditions ui (0)=u0 and ui+1(0)=u0 where i =1,3, . . . ,2p+1 for [0, t].
For the first iteration, from the variation of constant formula, we have

	⇒u1(t)=eAt u0 +
∫ t

0
eA(t−s) Bu0 ds, (35)

and we know the exact solution

	⇒u(t)=eAt u0 +
∫ t

0
eA(t−s) B e(A+B)su0 ds. (36)
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For the second iteration, from the variation of constant formula, we have

	⇒u2(t)=eBt u0 +
∫ t

0
eB(t−s) Au1 ds (37)

and we know the exact solution

	⇒u(t)=eBt u0 +
∫ t

0
eB(t−s) Ae(A+B)su0 ds. (38)

Let us denote �i =u(t)−ui (t). Assume that A, B are linear bounded operators and
‖exp(At)‖�K1, ‖exp(Bt)‖�K2 for t�0.

For i =1, we have the error bound
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2
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and for i =3
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∫ t

0
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0
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‖�3‖ � K1.K2.K1.‖B‖.‖A‖.‖B‖.‖�0‖ t3

6
, (49)

then by induction we get:
for i odd

‖�i‖�(K1.‖A‖)
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2 .(K2.‖B‖)
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for i even
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i
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i
2 .‖�0‖ t i

i!
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Note that in [5] they give the same error bounds implicitly, but here we write them in an
explicit form. �
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Theorem 5.2
The local error of the iterative splitting method based on the midpoint rule has more accuracy than
the error of midpoint without splitting.

Proof
The error of iterative splitting with the midpoint rule is

‖uspl(t)−uexact(t)‖�‖AB(A+ B)‖ t3

6
‖u0‖ (52)

and without splitting is

‖umid(t)−uexact(t)‖�‖A+ B‖3 t3

12
‖u0‖. (53)

Let

‖�spl‖=‖uspl(t)−uexact(t)‖�‖A‖.‖B‖.‖A+ B‖ t3

6
‖u0‖

and

‖�mid‖=‖umid(t)−uexact(t)‖�‖A+ B‖3 t3

12
‖u0‖,

then we have estimation
‖�spl‖
‖�mid‖�1, (54)

where 2‖A‖.‖B‖�‖A+ B‖2. �

6. STABILITY ANALYSIS OF THE ITERATIVE SPLITTING METHOD TO
MATHEMATICAL MODEL

In this section, we explain the stability of the algorithms (29), (30) with the following theorem.

Theorem 6.1
The algorithms (29), (30) are stable with Z1 =�A and Z2 =�B if and only if there exists functions
Ri (Z1, Z2) such that:

‖Ri (Z1, Z2)‖�1+K � (55)

for all Z1, Z2 ∈ X × X, (56)

where K is a constant (independent of �, h), X a Banach-space and ‖·‖ a matrix norm.

Proof
Discretizations of Equations (27) and (28) by the midpoint rule are given as

un+1
i =

(
I − �

2
A
)−1(

I + �

2
A
)

un
i +

(
I − �

2
A
)−1 �

2
B(un

i−1 +un+1
i−1 ), (57)

un+1
i+1 =

(
I − �

2
B
)−1(

I + �

2
B
)

un
i+1 +

(
I − �

2

)−1 �

2
A(un

i +un+1
i ). (58)

We compute the first iteration with i =1 and get the equations

un+1
1 = R(Z1)un

1 +�

(
I − Z1

2

)−1 B

2
(un

0 +un+1
0 ), (59)

un+1
2 = R(Z2)un

2 +�

(
I − Z2

2

)−1 A

2
(un

1 +un+1
1 ), (60)
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where

R(Z )=
(

I − Z

2

)−1(
I + Z

2

)

and Z1 =�A, Z2 =�B. �

Remark 6.1
The stability region for R(Z )= (I − Z/2)−1(I + Z/2) is precisely the left-half of the complex plane
and ‖R(Z )‖�1 for this region. Proof is in [3].

After setting un
1 =un

2 =un and initializing with un+1
0 =un

0 =un , then for the first part, we have
the stability equation

un+1
1 =

(
R(Z1)+�

(
I − Z1

2

)−1
)

Bun . (61)

With the prestep we obtain the stable function:

‖R̃1(Z1,�)‖�1+�K1,

where K1 =‖(I − Z1/2)−1‖.‖B‖ which is independent of � and h.
After setting un

1 =un
2 =un and putting un+1

1 = R̃1un , then for the second part, we have the
stability equation

un+1
2 = (R(Z2)+�

(
I − Z2

2

)−1 A

2
+�

(
I − Z2

2

)−1 A

2
R̃1(Z1,�))un. (62)

With the prestep, we obtain the stable function:

‖R̃2(Z1, Z2,�)‖�1+�‖
(

I − Z2

2

)−1

‖.‖A‖+ �2

2
‖
(

I − Z2

2

)−1

‖.‖A‖.K1.

Since �2<(T +1)� for �∈ [0,T ], then

‖R̃2(Z1, Z2,�)‖�1+�K2,

where K2 =‖(I − Z2/2)−1‖.‖A‖.(1+K1(T +1)/2), which is independent of � and h.

Remark 6.2
A one-step finite difference scheme (with constant coefficients) is stable in a stability region � if
and only if there is a constant K (independent of �, � and h ) such that

|g(�,�,h)|�1+K �

with (�,h)∈�. Proof is in [12]. �

7. NUMERICAL RESULTS

We present the application of the iterative operator splitting method for the numerical solution of a
mathematical model for capillary formation in tumor angiogenesis. For numerical computation, we
consider the problem (1)–(4) with parameters D =0.00025, a =1, b=2, c=10, d =0.1, �1 =�2 =1,
A1 =28×107, A2 =0.22×109 and k =16. We write the computer program in Matlab and present
our results on graphics that define the concentration of Endothelial Cells at different times.

In Figure 1, u(x, t) is plotted for different values of T . It is seen that graphs, in Figure 1,
show similar trends as the ones obtained by the method of lines in [10] and the tau method in
[11]. In Tables I and II, we compare the errors of different splitting methods and the method of
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Figure 1. Numerical solution of the problem (1)–(4) by using iterative operator splitting methods for
T =3, T =10, T =50, T =150, T =300 and T =750.

Table I. The errors of different splitting methods and the method of lines
for �x =0.01, �t =0.3 at T =150.

errL1 errL2 errL inf

Iterative splitting 4.7701e−007 5.3524e−008 9.4143e−009
Sequential splitting 0.0082 0.0013 3.5973e−004
Strang splitting 2.8190e−005 4.4547e−006 1.1447e−006
Method of lines 9.6361e−004 1.0662e−004 1.6967e−005

Table II. The errors of different splitting methods and the method of lines
for �x =0.01, �t =0.3 at T =300.

errL1 errL2 errL inf

Iterative splitting 1.9941e−007 2.2098e−008 3.3364e−009
Sequential splitting 0.0081 0.0013 3.7108e−004
Strang splitting 2.9793e−005 4.5777e−006 1.0991e−006
Method of lines 4.7212e−004 5.2296e−005 7.4543e−006

lines at times T =150 and T =300. It is shown that the iterative splitting method provides very
accurate numerical solution for mathematical model in comparison with other classical splitting
methods and the method of lines without splitting. In Figure 2, we simulate the solutions taken
with different splitting methods at time T =300. In Tables III and IV, we compare the errors of
iterative splitting and the difference method without splitting at times T =3 and T =30. We see that
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

Figure 2. The comparison of solutions of the problem (1)–(4) for �x =0.01, �t =0.3 at T =300.

Table III. The errors of different splitting methods and the difference method
(without splitting) for �x =0.01, �t =0.03 at T =3.

errL1 errL2 errL∞

Iterative splitting 9.7647e−008 1.4602e−008 3.7775e−009
Difference method 3.5514e−004 6.4051e−005 1.7128e−005

Table IV. The errors of different splitting methods and the difference method
(without splitting) for �x =0.01, �t =0.03 at T =30.

errL1 errL2 errL∞

Iterative splitting 6.6943e−008 8.6847e−009 1.9516e−009
Difference method 0.0176 0.0027 5.5020e−004

iterative splitting gives better results than the difference method and also note that the difference
method does not work at long times with big time-steps. Note that Matlab package expm is used
as exact solution.

8. CONCLUSION

In this paper, we have presented the application of the iterative operator splitting method for the
numerical solution of a mathematical model for capillary formation in tumor angiogenesis. We
study the convergency properties of the method by using matrix analysis. We then compare the
performance of the iterative splitting method with traditional operator splitting methods (sequen-
tial and Strang splitting) and non-splitting methods (method of lines and finite difference). The
numerical results reveal that the iterative splitting method is applicable to this model problem and
provides better accuracy compared to the other splitting methods and non-splitting methods.

The iterative splitting method is superior to the others, because of the following reasons:

• It includes all operators in each subequation unlike the traditional operator splitting methods.
This is physically the best and hence we obtain the consistent approximations after each
inner step.
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• It reduces the local splitting error by using more iteration steps to obtain higher order accuracy.
• It has a small constant in the local splitting error with respect to the method of lines.
• It gives a better performance at long time with respect to the finite difference method.

As a result, this application shows that the iterative operator splitting method gives high conver-
gence and small error and it is quite easy to apply to the model problem. The consistency and
stability analysis are also studied easily. In future work, we want to apply the method to higher
dimensional problems.
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