7th International Conference on Quantum Theory and Symmetries (QTS7) IOP Publishing
Journal of Physics: Conference Series 343 (2012) 012093 doi:10.1088/1742-6596/343/1/012093

Vortex Images, gq-Calculus and Entangled Coherent
States

Oktay K. Pashaev
Department of Mathematics, Izmir Institute of Technology, Urla-Izmir, 35430, Turkey

E-mail: oktaypashaev@iyte.edu.tr

Abstract. The two circles theorem for hydrodynamic flow in annular domain bounded by
two concentric circles is derived. Complex potential and velocity of the flow are represented as
g-periodic functions and rewritten in terms of the Jackson g-integral. This theorem generalizes
the Milne-Thomson one circle theorem and reduces to the last on in the limit ¢ — oco. By
this theorem problem of vortex images in annular domain between coaxial cylinders is solved
in terms of g-elementary functions. An infinite set of images, as symmetric points under two
circles, is determined completely by poles of the g-logarithmic function, where dimensionless
parameter ¢ = r3/r; is given by square ratio of the cylinder radii. Motivated by Mdbius
transformation for symmetrical points under generalized circle in complex plain, the system of
symmetric spin coherent states corresponding to antipodal qubit states is introduced. By these
states we construct the maximally entangled orthonormal two qubit spin coherent state basis,
in the limiting case reducible to the Bell basis. Average energy of XYZ model in these states,
describing finite localized structure with characteristic extremum points, appears as an energy
surface in maximally entangled two qubit space. Generalizations to three and higher multiple
qubits are found. We show that our entangled N qubit states are determined by set of complex
Fibonacci and Lucas polynomials and corresponding Binet-Fibonacci g-calculus.

1. Introduction

One of the modern directions in which g-calculus [1] plays key role is related with quantum
algebras and quantum groups as deformed versions of the usual Lie algebras with deformation
parameter q. In nineteen’s of twenty century, a big interest to quantum symmetries initiated
large amount of work devoted to potential application of quantum symmetries to problems
of quantum physics as g-harmonic oscillator, g-hydrogen atom, quantum optics, rotational
and vibrational nuclear and molecular spectra, quantum integrable systems etc. Construction
of representation theory of quantum groups leads to developing special part of mathematical
physics as g-special functions and g-difference equations [2].

In the present paper we apply g-calculus for solution of two, at first glance not related physical
problems, one from hydrodynamics and another one from quantum information theory. Both
problems are connected with complex analysis notion of symmetrical points with respect to the
circle [3].

In hydrodynamics it is related with method of images for bounded circular domain, where
symmetrical points correspond to point vortex and its image. Application of method of images
for vortex in a domain between concentric circles have been discussed by Poincare [7], who found
an infinite set of images as symmetric points and indicated convergency problem for infinite
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sums of images. For a doubly connected domain it is well known, that any doubly connected
region can be one to one and conformally mapped to the annular region bounded by two circles
r1 < |z| < r2. Moreover this canonical domain is unique, up to the linear map. It means that
if domain B is mapped to two different annular domains 71 < |z| < ro and 7} < [¢| < r} , then
the last ones are related by linear transformation ¢ = €'z, thus have the same circles ratio
ro/r1 = rh/rl. Then this ratio plays the role of g-parameter ¢ = 73/r?, and solution of the
problem for N point vortices can be given in terms of g-logarithmic and Jackson g-exponential
functions [4].

In quantum information theory we are dealing with a qubit as a unit of quantum information.
In the coherent state representation the qubit is characterized by a point in extended complex
plain. Then symmetrical points in the plane determine pair of qubit states from which possible
to construct entangled two qubit states [5]. It turns out that this approach can be extended
to arbitrary N qubit states. By constructing entangled coherent N qubit states we find that
they are determined by the set of complex Fibonacci and Lucas polynomials. The first ones
can be treated as g-numbers in Binet-Fibonacci Golden calculus, which we have developed in
connection with Golden quantum oscillator in [6].

The paper is organized as follows. In Section 2 we review symmetrical points in complex
analysis, corresponding stereographic projections and action of Mobius transformation. In
Section 3 after short review of the Milne-Thomson circle theorem for circular domain we
formulate new two circle theorem for bounded flow in a region between two concentric circles.
Then we find relation of complex potential and complex velocity with g-periodic functions and
write solution in terms of Jackson g-integral. As an application, the problem of N point vortices
in annular domain is solved by this method. In Section 4 we consider a qubit as a unit of
quantum information, the coherent state representation, symmetric qubits and action of M6bius
transformation on qubits. Antipodal orthogonal symmetric qubit coherent states are introduced
in Section 5. In Section 6 by symmetric states, the system of two qubit maximally entangled
coherent states is constructed. As an application of these states the average energy for XYZ
model in these states are calculated. Extension for three qubit states and corresponding energy
surface are found. Finally, in Section 7 we derive the set of N qubit entangled coherent states
determined by the set of complex Fibonacci and Lucas polynomials. By Binet representation
these polynomials are treated as g-numbers in the Binet-Fibonacci Golden calculus.

2. Symmetric points and Mdbius transformation
In complex analysis [3], two points 1) and ¥* are called symmetrical with respect to the circle C'
through 1, 19, 13 if and only if (V*, 91,12, 13) = (¥, 11,19, 13) where the cross ratio of four

points is

(w - %) (wl - ¢3) (1)
(¢ —3) (WY1 — ¥2)
The circle here is considered in the generalized form, that includes also a line, regarded as
a circle with an infinite radius. On the Riemann sphere all generalized circles are coming
from intersection of the sphere with a plane, so that if the plane passes the north pole, the
corresponding projection would be a line. For the unit circle at the origin, we can choose
Y1 = —1,99 = i,7p3 = 1 so that the symmetrical point of v is 1)* = 1/¢. It means that points 1)
and ¥* have the same argument and are situated on the same half line from the origin, so that
if one of the point is out of the circle, the second one is inside the circle, and vice versa. Hence
points ¥ = 0 and ¢* = oo are symmetrical points with respect to the circle. The cross product
(1) is invariant under the Mobius transformation, so that if a Mobius transformation carries a
generalized circle C into a circle Co, then it transforms any pair of symmetrical points with
respect to C into a pair of symmetrical points with respect to Cs. The above symmetric points
have simple meaning on the Riemann sphere:

(Y, Y1, 92,13) =
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1. ¢ and ¢* = 9 are projections of symmetric points M(z,y, 2) and M*(x, —y, 2)
2. ¢ and ¥* = —) are projections of symmetric points M (z,y, z) and M*(—x,y, z)
3. ¢ and Y* = % are projections of symmetric points M(x,y, z) and M*(z,y, —z)

4. ¢ and Y* = —% are projections of symmetric points M (z,y, z) and M*(—z, —y, —z)

3. Vortex images in annular domain

3.1. The circle theorem

There is the Circle Theorem due to Milne-Thomson [9]. Let f(z) is the complex potential of
the two-dimensional irrotational flow of incompressible inviscid fluid in the z-plane (z = x +iy),
where the singularities of f(z) are all at a distance greater than r from the origin. If circular
cylinder with cross section C:|z| = r, be introduced into the flow, then the complex potential
becomes

7”2
F(z)=f(:)+ ] (—) . 2)

For complex velocity of the flow V(z) = vy — ivg = F’(z) this theorem can be reformulated
in the form
- 2 2
V(z) =v(2) - zv <—> ; 3)

where v(z) is a complex velocity of the flow in unbounded domain, and the second term represents
correction to the complex velocity by cylinder of radius r placed at the origin. The normal

velocity of the flow, proportional to [V (z)z 4+ V(2)Zz], vanishes at the surface of the cylinder
2Z =12
As an example we consider the point vortex with strength I' at the point zg with complex

potential .
f(2) = 5= 1In(z — 20). (4)

271
Then introducing a cylinder with the center at the origin and |zg| > r gives
r r 2 r r r?

r
F=—In(z—%2)——h(——-%)=-—h(z—2) - —n(z——)+ —1 .
2me n(z = z) 2me ( z %) 2me n(z = z0) 2me n(z 20)+ 2me nz+C. (5)

<

This shows that the vortex image is located at symmetric point z* = 72/%,. For complex velocity
we have

- r 1 1 1
Vi(z) = — - - 6
(2) 21 \ 2z — 29 z_ﬁ+z ’ (©6)
%0

where the second term represents a vortex of strength —I' at the inverse point 72/ with respect
to the cylinder, and the last term is the positive strength vortex at the origin. Henceforth, the
vortices at inverse point and at the center of cylinder, imitating the circular boundary, we shall
call "vortex images” or simply ”images”. Therefore, in (6), there are two images; one positive
image at the centre of the cylinder and another negative image at the inverse point. These two
images are used to replace correctly the circular boundary in the infinite 2-D plane.

3.2. The two circles theorem
Here we formulate a new the Annular or the Two Circles Theorem.
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3.2.1. The two circles theorem for complex potential Let f(z) is the complex potential of the
two-dimensional irrotational flow of incompressible inviscid fluid in the z-plane (z = z + iy),
where the singularities of f(z) are all at a distance greater than r; and less then 7o from the
origin. If two concentric circular cylinders with cross sections Cj:|z| = r1 and Ca: |z| = 72,
r1 < 72, be introduced into the flow, then the complex potential between circles, r1 < |z| < 7,

becomes
F(z) = fq(z) +JFq <%> = Z flq"z) + Z f(qn%> ) (7)

n=—oo n=—oo

2
where ¢ = :—% The proof is easy by observing that on the first circle zz = r? by replacing

1
argument in the second sum we get

[e.e]

F(2)le, = Y (f(a"2) + f(q"2)), (8)

n=—oo

which means that the stream function of the flow on the first cylinder vanishes, SF|c, = 0. By

2
substitution r? = :—% r? = qr} to the sum (7) and shifting summation index n to n — 1, we have
1

_ (2 > © r2
o=+ (2] = 3 rwas 3 (e, o)
so that on the second circle zz = r%,

o0

F(2)ley = Y. (f(¢"2) + f(¢"2)) (10)

n=—oo

and the stream function vanishes as well, SF|c, = 0. Here we should notice that infinite sums
in the above theorem require care since could diverge when we separate or combine sums. To
make concrete result convergent we can use ambiguity in definition of complex potential, which
is determined up to arbitrary complex constant.

3.2.2. The two circles theorem for complex velocity The two circles theorem can be formulated
for complex velocity of the flow in the next form:

Ve == g )
where -
fo(2) = Z f(q"2) (12)
so that

0 7"2 o0 7"2
Viz)= ), qnﬁ(q”Z)—z—é > ™ <q”;1>- (13)

The proof is as follows. For the first circle Cy : Zz = r?, we have easily

T2 ’1“2
[V(2)z+ V()2 ey = (20(2))g (—lv (—)) tee = (14)

z z

(20(2))q + (20(2))q = (20(2))q = (20(2))q = 0. (15)
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For the second one Cy : 2z = r3 we can write

2
Ty T1iTa

[V(2)z2 + V(2)2] oy = (204(2))q — <—2—v(—2—)> +tee (16)

or by ¢ = r3/r? we get
V()2 + V(23] oy = (25g(2))g — (4" 20(a722)g + (rg(D)g — (225 )y (17)
From definition (12) by rescaling and shifting summation index we find next property of ”g-

function”:
falaz) = f(2), (18)
which means that this function is the g-periodic function. For this function the g-derivative
(complex) vanishes
falgz) — fq(2)

Difi(2) = T =0 (19)
This implies
(20 D) = o(2)g (7120007 2))y = (25(2))s. (20)
Then on the second circle we have
V()2 + V()] e, = 0. (21)

3.2.8. The g-Jackson integral representation The g-functions defined above (12) and the two
circles theorem can be rewritten in terms of Jackson g-integral

[ 1@ =0 —aw > 0 s, 22
n=0

o) = = [ Bagz e L [ 14,0 ey (2

for complex z. For complex potential it gives

LA+ ¢ [Fe)+ ) (2
LR, e i, ()

3.8. Point vortex between concentric circles
Now we apply the above two circles theorem to the problem of point vortex located at zy between
two concentric circles r1 < |z9| < 2. By using complex potential (4) and theorem (7) we get

so that

r & " r% z— zoq

F(z) = 5l nzz;oo lln(z 20q") — In(z q ] 9 n_z;ool x qn (25)

This gives a clear picture of the structure of vortex images. For a given vortex at zg, the
first positive sum represents contribution from the vortex and the infinite set of its even
images, while the second, negative sum corresponds to odd images. The infinite set of points
o @20, 0 220,47 20, 20, 9205 220, .., ¢ 20, ... we call the g-chain. Then the set of vortex

images forms two q-chains generated by vortex I' at zg and its image —I" at r}/Z.
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For complex velocity we have

V=P =Ly | ! (26)
zZ) = Z) = — — .
271 o |2 20q™ 5 — ;i q"
0

Here we should notice that due to the multiple connected character of the domain, this expression
is not unique and admits next freedom

_ _ Ty 1

V(z) = V(z)+ (27)

2mi 2z
corresponding to a vortex with arbitrary strength I'g at the origin. This arbitrary parameter,
determining point vortex at the origin can not be fixed by the boundary conditions. To fix
arbitrariness of this solution, we have to impose an additional constraint. We can chose it in
the form

V(z)dz = 0. (28)

C

This condition can be justified by correctness of the limiting procedure ;1 — 0, ro — oo to the
planar problem, so that no singularity at the origin should arise. By the residues theorem as a
result we have next image representation [10]

V() irk i 1 : - ir (29)
= 2mi n - k>
k=1 ™ e | P T 2pq" o — gqn 2miz ]

for N point vortices of strength I'1,I's, ..., 'y located at positions z1, 29, ..., 2y correspondingly.
In the limit of the vortices outside of a cylinder with radius vy = constant, ¢ — oo and r9 — o0,
it gives result

1

Z — Z Ty, (30)

_2m z—zk L,_ N
— Zk

coinciding with the circle theorem (6). If in (26) instead of r; we use expression for ro then
following the same procedure we find that in this case we should fix I'g = 0. So that we have
alternative expression

N k; oo 1 1
=20 2 | (31)
P A S Al 1’ L %qn

In the limit of the vortices inside of a cylinder with radius ro = constant, ¢ — oo and r; — 0,
it gives result
ol 1

Z Q—k a 3l (32)

z— 2k

Zk
which also coincides with the circle theorem. This shows that the two circles theorem generalizes
the circle theorem of Milne-Thomson and reduces to the last one in the limit g— > oo.
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4. Mobius transformation and qubit
In quantum computations we have a qubit as a unit of information

(¥ 2 2 _
o= (00 ). 1l e =1, (33)

then, in terms of homogeneous coordinate 1) = 15 /11 up to the global phase we have normalized
qubit state

o= e (o) &2

as spin 1/2 generalized coherent state [8]. From another side, the qubit

0 .0 cos &
|0, >= cos 5\0 > +sin 56“0\1 >= < singei‘p ) (35)

determined by point (6, ¢) on the Bloch sphere, and parameterized by the homogeneous variable
P = % = tan gei‘b determines the stereographic projection of point (sin 6 cos ¢, sin 0 sin ¢, cos 6)
on the unit sphere to the complex plane ¢. Therefore the Bloch sphere, considered as a Riemann
sphere for the extended complex plane v by the stereographic projection, determines the SU(2)

or the spin coherent state
0> 491 >

VI[P

The computational basis states [0 >= | 1>= (1 0 )T and |1 >=| |>= (0 1 )T in this
coherent state representation are just points in extended complex plane (R, S9) U {0}, as
1 = 0 and ¥ = oo respectively. These points are symmetrical points under the unit circle at the
origin.

|t > (36)

4.1. Symmetric qubits

As we have seen in Section 3, symmetric points are important in the hydrodynamic theory
and are related with the method of images. For point vortex in the plane bounded by the
cylindrical domain or the annular domain, the symmetrical points represent vortex and its
images. Now we like to introduce the coherent states corresponding to symmetric points,
representing symmetrical pair of qubits with remarkable properties. Since the unit circle in the
1 plane: |1|? = 1, represents equator on the Bloch sphere, then any point on upper hemisphere
projects to the external part of the unit circle. While the lower hemisphere is projected to
internal part of the circle. It is easy to see that if point M (x,y,z) is projected to v, then
reflected in equator point M*(x,y, —z) is projected to the symmetrical point 1*. According to
these two points, for given qubit

0 .0 cos 2
|9,QO >= COoS §|0 > -+ sin 56“0|1 >= ( singei‘p ) (37)

we have "symmetric” qubit state

0 0 sin &
T — 6,9 >=sin 5\0 > + cos iew\l >= ( cos%ew ) . (38)

This pair of qubit states defines the symmetric qubit coherent states. The corresponding points
M and M* on Bloch sphere are mirror images of each other in coordinate plane xy. For every
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complex number v as projection of point (0, ¢), we have the coherent state (34). Then every
symmetric point determines the symmetric coherent state. For point ¢* = 1. the symmetric

<

coherent state of qubit is -
1 0>+1>
oL o B0z HL >
(G V1t Yl
In the limiting case ¥ = 0 and ¥* = oo for symmetric points we get computational basis:
| =0 >= 11>, [p* =00 >=10>. Now, if one has dealing with one qubit gate represented by
the linear unitary transformation, then it transforms the unit circle at origin to a generalized
circle in such a way that symmetric points in the first circle transform to symmetric points with
respect to the new one. It defines the transformation rule for symmetric qubit states.

(39)

5. Antipodal orthogonal symmetric coherent qubit states

According to our definition of symmetric coherent states, expansion of an arbitrary qubit state
in computational basis |¢p >= ¢1|0 > +c2|1 > can be considered as an expansion to specific
symmetrical coherent states. Then we have natural generalization of this expansion to arbitrary
symmetrical states

¢ >=d1[tp > +da|p" > (40)
considering states [t > and [¢)* > as a basis. However this basis is not orthonormal due to
2[¢|
<Y >= ————= < 1. 41

To have the orthogonal states for given state |1 > we consider the negative-symmetric state
| —¢* >. This state is represented by point —1)* = —1/¢ which is rotation of the symmetric
point * on angle 7, and which belongs to the line through points ¢ and *. We call this point
as the negative symmetric point or negative mirror image and corresponding coherent state as
the negative-symmetric coherent state. On the Bloch sphere for point M (z,y, z) representing
qubit state |0, ¢ >, it is given by antipodal point M*(—z, —y, —z) corresponding to state

0 0 . in 2
|m— 0,0+ 7 >=sin 5\0 > — cos 56“"\1 >= < —cscglgew ) , (42)

which we call the antipodal qubit state. We have explicitly

[¥]
0> > lllo> >
i LE s (13)

V14 [ V1+[yP

Up to phase this state can be written in the form

= l0> +1 >

V1+[oP

In contrast to symmetric state (39), the negative-symmetric state (43) is orthogonal to |¢) >:

| =" > (44)
< =Py >=0 (45)
Then, states |¢) > and | — ¢* > form the orthonormal basis so that for any state

lp >=ei|t) > +ea| — ™ > (46)
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we have _
c1 + et " —tcr + ¢
e1 =< Ylp >= ————=, €3 =< —Y*|¢p >= —/———=. (47)
V1+I[oP V14 [Y?
The coherent state |t >, ¥ € C, for arbitrary spin j is defined by
2j . 1/2
>= . : ,—j+ k>, 48
V> ey o ) )
and for the scalar product of two coherent states we have
14 ¢y)%
< gl >= 0L oV) (49)

(14 1g12)7 (1 + [¢*)7

Then orthogonality condition implies 1 + ¢t = 0 or the negative -symmetric point in the unit

circle ¢ = —%. Representation of these coherent states in terms of unit vector n
; 1+ninz\’
< n1|n2 >— eze(nl,nz) <%> (50)
shows that the above points are antipodal points on the sphere nyjng = —1.

6. Two qubit coherent states
Here we consider two qubit coherent state

1
VI[PV [

By proper choice of ¥ and 9 we can construct two qubit orthonormal coherent state basis

[ty > |ahg >= (1 w2 o1 Prahy )T- (51)

1

> = e (v v v ) (52)
W1-v'> = (-0 1 Rl ) (53)
—w s> = o (<6 WP 1w (54)

—v > =0 > = (P =0 -0 1) (55)

It can be generated from the computational basis by operator

v= (e ) 0

applied to proper one qubit states. But due to separability, these states are not entangled as
well as the computational basis. However we can generate maximally entangled Bell states from
the computational basis by using a combination of Hadamard gate and a CNOT gate. This
allows us to introduce the new set of two qubit coherent states.
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6.0.1. Mazimally entangled two qubit states from coherent state basis Now we introduce the
set of two qubit coherent states

Pe> = (> o> =0t > |-y >), 67)
1 * . *
Ge> = B >[="> £ =97 > [0 >). (58)

These states generalize the Bell states and reduce to the last ones in the limit ¢y — 0 and

—% — 00. We can show that it is maximally entangled set of orthogonal two qubit states.

S

Explicitly for these states we have

1+ 1— 42

IS o v
SR e T Ve T (R R

1+,¢2 _1_’_,¢2

— ) 0

N ST U 1 1+ P

(60)

R TN Rt A (Rl S
2 0

6.0.2. Concurence The concurrence for pure states in the determinant form is Ciy =
‘ too  to1
tio tnn
basis. Applying this definition to states (59), (60) we find that concurrence C13 = 1 and these
states are maximally entangled states.
The reduced density matric method and the average spin method give the same result [5]
that the set of these two qubit spin coherent states is maximally entangled orthonormal set.

, where t;5, (4,7 = 0,1) are coeflicients of expansion for states |¢) > in computational

6.1. Mazimally entangled energy surface for XYZ model
As an application here we calculate average energy for XY Z model

1
H= §[Jx0f0§ + Jyoiol + J.oio3] (61)
in two qubit spin coherent states (57), (58). For the state |P_ > we have

N2 o 2)\2 _72\2 2 2N T2
<P7|H|P7>:2J+(¢+¢) J_[(1—v?) +(;(1f’2‘]2;¢12[(1 W2)(1 = ¥?) — (¢ + ¥)?]

(62)
In Fig.1a we show this energy surface as function of z = R,y = Sy with characteristic local
minima points. For the state |G > we have energy

20, (1 — |1]2)2 — 4J_[p? + 2] + L[4|]? — (1 — |[o|2)?
< GyliiG, >= MO W AP+ PSR AWy

and in Fig.1b we show the average energy surface for this state. It has local maxima at the
origin and set of minima at the unit circle 22 + 32 = 1.
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e S
THHHEE

Figure 1. XY Z average energy in maximally entangled state a) |P_ > state for J, =1,J_ =
—0.5,J, =2Db) |Gy > state for Jy =1,J_=0,J, =0

6.2. Three qubit case XYZ model
Now we consider three qubit coherent state

1
|PG+>=5<|¢>|¢>|¢>+|—¢*>|—¢*>|—w*>)- (64)
This state can be obtained from maximally entangled GHZ state
1
GHZ >= —(]000 > +|111 > 65
| ﬁ(l | ) (65)

by unitary transformation U = U ® U ® U. This state is also maximally entangled and in the
special case ¥ — 0 and ¢* — oo reduces to the GHZ state. Then we have energy

_ALPA A+ [$P) + 20 (A + [P (W + %) + (L= [P — [t + [91%)
(1 +[¢?)?

< PGL|H|PG, >
(66)

It is shown in Fig.2a and has four local extremum points with two maxima and two minima.
Another three qubit coherent state

1 N * *
PG >=ﬁ(|¢>|¢>|—¢ >HY > [P > >+ =P > >w>)  (67)
is related with maximally entangled |W > state
1
|W>:%(|O>|O>|1>+|O>|1>|0>+|1>|0>|0>). (68)

For energy in this state we have

AT (A4 [0 — 6 (L + [ (W + ¥?) — L(1 - 91y — 9wl + [¥l°)
3(1+[y?)?

< PG_|H|PG_ >

(69)
It is shown in Fig.2b.
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outf2)=
-0.

Figure 2. XY Z average energy in maximally entangled state a) |PG4 > state for J; =
-1,J_=-1,J, = —1Db) |PG_ > state for J; = —1,J_ =-0.2,J, =05

7. Entangled N qubit spin coherent states
This construction can be extended to arbitrary N-qubit coherent states. The first set of N-qubit
entangled states expanded in computational basis is

N

N _|_ 1
[ > ==
: = Fi(a, 8)(]10...0 > +[01...0 > +...[00...1 >) (70)

Y+

+Fy (v, 8)(]110...0 > +[101...0 > +.../00...11 >) (71)
o+ Fr(o, B)(J111...1 > (72)

and is characterized by the set of complex Fibonacci polynomials F,(a, 3), with recurrence
relation

Foii(a, B) = aFu(a, 8) + BF1(a, B), (73)

whereazw—%,ﬂzﬁ.
Another set of entangled N-qubit coherent states is

<

1
[ >N | — 7 >N=100...0 > + Ly (e, 6)(|10...0 > +|01...0 > +...]00...1 >) (74)
+Ls(a, 3)(]110...0 > +]101...0 > +...|00...11 >) (75)

o+ Ly(a, B)(|111...1 > (76)

and is characterized by complex Lucas polynomials L, (a, ) = ™ + (—%)” In the above Binet
representations of complex polynomials F,(«, ) and Ly (a, 3), the negative-symmetric points
1) and —% are roots of complex quadratic equation 2?2 = az + 3, where a = 1) — % and g = %

From polar representation of complex numbers ¢ = ge’® and z = re'® we get 2 = ar + 1, where
a=q-— %, and " = rF,(a) + F,,—1(a) with Fibonacci polynomials F,,(a) [11]:
Fi(a) =1, Fy(a)=a,

Fo+1(a) =aF,(a) + F,-1(a), for n > 2,
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when a = 1: F,(1) = F,, are Fibonacci numbers. The Binet representation for these polynomials
is

(77)

/a2 /a2 .
where parameter a = q — %, so that ¢ = a+7§+4 and —% = %“*‘4 are roots of quadratic

equation z? = az + 1.
Then complex Fibonacci polynomials are related with standard Fibonacci polynomials by
formula

F,(a, 8) = Fp(a) D (78)

and
Ln(av 5) = Ln(a) eimi)’ (79)

where ¢ = arg 1. Complex parameter o = ¢ — % has simple geometrical meaning as a complex

difference between symmetrical points in unit circle.

The interesting point to note here is that as we have seen the symmetric points under the
unit circle appear in the problem of vortex images in circular domain [4], where these points
correspond to the line vortex at ¢ and its image in the circle at % Then parameter a, o = ae'®

in Fibonacci polynomials has simple geometrical meaning as the distance between vortex and its
image. In particular case when this distance is equal one, a = q — % = 1, position of the vortex

is at the Golden Ratio distance from origin r = ¢ = 1+T‘/5 and Fibonacci polynomials turn to
Fibonacci numbers. In this case the line interval connecting vortex and the negative-symmetric
point, intersects the unit circle at a point which divide this interval in two parts of length ¢ and
1

o
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