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Abstract: In this study, an optimum seeking-based robust non-linear controller is proposed to maximise wind energy captured
by variable speed wind turbines at low-to-medium wind speeds. The proposed strategy simultaneously controls the blade pitch
angle and tip-speed ratio, through the turbine rotor angular speed, to an optimal point at which the power coefficient, and
hence the wind turbine efficiency, is maximum. The optimal points are given to the controller by an optimisation algorithm
that seeks the unknown optimal blade pitch angle and rotor speed. The control method allows for aerodynamic rotor power
maximisation without exact knowledge of the wind turbine model. A representative numerical simulation is presented to show
that the wind turbine can be accurately controlled to achieve maximum energy capture.

1 Introduction

Wind energy has evolved into an attractive energy source for
electric utilities, even though it is currently responsible for
only 2% of the global electrical power output. The structure
of wind turbines, as well as the fact that the wind energy
rate is uncontrollable, compounds the problem of regulating
the power capture of the wind turbine. This problem has
been alleviated by the construction of variable speed wind
turbines; which are designed to regulate the power captured
over a range of wind speeds. The efficiency of power
regulation is, however, dependent on the selected control
method.

Wind turbine control methods include classical techniques
[1, 2], which utilise a linearised wind turbine system model
and a single measured wind turbine output for control. In
[1], a PID controller was designed that compensated for
wind speed fluctuations by changing the pitch angle to
keep the rotor speed constant. The controller was improved
by selecting gain values based on minimisation of rotor
speed error and the actuator duty cycle. Another common
control method is full-state feedback control [3–6], which is
sensitive to errors in modelling and measurements. Liebst [4]
used individual blade pitch linear quadratic Gaussian optimal
control to reduce the loads on a wind turbine owing
to environmental factors such as shear and gravity. The
dynamics of the wind turbine blade flap, lag and pitch
are modelled. Knudsen et al. [3] compared PI and H∞
controllers for regulating the pitch of a 400 kW wind
turbine. The H∞ controller accounts better for turbine model
uncertainties as well as error in measuring the wind speed,

thus reducing pitch activity. Disturbance accommodating
control can account for measurement disturbances by
augmenting a state-estimator-based controller to recreate
disturbance states using an assumed waveform model. These
new states reduce disturbance effects. Wright and Balas [7]
described the design of a state space control algorithm for
the regulation of the rotor speed of a two-bladed wind
turbine in full-load operation using a simple five degree-
of-freedom linear model. The authors demonstrated that the
pole placement technique can stabilise the turbine model
whereas state estimators reduce the number of required
measurements. The effects of wind speed fluctuations were
reduced by using disturbance accommodating control.

Fuzzy logic control [8–10] and neural networks [11]
have been investigated to reduce the uncertainties faced
by classical control methods. Prats et al. [9] presented
a fuzzy logic application for enhanced energy capture in
a variable speed, variable pitch wind turbine. A dynamic
model was developed using torque and blade pitch fuzzy
control and produced better results than linear control. Zhang
et al. [10] compared PID and fuzzy logic control in the
control of the rotation of the wind wheel and reverse
moment of the generator in a variable speed wind turbine
and concluded that fuzzy logic control produce a smoother
output with less susceptibility to disturbances. Adaptive
control schemes [12–15] have been developed to eliminate
some of the problems faced in wind turbine control, such as
unknown and time varying model parameters in the wind
turbine model. Song et al. [15] used a model reference
adaptive control scheme to force a wind turbine with a
known power efficiency function, to track a desired rotor
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speed that maximises the energy captured by controlling
the excitation winding voltage of the generator. Johnson
et al. [13] developed an adaptive control algorithm for
controlling the generator torque on a fixed pitch variable
speed wind turbine. This approach maximised the energy
capture in low-to-medium wind speeds without knowledge
of the optimal tip-speed ratio. Moreover, the authors of
[16–18] proposed different estimation schemes to estimate
the power coefficient in a wind energy conversion system.

In this study, a control strategy is developed to regulate
the blade pitch angle and rotor speed of a variable speed
wind turbine system. The control objective is to maximise
the energy captured by the wind turbine in low-to-medium
wind speeds by tracking a desired pitch angle and rotor
speed, in the presence of structurally uncertain wind turbine
system non-linearities. Additionally, the maximisation of
the energy captured is achieved without the knowledge of
the relationship that governs the power capture efficiency
of the wind turbine. Instead, an optimisation algorithm is
developed to seek the unknown optimal blade pitch angle
and rotor speed that maximises the energy captured (through
the aerodynamic rotor power) while ensuring that the
resulting desired trajectories are sufficiently differentiable.
The disadvantage of not explicitly knowing the optimal
pitch angle and rotor speed a priori is countered by
the fact that the optimal rotor speed, and likewise, the
optimal pitch angle, will change as the wind speed changes,
which can be accounted for by the optimisation algorithm.
A robust controller is designed and proven to yield
a globally uniformly ultimately bounded (GUUB) stable
closed-loop system through Lyapunov-based analysis to
maximise energy captured by the wind.

The rest of the paper is organised as follows. In Section 2,
a wind turbine dynamic model is presented. In Section 3,
a robust non-linear tracking controller is introduced along
with the error system dynamics and stability analysis. In
Section 4, the development of the system non-linearities
estimator is introduced. The reference trajectory generation
is discussed in Section 5 utilising an extremum seeking
algorithm, followed by numerical simulation results in
Section 6. Concluding remarks are presented in Section 7.

2 Wind turbine dynamic model

The selected wind turbine model consists of two subsystems
[14]: (i) wind turbine blades and pitch actuator, and (ii) drive
train that consists of a high-speed shaft, gearbox, low-speed
shaft and generator. The aerodynamic power extracted from
the wind, Paero(t) ∈ R

+, can be defined as

Paero � 1

2
Cp(λ, β)ρAv3 (1)

where ρ ∈ R
+ is the air density, A ∈ R

+ is the rotor swept
area, v(t) ∈ R

+ is the wind speed, Cp(·) ∈ R denotes the
rotor power coefficient of the wind turbine and it is a
function of the tip-speed ratio, λ(t) ∈ R

+, and the blade pitch
angle, β(t) ∈ R. The tip-speed ratio, λ(t), is defined as

λ � ωR

v
(2)

where ω(t) ∈ R
+ is the rotor speed of wind turbine and R ∈

R
+ is the rotor radius. In a variable pitch variable speed wind

turbine system there exists an optimal rotor speed, denoted
by ω∗ ∈ R

+ (and hence an optimal tip-speed ratio, λ∗ ∈ R
+),

and blade pitch angle, denoted by β∗ ∈ R, for a particular
wind speed, v, at which the power capture efficiency
is maximum. Hence, rotor power coefficient, Cp(·), is
maximum and represented as Cmax

p where Cmax
p = Cp(λ

∗, β∗)
and λ∗ = (ω∗R/v). The aerodynamic power captured by the
rotor, Paero(t), can also be expressed as

Paero = τaeroω (3)

where τaero(t) ∈ R
+ is the aerodynamic torque applied to the

rotor by the wind. An expression for τaero(t) can be derived
from (1) to (3) as

τaero = 1

2
ρAR

Cp(λ, β)

λ
v2 (4)

Remark 1: Since the rotor power coefficient, Cp(·), is
eventually unknown, hence the aerodynamic torque, τaero(t),
is unmeasurable.

The wind turbine model structure can be written as
[14, 19]

MẌ + f (β, Ẋ , v) = τc (5)

where

X (t) �
[∫ t

t0

ω(σ) dσ , β(t)

]T

∈ R
2

are the state variables, M ∈ R
2×2 denotes the lumped inertia

matrix, f (·) � [−τaero(t), N (·)]T ∈ R
2 represents the wind

turbine system uncertain non-linearities, N (·) ∈ R designates
the pitch subsystem uncertain non-linearities and τc(t) ∈ R

2

is the control input torques for the generator and the pitch
actuator.

To facilitate the control development process, six
assumptions are imposed.

Assumption 1: The system parameters R, A and ρ are
assumed to be known constants.

Assumption 2: The lumped inertia matrix, M , is assumed to
be a known symmetric and positive-definite matrix.

Assumption 3: The variables v(t), ω(t), β(t) and β̇(t) are
assumed to be measurable.

Assumption 4: The wind velocity, v(t), is assumed to be
constant or slowly time varying.

Assumption 5: The functions f (·), ḟ (·) and f̈ (·) are assumed
to be bounded provided that their arguments are bounded.

Remark 2: The Euclidean norm of the function vector
f (β, Ẋ , v) can be upper bounded by a known function such
that ‖f (β, Ẋ , v)‖ ≤ ρz(β, Ẋ ).

3 Non-linear controller design

The control objective is to maximise the aerodynamic power
extracted from the wind, Paero(t), while tracking a desired
rotor speed, ωd(t) ∈ R

+, and blade pitch angle, βd(t) ∈ R,
such that ω(t) → ωd(t) and β(t) → βd(t) as t → ∞. To
quantify this control objective, measurement tracking errors,
denoted by e1(t), e2(t) ∈ R, are defined as

e1 � ωd − ω

e2 � βd − β
(6)
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Remark 3: The variables ωd(t) and βd(t) are designed and
updated online using a numerical-based two-dimensional
optimisation algorithm to maximise the rotor power,
Paero(t), such that βd(t) → β∗ and ωd(t) → ω∗ at a given
wind velocity, v, hence Paero(t) → Pmax where Pmax �
(1/2)Cmax

p ρAv3, and [ω∗, β∗]T denotes the set of optimal
values resulting from the extremum seeking algorithm. In
addition, Xd(t) �

[ ∫t

t0
ωd(σ ) dσ , βd(t)

]T
is designed such

that βd(t), β̇d(t), β̈d(t),
...

βd(t), ωd(t), ω̇d(t) and ω̈d(t) are
bounded.

The following filtered tracking error, denoted by r2(t) ∈
R, is defined to facilitate the subsequent controller design

r2 � ė2 + μe2 (7)

where μ ∈ R
+ is a control gain.

Remark 4: Based on the definition of r2(t) in (7), standard
arguments can be utilised to prove that if r2(t) is bounded,
then e2(t) and ė2(t) are bounded.

After defining a composite error signal denoted by
z(t) � [e1(t), r2(t)]T ∈ R

2, the following expression can
be obtained by taking its first time derivative and pre-
multiplying the resulting expression by M

Mż = M

[
ė1

ë2

]
+ M

[
0

μė2

]
(8)

Mż = MẌd − MẌ + M

[
0

μė2

]
(9)

Mż = MẌd + f − τc + M

[
0

μė2

]
(10)

where (5)–(7) were utilised. Based on the subsequent
stability analysis and the structure of the open-loop error
system in (10), the control input τc(t) is designed as

τc = MẌd + M

[
0

μė2

]
+ f̂s + Kz + ρ2

z

ε
z (11)

where f̂s(·) is defined as f̂s(·) � (1/τ1s + 1)sat{f̂ (·)}, f̂ (·) is
the estimate of f (·) and will be designed in Section 4, and
τ1 ∈ R

+ is a small constant, s is the Laplace variable, sat{·}
is the standard saturation function, K ∈ R

+ is a control gain,
ε ∈ R

+ is a small constant and ρz(β, Ẋ ) was introduced in
Remark 2.

Remark 5: The variables f̂s(·) and ˙̂fs(·) are bounded since
the output of a saturation function is always bounded and
(1/τ1s + 1) is a proper bounded filter. Thus, it may be
assumed that ‖f̂s(·)‖ ≤ ρN , where ρN ∈ R

+ is a bounding
constant.

Substituting the control torque from (11) into the open-
loop dynamics of (10) results in the following closed-loop
error system

Mż = f − f̂s − Kz − ρ2
z

ε
z (12)

where the function ρz(β, Ẋ ) was introduced in Remark 2.
A Lyapunov stability analysis guarantees that the system

described in (5) will be stable when applying the control
law introduced in (12).

Theorem 1: The controller given in (12) ensures that: (i)
all closed-loop signals stay bounded for all time; and (ii)
tracking is GUUB.

Proof: See Appendix 1.

4 Estimation of system non-linearities

As previously stated, the main control objective is to
maximise the aerodynamic power captured by the rotor of
a variable speed wind turbine with structurally uncertain
system non-linearities. The control development in Section 3
requires that the system non-linearities be estimated. The
estimate of f (·), denoted by f̂ (·), is developed for two
reasons: (i) f̂ (·) is used as a feedforward term in the control
design, through f̂s(·) to reduce the magnitude of the control
input torque, τc(t), (ii) from Remark 1 and (3), Paero(t)
is unavailable for measurement and by utilising f̂ (·) =
[−τ̂aero(·), N̂ (·)]T, an estimate of the captured aerodynamic
power, P̂aero(t), can be realised where P̂aero(t) = τ̂aero(t)ω(t).

Now let us consider the two systems

MẌ = τc − f (13)

M ¨̂X = τc − f̂ (14)

where X̂ (t) ∈ R
2 denotes the estimate of the states, and

f̂ (·) is the estimate of f (·). The objective of the estimator
is to track the system uncertain non-linearities, f (·), such
that f̂ (·) → f (·) as t → ∞. To quantify this objective, the
observation errors, ˙̃X (t), f̃ (t) ∈ R

2 are defined as

˙̃X � ˙̂X − Ẋ (15)

f̃ � f̂ − f (16)

The filtered observation error, denoted by r(t) ∈ R
2, is

defined to facilitate the subsequent estimator design

r � ¨̃X + 	
˙̃X (17)

where 	 ∈ R
+ is an observer gain. After taking the first

time derivative of (17) and pre-multiplying by M it may be
shown that

Mṙ = M
...

X̃ +	M ¨̃X = −˙̃f + 
 − ˙̃X (18)

where 
(·) � 	M ¨̃X + ˙̃X and (13)–(16) were utilised.

Remark 6: The auxiliary signal 
(•) can be upper bounded
such that ‖
(·)‖ ≤ ρ̄N ‖z̄‖ where z̄(t) � [ω̃(t), r(t)]T ∈ R

3

and ρ̄N ∈ R
+ is a bounding constant. ω̃(t) � ω̂(t) − ω(t)

and ω̂(t) ∈ R
+ is the estimate of the rotor speed.

Based on the structure of (18) as well as the subsequent
stability analysis, the following implementable continuous
estimator is proposed to achieve the stated estimator
objective

˙̂f = (k + 	)r + ρ0 sgn(
˙̃X ) (19)

where k , ρ0 ∈ R
+ are control gains. Before presenting the

stability analysis, the following lemma will be introduced
and later invoked.
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Lemma 1: Let the auxiliary function L(t) ∈ R be defined as

L � rT(ḟ − ρ0 sgn(
˙̃X )) (20)

If the control gain ρ0 is selected to satisfy the sufficient
condition

ρ0 > ‖ḟ (·)‖ + ‖f̈ (·)‖
	

, then
∫ t

t0

L(τ ) dτ ≤ ζ0

where the constant ζ0 ∈ R
+ is defined as

ζ0 � ρ0‖ ˙̃X (t0)‖1 + ˙̃X T(t0)ḟ (t0) (21)

Proof: See Appendix 2.

Theorem 2: The estimator in (19) ensures that asymptotic
tracking is obtained, in the sense that ‖ ˙̃X (t)‖, ‖ ¨̃X (t)‖,
‖r(t)‖ → 0 as t → ∞.

Proof: See Appendix 3.

5 Trajectory generation and extremum
seeking algorithm

In Remark 3, it was assumed that a composite set of
desired trajectories defined as ξd(t) � [ωd(t), βd(t)]T can
be generated such that ξd(t), ξ̇d(t), ξ̈d(t) and

...

βd(t) are
bounded and ξd(t) → ξ ∗ where ξ ∗ is an unknown set
of constants that maximise the aerodynamic rotor power,
Paero(t), at a given wind speed, v(t). As stated previously,
Paero(t) is unmeasurable, thus the estimated captured power
P̂aero = τ̂aeroω can be used instead. The extremum seeking
algorithm used in this study is the Powell’s method [20].
Powell’s method only requires measurement of the output
function, P̂aero(t), and an initial guess (not required to
be close to the value of ξ ∗). Powell’s method can then
find ξ ∗ by performing a series of one-dimensional line
maximisations (using Brent’s method) with convergence
because of the non-trivial choice of search directions [21]
(new directions are calculated using the extended parallel
subspace property to avoid linear dependence).

To ensure that ξd(t), ξ̇d(t), ξ̈d(t) and
...

βd(t) are bounded,
a filter-based form of Powell’s method is used, wherein at
each iteration, ξd(i) is passed through a set of third-order
stable and proper low-pass filters to generate continuous
bounded signals for ξd(t), ξ̇d(t), ξ̈d(t) and

...

βd(t) where i =
Z

+. The filters shown in (22)–(25) are used in this study,
where ζ1, ζ2, ζ3, ζ4 ∈ R

+ are filter constants. The optimisation
algorithm waits until certain error thresholds are met before
making the next guess (i.e. if ‖ξd(t) − ξd(i)‖ ≤ ē1, |f̃ (·)| ≤
ē2 and ‖ξ(t) − ξd(t)‖ ≤ ē3, then i = i+1 where ē1, ē2, ē3 ∈
R

+ are some pre-defined threshold constants and i = Z
+):

ξd(t) = ζ1

s3 + ζ2s2 + ζ3s + ζ4
ξd(i) (22)

ξ̇d(t) = ζ1s

s3 + ζ2s2 + ζ3s + ζ4
ξd(i) (23)

ξ̈d(t) = ζ1s2

s3 + ζ2s2 + ζ3s + ζ4
ξd(i) (24)

...

βd(t) = ζ1s3

s3 + ζ2s2 + ζ3s + ζ4
βd(i) (25)

6 Simulation results

A numerical simulation is presented to illustrate the
performance of the controller introduced in (11), and
to demonstrate the numerical-based extremum seeking
reference trajectory generator. The simulation was performed
for a simple case where the wind speed was set to be a
constant (e.g. v = 1.5 m/s2) and the system model in (5),
corresponded to a small turbine, was assumed to have the
following system non-linearities

f (·) =
[
−1

2
ρA

Cp(λ, β)

ω
v3, 0

]T

(26)

and the model parameters are listed in Table 1.
The control gains were tuned to provide the best response

for the wind turbine system and selected to be K = 10,
k = 10, μ = 3, 	 = 2, τ1 = 1 and ε = 0.1. The filter
constants were chosen to be ζ1 = 81, ζ2 = 12, ζ3 = 54 and
ζ4 = 108. The desired and actual rotor speeds, ωd(t) and
ω(t), respectively, are shown in Fig. 1. It is clear that
ω(t) successfully tracks ωd(t). Similarly, it is clear that
β(t) successfully tracks βd(t) as shown in Fig. 2. The
power coefficient function Cp(λ, β), illustrated in Fig. 3,
was obtained using blade-element momentum theory in [22].
For this case, Cmax

p = 0.4405 at [λ∗ = 8, β∗ = 2.4] which,
according to (2), corresponds to [ω∗ = 6, β∗ = 2.4]. The
numerical-based extremum seeking algorithm converged to
[ω∗ = 6.075, β∗ = 2.3] as shown in Figs. 1 and 2 and the
maximum simulated power coefficient Cp(t) converges to
Cmax

p = 0.4401 as shown in Fig. 4 and that was satisfactory.
After analysis, the following four conclusions can be

made. First, from Figs. 2 and 3, it can be concluded that
ω(t) → ωd(t), β(t) → βd(t) and ωd(t) → ω∗, βd(t) → β∗;

Table 1 Values of the system parameters used in the
numerical simulation

Variables M R A ρ

Value

[
5 0
0 5

]
2 12.6 1.2

Units kg m2 m m2 kg/m3

Fig. 1 Desired rotor speed, ωd(t), against actual rotor speed,
ω(t)
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Fig. 2 Desired blade pitch angle, βd(t), against actual blade
pitch angle, β(t)

Fig. 3 Power coefficient function, Cp(t), against tip-speed ratio,
λ(t), and blade pitch angle, β(t), for the simulated wind turbine

Fig. 4 Maximum rotor power coefficient, Cp(t), resulting from
the numerical optimisation algorithm

Fig. 5 Simulated (top plot) control torque for drive train
subsystem, τω(t), and (bottom plot) control torque for pitch
subsystem, τβ(t)

thus ω(t) → ω∗, β(t) → β∗ which fulfils the stated control
objective. Second, the results of the extremum seeking
algorithm were within 5% of the nominal optimum blade
pitch angle and rotor speed. Next, the tracking errors, e1(t)
and e2(t), for both subsystems settle to a neighbourhood
of ±5 × 10−6 around zero after 400 s. Finally, the control
input, τc(t), is bounded as shown in Fig. 5. Overall, the
control strategy proposed in this study produced favourable
results and demonstrates that at low-to-medium speeds, it
is possible to attain optimal power capture efficiency in
variable speed variable pitch wind turbines in the presence
of structural uncertainty in the form of unknown system
non-linearities. Additionally, the robustness of the control
strategy allows for varying wind speeds in obtaining the
global maximal power efficiency.

7 Conclusions

A non-linear controller has been developed for a variable
speed wind turbine system to optimise the energy captured
by the wind turbine. A desired blade pitch angle and
rotor speed trajectory generator is provided that seeks the
unknown optimal set-point while ensuring the trajectory
remains bounded and sufficiently differentiable. To track
the desired trajectory, a robust controller is developed,
which is proven to yield a GUUB stable closed-loop
system through Lyapunov-based analysis. The simulation
results demonstrated the excellent performance of the
robust controller and the numerical-based extremum seeking
algorithm.
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9 Appendix 1: Proof ofTheorem 1

A non-negative function, denoted by V (z(t)) ∈ R, is defined
as

V � 1

2
zTMz (27)

Since M is positive-definite and symmetric, the expression
in (27) can be lower and upper bounded by the following
inequalities

λmin‖z‖2 ≤ V (z) ≤ λmax‖z‖2 (28)

where λmin and λmax are the minimum and maximum
eigenvalues of M , respectively. After taking the first time

derivative of (27) and substituting (12), the following
expression is obtained

V̇ = zT

[
f − f̂s − Kz − ρ2

z

ε
z

]
(29)

V̇ = −KzTz − ρ2
z

ε
zTz + zTf − zT f̂s (30)

By referring to Remarks 2 and 5, the function V̇ (t) can be
upper bounded as

V̇ ≤ −K‖z‖2 − ρ2
z ‖z‖2

ε
+ ‖z‖ρz + ‖z‖ρN (31)

If K � k1 + k2 where k1, k2 ∈ R
+ are constants, the non-

linear damping argument [3] may be applied to (31) to obtain

V̇ ≤ −k1‖z‖2 + εo + ρz‖z‖
[

1 − ρz‖z‖
ε

]
(32)

where εo � (ρ2
N /4k2). Using (28) and the non-linear

damping argument in (32), the following relationship can
be determined

V̇ ≤ −(k1/λmin)V + ε + εo (33)

From (28) and (33), the term ‖z(t)‖ can be upper bounded
as

‖z(t)‖ ≤ √
β0 exp(−β1t) + β2[1 − exp(−β1t)] (34)

where

β0 � λmax

λmin
‖z(t0)‖2, β1 � k1

λmax
and β2 � λmax

k1λmin
(ε + εo)

From (34), it can be shown that e1(t), r2(t) ∈ L∞; thus
from Remark 4, it is clear that e2(t), ė2(t) ∈ L∞. The
expression in (6) can be used along with previous
boundedness statements to show that β(t), Ẋ (t) ∈ L∞; thus
from Assumption 5, it is apparent that f (·) ∈ L∞. The
expression in (11) can be used along with Remarks 3
and 5 to show that τc(t) ∈ L∞. Standard signal chasing
arguments can then be used to prove that all signals remain
bounded under closed-loop operation. In particular, from
(12), ż(t), ė1(t), ë2(t) ∈ L∞. Using Assumption 5, it is clear
that ḟ (·) ∈ L∞. The time derivative of (11) can be used
along with Remark 5 to show that τ̇c(t) ∈ L∞. From the
time derivative of (5), it is clear that

...

X (t) ∈ L∞. Finally it
may be concluded that f̈ (·) ∈ L∞ using Assumption 5. The
closed-loop system is thus GUUB stable.

10 Appendix 2: Proof of Lemma 1

The expression in (17) can be substituted into (20) and then
integrated in time to obtain

∫ t

t0

L(τ ) dτ =
∫ t

t0

	
˙̃X (τ )T(ḟ (τ ) − ρ0 sgn(

˙̃X (τ )))dτ

+
[∫ t

t0

d ˙̃X T(τ )

dτ
ḟ (τ ) dτ

]

− ρ0

∫ t

t0

¨̃X T(τ ) sgn(
˙̃X ) dτ (35)
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The bracketed term in (35) may be integrated by parts so
that the simplified expression becomes

∫ t

t0

L(τ ) dτ =
∫ t

t0

	
˙̃X (τ )T

(
ḟ (τ ) − f̈ (τ )

	
− ρ0 sgn(

˙̃X (τ ))

)
dτ

+ ˙̃X (t)ḟ (t) − ˙̃X (t0)ḟ (to)

− ρ0‖ ˙̃X (t)‖1 + ρ0‖ ˙̃X (t0)‖1 (36)

The expression in (36) can be upper bounded as

∫ t

t0

L(τ )dτ ≤
∫ t

t0

	‖ ˙̃X (τ )‖1

(
‖ḟ (τ )‖ + ‖f̈ (τ )‖

	
− ρ0

)
dτ

+ ‖ ˙̃X (t)‖1(‖ḟ (t)‖ − ρ0)

+ ρ0‖ ˙̃X (t0)‖1 − ˙̃X (t0)
T ḟ (t0) (37)

From (37), if

ρ0 > ‖ḟ (·)‖ + ‖f̈ (·)‖
	

then Lemma 1 holds.

11 Appendix 3: Proof ofTheorem 2

Define an auxiliary function P(t) ∈ R as follows

P � ζo −
∫

L(τ ) dτ (38)

where ζo(t) and L(t) have been defined in Lemma 1. From
the proof of Lemma 1, it is clear that P(t) is non-negative.
The following non-negative Lyapunov function, denoted by
V1(t), is defined as

V1(t) � 1

2
˙̃X T ˙̃X + 1

2
rTMr + P (39)

After taking the first time derivative of (39), utilising
the definitions in (17), (18), (20) and (38), the following

expression can be obtained

V̇1 = ˙̃X T(r − 	
˙̃X ) + rT(−˙̃f + 
 − ˙̃X ) − rT(ḟ − ρ0 sgn(

˙̃X ))
(40)

The expression in (40) can be rewritten as

V̇1 = −	
˙̃X T ˙̃X − rT ˙̂f + rT
 + rTρ0 sgn(

˙̃X ) (41)

where (16) was utilised. After substituting (19) and
performing simple algebraic manipulations, V̇1(t) can be
upper bounded by

V̇1 ≤ 	‖z̄‖2 + [‖r‖ρ̄N ‖z̄‖ − k‖r‖2] (42)

where z̄(t) is a composite error vector previously defined
in Remark 6. By applying the non-linear damping argument
[23] to the bracketed term, the expression in (42) becomes

V̇1 ≤ −
[
	 − ρ̄2

N

4k

]
‖z̄‖2 (43)

From (43), it is possible to state that

V̇1 ≤ −γ ‖z̄‖2 (44)

for k > (ρ̄2
N /4	) where γ ∈ R

+ is a constant. From (39) and
(44), it is clear that z̄(t) ∈ L∞. From the definition of z̄(t), it

is clear that ˙̃X (t), r(t) ∈ L∞. From (19), it is clear that ˙̂f (·) ∈
L∞. Using standard signal chasing arguments, it can be
shown that all the signals in the closed-loop system remain
bounded. In particular, from (18), it may be concluded
that ṙ(t) ∈ L∞. Next, one can deduce that ˙̄z(t) ∈ L∞. After
employing a corollary to Barbalat’s Lemma [24], it can be
shown that ‖z̄(t)‖ → 0 as t → ∞. From the definition of
z̄(t), it is clear that ˙̃X (t), r(t) → 0 as t → ∞. From (17),
it may be noted that ¨̃X (t) → 0 as t → ∞. From (13) and
(14), the following relationship can be obtained

M ¨̃X = f − f̂ = −f̃ (45)

From (44), f̃ (t) → 0 as t → ∞, which implies that
τ̂aero(t) → τaero(t).

532 IET Control Theory Appl., 2012, Vol. 6, Iss. 4, pp. 526–532
© The Institution of Engineering and Technology 2012 doi: 10.1049/iet-cta.2010.0689



Copyright of IET Control Theory & Applications is the property of Institution of Engineering & Technology

and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright

holder's express written permission. However, users may print, download, or email articles for individual use.


