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ABSTRACT 
 

OUT-OF-PLANE DISPLACEMENTS OF CURVED BEAMS WITH 
VARIABLE CURVATURE 

 
The differential equations of out-of-plane displacements of curved beams with 

variable curvature have variable coefficients. Selection of the solution method is based on 

the curvature function of the curved beam. In this study, Differential Quadrature Method 

(DQM) and Finite Element Method (FEM) are used to find the out-of-plane displacements 

of curved beams with variable radius of curvature. Since the parabola is very famous and 

known curve, it is selected as the form of curved beam. To test and validate the computer 

codes developed based on DQM in Matlab and based on FEM by APDL (ANSYS 

Parametric Design Language) in ANSYS, some typical examples are considered. As first 

step, convergence studies are performed to determine the number of sampling points in 

DQM and number of elements in FEM. After having information about aforementioned 

modeling parameters, comparisons between DQM and FEM results are given. The effects 

of variable curvature parameter of the curved beam on out-of-plane displacements are 

obtained. The practical application of the present model is discussed. 
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ÖZET 
 

DEĞİŞKEN EĞRİLİKLİ EĞRİ ÇUBUKLARIN DÜZLEM DIŞI 
YERDEĞİŞTİRMELERİ 

 
Değişken eğrilikli eğri çubukların diferansiyel denklemleri değişken katsayılıdır. 

Çözüm yönteminin seçimi eğri çubuğun eğrilik fonksiyonuna bağlıdır. Bu çalışmada, 

değişken eğrilik yarıçaplı eğri çubukların düzlem dışı yerdeğiştirmelerinin bulunması için 

Diferansiyel Kuadrator Yöntemi (DKY) ve Sonlu elemanlar Yöntemi (SEY) kullanılmıştır. 

Parabol bilinen ve meşhur bir eğri olduğundan eğri çubuğun ekseni olarak seçilmiştir. 

Matlab’da DKY’ye dayalı ve ANSYS deki APDL de SEY’e dayalı geliştirilmiş olan 

bilgisayar kodlarının testi ve doğrulanması için bazı tipik örnekler gözönüne alınmıştır. İlk 

adım olarak, DKY’de örnekleme noktaları ve FEM’de eleman sayılarını belirlemek için 

yakınsama çalışmaları yapılmıştır. Belirtilen hususda bilgi elde edildikten sonra, DKY ve 

SEY sonuçları arasındaki karşılaştırmalar verilmiştir. Eğri çubuğun değişken eğrilik 

parametresinin düzlem dışı yerdeğiştirmelere etkileri elde edilmiştir. Mevcut modelin 

pratik uygulamaları değerlendirilmiştir. 
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CHAPTER 1 

 
GENERAL INTRODUCTION 

 
Curved beams are very interesting structural members due to both their geometries 

and differential equations related with solid mechanics. Curved beam can be seen 

sometimes as main component and sometimes used as complementary part such as 

stiffener. Depending on the desired functionality, they can be planar or spatial forms, and 

also have non-uniform cross-section and curvature. In same cases, their geometries are 

determined by considering the esthetical approaches. 

Curved beams have two types of motions for out-of-plane displacements: (1) 

bending, (2) torsion. Bending and torsional motions are dependent in each other. Due to 

this physical reality, their analyses are not easy as independent motions. 

 Figure 1.1 shows a planar curved beam with fixed-free boundary conditions. It is 

loaded by a tip load P in vertical direction. It can be seen from Figure 1.1 that continuous 

line and dashed line show the undeflected and deflected shape of curved beam, 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Out-of-plane deflection of a curved beam due to vertical tip load 
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There are many studies for out-of-plane deflection of curved beams, but only a few 

studies for curved beams with variable curvature. The selected ones are given in the order 

of publication time as follows: 

Volterra and Morell (1961) studied on vibration of the curved beam in the shape of 

a circle, a cycloid, a catenary and a parabola by using Rayleigh-Ritz method. 

Wang (1975) presented an analysis of out-of-plane vibration for a clamped elliptic 

arc of constant section. He used the Rayleigh-Ritz method, too. 

Takahashi and Suzuki (1977) used power series to find the out-of-plane vibrations 

of uniform arcs in the form of ellipse. 

Suzuki et al. (1978) focused on ellipse, sine catenary, hyperbola, parabola and 

cycloid arcs. They found the vibration characteristics by using the Rayleigh-Ritz and 

Lehmann-Maehly methods. 

Irie et al. (1980) modeled the out-of-plane motion of a free-clamped and internal 

damped Timoshenko beams with circular, elliptical, catenary and parabolical neutral axes 

by using the transfer matrix approach. 

Suzuki et al. (1983) solved exactly the problem of free vibration characteristics of a 

plane curved bar with an arbitrary varying cross-section such as elliptic arc bars by series 

solution. 

Huang and Chang (1998) presented an extended methodology for analyzing the 

out-of-plane dynamic responses or arches. They transformed governing equations to the 

Laplace transform domain and then they obtained the analytical solution in the Laplace 

domain by using the Frobenius method. 

Kim et al. (2003) derived total potential energy of non-circular curved beam for 

Finite Element Analysis. 

If the main literature related with the Differential Transform Method is selected 

very carefully, the following critical papers can be found. 

 Bellman and Casti (1971) introduced the differential quadrature method (DQM) for 

the numerical solution of ordinary and partial differential equations for the first time. They 

used the idea behind the classical integral quadrature in their paper and focused on the 

solutions of linear, nonlinear and partial differential equations. 

Bellman et al. (1972) presented DQM as a more efficient method than the standard 

finite difference method to obtain accurate numerical results by using just a few grid 

points. Differential quadrature approximates the derivatives as the summation of the 

function in the problem at the sampling points times weight coefficients. Therefore, the 
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main task in this method is to find the proper sampling points and weight coefficients. 

Bellman et al. (1972) examined two methods to determine the weighting coefficients of the 

first order derivative. In the first method, a set of linear algebraic equations based on 

arbitrary distinct sampling points is considered. But, in the second one, the coordinates of 

grid points are chosen to be the roots of the shifted Legendre polynomial of degree N. 

They tested the efficacy of their approaches by carrying out a number of computational 

experiments. 

 Bert and Malik (1996) reviewed the DQM and its application to structural 

mechanics problems. 

 Shu (2000) published an excellent textbook on DQM and its application in 

engineering. It is the first book in this subject to describe the DQM including polynomial-

based DQ (PDQ) and Fourier series expansion-based DQ (FDQ) methods. PDQ is usually 

used to non-periodic problems while FDQ is used to both periodic and nonperiodic 

problems. 

 Chen (2006) collected his developments on numerical differential quadrature in his 

textbook. He demonstrated the ability for solving generic scientific and engineering 

problems by DQM. The book covers the generic differential quadrature, the extended 

differential quadrature and the related discrete element analysis methods. He emphasized 

that the topics in his textbook are suitable for developing solution algorithms for various 

computational mechanics problems with arbitrarily complex geometry. Moreover, he 

showed several comprehensive examples such as bars and beams, trusses, frames, general 

field problems, elasticity problems and bending of plates. 

Zong and Zhang (2009) introduced numerous developments on DQM in their 

advanced level textbook. They presented complex DQ, triangular DQ, multi-scale DQ, 

variable order DQ, multi-domain DQ, and localized DQ. The given methods appeared due 

to the failing of the original direct differential quadrature (DQ) method for problems with 

strong nonlinearity and material discontinuity as well as for problems involving 

singularity, irregularity, and multiple scales. 

It should be also mentioned that researchers in applied mathematics, computational 

mechanics, and engineering developed a range of innovative DQ-based methods given in 

the textbook written by Zong and Zhang (2009) to overcome the shortcomings of DQM. 

In this study, in order to find the out-of-plane displacements of curved beams with 

variable radius of curvature, the two numerical methods, Differential Quadrature Method 

(DQM) and Finite Element Method (FEM), are used. The parabola is selected as the form 
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of curved beam. The computer codes developed for DQM in Matlab and for FEM by 

APDL (ANSYS Parametric Design Language) in ANSYS. The developed codes are 

verified by comparing the results of both models. Also, parametric studies are presented. 
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CHAPTER 2  

 

THEORETICAL PART OF THE STUDY 

 
2.1. Introduction 

 
 In this chapter, theoretical backgrounds are presented. For this purpose, the 

parabola that is the selected curve having variable curvature is introduced geometrically in 

first step. In order to keep the same coordinate system with the literature for the derivation 

of the differential equation, a parabola is considered in z-x plane as shown in Figure 2.1. 

Then, the differential equations of out-of-plane displacements of curved beams with 

variable curvature which have variable coefficients are derived by using vectorial 

approach. 

 Due to the variable coefficients appeared in the differential equations, its exact 

solution is possible only for special cases. Therefore, for this study, Differential 

Quadrature Method (DQM) and Finite Element Method (FEM) are considered as 

numerical solution methods. 

 After derivation of the differential equations, the numerical solution methods given 

above are outlined. Moreover, real constants of the selected finite element in ANSYS are 

given. 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. A planar curved beam with variable radius of curvature. 
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2.2. Geometrical Description of Curved Beam 

 
 In this section, the parabola given in Figure 2.1 is detailed mathematically. For this 

reason, arc length of a curve and curvature of a point on the curve are derived. 

 The function f(x) representing a curve in x-y coordinate system shown in Figure 2.2 

is considered to derive the arc length between two points on the curve. The following 

equations are written from Figure 2.2, 

 
222 dydxds +=       (2.1) 
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where s1, s2, x1, and x2 are the boundaries of the integrals. Moreover, 

 

dxdy /tan =θ        (2.4) 

 

)/arctan( dxdy=θ       (2.5) 

 

 

 

 

 

 

 

Figure 2.2. Derivation of arc length. 
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Figure 2.3. Derivation of curvature. 

 

Equation (2.6) can be found by using chain rule as follows 
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The second term at the right hand side of Equation (2.7) is the reciprocal of Equation (2.2), 
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2.3. Out-of-plane Displacement of Curved Beam 

 
Equilibrium equations of out of plane displacement of a curved beam having 

variable radius of curvature can be obtained by using two classical ways: Vectorial Method 

and Hamilton’s Principle. It is known that Hamilton’s principle has an important advantage 

that is the expressing the boundary conditions without physical interpretations such as in 

Vectorial Method (Yardimoglu, 2012). 

Vectorial Method is used here. In this method, the following force and moment 

equilibrium equations are used. 

 

0=∑
i

iF
r

      (2.11) 

 

∑ =
i

iM 0
r

      (2.12) 

 

Figure 2.4 shows a curved beam having variable radius of curvature with internal 

and external forces and moments for out-of-plane displacement. It can be seen that Vy is 

shear force in y direction, Mx is bending moment and Mz is twisting moment. Also, Fy is 

external force in y direction, Tx and Tz are external bending and twisting moments, 

respectively. Equations (2.11) and (2.12) are given in open form by Love (1944) as 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Internal and external forces and moments of the curved beam. 
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0)(
)(

=+ sF
ds

sdV
y

y       (2.13) 

 

0)()(
)(
)()(

0

=+−+ sTsV
s
sM

ds
sdM

xy
zx

ρ
    (2.14) 

 

0)(
)(
)()(

0

=+− sT
s
sM

ds
sdM

z
xz

ρ
     (2.15) 

 

where bending moment function Mx(s) and twisting moment function Mz(s) are written as 
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where κ(s) and τ(s) are curvature and twisting functions of the curved beam, respectively, 

and can be found by using the equations given below 
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Ixx in Equation (2.16) is area moment of inertia of the cross-section about xx-axis and 

determined by 

 

12/3hbI xx =        (2.20) 

 

where, b and h are the width and height of the rectangular cross-section. J in Equation 

(2.17) is torsional constant of the cross-section and it is given for rectangular cross-section 

by Popov (1998) as 
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3hbCJ β=        (2.21) 

 

where the values of parameter Cβ depends on the ratio of b/h and its values are given in 

Table 2.1. 

 

Table 2.1 The values of Cβ for rectangular cross-section 
 

b/h 1 1.5 2 3 6 10 

Cβ 0.141 0.196 0.229 0.263 0.299 0.312 

 

 Now, Equations (2.13), (2.14) and (2.15) can be written more open form by several 
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number of differential equations to two coupled equations as (Equation (2.15) is copied for 

the sake of completeness) 
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Secondly, Equations (2.16) and (2.17) are substituted into Equations (2.22) and (2.23) to 

write the following ones 
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Then, curvature function κ(s) and twisting function τ(s) given by Equations (2.18) and 

(2.19), respectively, are substituted into Equations (2.24) and (2.25) to express the 

differential equations in terms of linear displacement v(s) and angular displacement β(s), 
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Finally, Equations (2.26) and (2.27) can be expanded in several steps to use numerical 

methods for solution as 
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In order to continue by using fewer notations, prime is used to represent the differentiation 

with respect to s. Thus, 
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Due to the variable radius of curvature ρ0(s), Equations (2.30) and (2.31) are needed 

one more step for the differentiation terms having divisions by radius of curvature ρ0(s). 

After completing that step, the differential equations are simplified, then, the following 

form is obtained, 
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 Equations (2.32) and (2.33) are coupled differential equations with variable 

coefficients and having two unknown functions v(s) and β(s). 

Typical boundary conditions are as follows: 

- Free end: shear force Vy=0, bending moment Mx=0, and twisting moment Mz=0. 

- Pinned end: displacement v=0, bending moment Mx=0, and twisting moment Mz=0. 

- Fixed end: displacement v=0, slope v'=0, and rotation β=0. 
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2.4. Discretization of Continuous Systems 

 

2.4.1. Differential Quadrature Method 

 
In this method, the first derivative of a function f(x) at the ith sampling point is 

approximated by the following equation (Bellman and Casti, 1971) 
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Open matrix form of Equation (2.32) can be written as follows: 
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The mth order derivative can be obtained by using Equation (2.35), successively. Therefore, 

it can be written as 
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 Lagrange interpolating polynomial function can be used as solution of the 

differential equation (Bellman et al, 1972). The nth order Lagrange interpolating 

polynomial function is given by 
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Substituting Equations (2.38.a) and (2.38.b) into Equation (2.37) leads to  
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 Let the number of sampling points n>m, the second and third and higher order 

derivatives can be determined as 
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 Chebyshev-Gauss-Lobatto mesh distribution given by Shu (2000) can be used for 

the sampling points. It is expressed as follows 
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where 

 

S
s
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in which S is the length of the arch and si is the distance of the ith sampling point. 
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 The application of boundary condition can be accomplished by using Lagrange 

multiplier method given by Wilson (2002). In this method, the constraint equations are 

added to the potential energy as 
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where λj is named as the Lagrange multiplier for the constraint j. Also, [K], {x}, {R}, and 

[B] are stiffness matrix, displacement vector, corresponding load or reaction vector, and 

the displacement transformation matrix, respectively. 

If the potential energy given in Equation (2.45) is minimized with respect to each 

displacement and each Lagrange multiplier, the following set of equations is found 
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Equation (2.46) has also boundary condition equations compared to original equilibrium 

equation [K]{x}={R}. For n sampling points and m boundary conditions, the size of [K] is 

(2n)x(2n) due to the two coupled differential equations, and the size of [B]T is (m)x(2n). 

 A curved beam axis having seven sampling points is shown in Figure 2.5. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. A curved beam axis having seven sampling points. 
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2.4.2. Finite Element Method 

 
 Finite element displacement method is the generalization of Rayleigh-Ritz Method 

(Reddy 1993, Petyt 2010). The method has been developed in the second half of the last 

century (Cook 1989). In this method, geometrically complex shape is divided into simple 

geometrical shapes, such as bar, beam, plate, shell, tetrahedral solid, hexahedral solid. 

Each simple shape is called as finite element. Finite elements have nodes to satisfy the 

continuity condition with the neighbors. Therefore, nodal freedoms play critical roles in the 

correct modeling of the present problems geometry. In solid mechanics, nodal freedoms 

are displacements in x, y and z directions and rotations about x, y and z axis in general. 

Dividing the whole geometry into the elements is known as meshing. All elements are 

combined by using the continuity rules and this step is called as assembling. 

Mathematically, assembled system is described by systems of algebraic equations which 

can be written in matrix form. The most critical step, in this method, is the determination 

and application of the boundary conditions. Moreover, usage of reduction the geometry at 

the beginning of the finite element modeling by using symmetry etc reduces the size of the 

characteristic matrix. In solid mechanic applications, characteristics matrix of the whole 

system is the form of {F}=[K]{x}, where [K] is stiffness matrix, {F} and {x} are external 

force and nodal displacements vectors, respectively. 

 A sample of finite element mesh for curved beam is shown in Figure 2.6. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Finite element discretization of curved beam (e≡element). 
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 Several commercial finite element analysis softwares are available. To model the 

curved beam for finding the out-of-plane displacements, BEAM4 (ANSYS, 2007) can be 

used. BEAM4 is used for tension, compression, torsion, and bending due to the nodal 

freedoms which are three translations and three rotations. In addition to elastic stiffness, 

geometric stiffness included. Nodes of BEAM4 are shown in Figure 2.7. 

 

 

 

 

 

 

 

Figure 2.7. Nodes of BEAM4. 
(Source: Kohnke, 2004) 

 

The shape functions of BEAM4 are given as follows (Kohnke, 2004) 
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The geometry of the BEAM4 is shown in Figure 2.8 from the original document. 

BEAM4 is based on two or three nodes. Third node of this element is needed for 

orientation of the element. Real constants (ANSYS, 2005) are 
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AREA, IZZ, IYY, TKZ, TKY, THETA 

ISTRN, IXX, SHEARZ, SHEARY, SPIN, ADDMAS 

where 

AREA   : Cross-sectional area 

IZZ and IYY  : Area moment of inertia about z and y axis, respectively 

TKZ, TKY  : Thickness in z and y directions 

THETA  : Orientation angle about x axis 

ISTRN   : Initial strain 

IXX   : Torsional moment of inertia 

SHEARZ, SHEARY : Shear deflection constant 

SPIN   : Rotational frequency 

ADDMAS  : Added mass/unit length 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8. Geometry of BEAM4. 
(Source: ANSYS, 2007) 
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CHAPTER 3 

 
NUMERICAL APPLICATIONS AND DISCUSSION 

 
3.1. Introduction 

 
In this chapter, out-of-plane displacements of a curved beam with variable 

curvature are studied by the following numerical methods: 

(a) DQM (Differential Quadrature Method): A computer program is developed in 

Matlab for the DQM based on Section 2.4.1. 

(b) FEM (Finite Element Method): A computer program is developed by using 

APDL (ANSYS Parametric Design Language) in ANSYS. In this program, the 

two dimensional geometry based on parametric inputs regarding the shape of 

the curved beam axis and finite element model of curved beam is formed in 

ANSYS. BEAM4 is selected to model the curved beam. 

In first step, a typical parabolic curved beam of which axis is shown in Figure 3.1 is 

considered to compare the results of both methods. Boundary conditions of curved beam 

are fixed and free at root and tip, respectively, as shown in Figure 3.1. A tip load 20 N 

perpendicular to zx plane is applied. The convergence studies for two methods are carried 

out to find the proper number of sampling points and number of elements. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Curved beam axis for convergence test and comparisons. 
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 In second step, in order to see the effects of parabola parameter a of the curved 

beam in different applications based on several geometrical restrictions on vertical 

displacements, various values for a are selected. The geometrical restrictions considered 

for parametric studies are classified as follows: 

Case 1: Half parabolas with the same width, 

Case 2: Half parabolas with the same depth, 

Case 3: Half parabolas with the same arc length, 

Case 4: Full parabolas with the same width, 

Case 5: Full parabolas with the same depth, 

Case 6: Full parabolas with the same arc length. 

 Geometrical meaning of some terms used for the cases above are given below: 

• Half parabola: a part of parabola in the first quadrant as seen in Figure 2.1. 

• Full parabola: a part of parabola in the first and second quadrant which obtained 

by adding the mirror of half parabola about vertical axis to half parabola. 

• Width of the parabola: the distance across the aperture (or opening) of the 

parabola. 

• Vertex: Origin O in the Figure 2.1. 

• Depth or height of the parabola: the distance from vertex to the aperture. 

 

 The cases listed above are illustrated in Figures 3.2 to 3.7, respectively. The 

dimensions used to draw the parabolas are given in the co-ordinate axis. 

 It can be said that larger absolute value of the parabola parameter a forms narrower 

parabola, and smaller absolute value of the parabola parameter a forms wider parabola. 

 Boundary conditions of the half parabolas considered as Case 1 to Case 3 are fix-

free as seen from Figure 3.1. Similar to the study done for first step, a tip load 200 N 

perpendicular to zx plane is applied. 

 Boundary conditions of the full parabolas considered as Case 4 to Case 6 are fix-

fix. In this case a load 400 N perpendicular to zx plane is applied at the vertex of the 

parabola. 

 As material characteristics of curved beam, modulus of elasticity E=200000 GPa 

and shear modulus G=80000 GPa are taken in all studies. 
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Figure 3.2. Half parabolas with the same width z0=1000 mm. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Half parabolas with the same depth x0=1000 mm. 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Half parabolas with the same arc length S=1000 mm. 
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Figure 3.5. Full parabolas with the same width 2z0=2000 mm. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. Full parabolas with the same depth 2x0=2000 mm. 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. Full parabolas with the same arc length 2S=2000 mm. 
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3.2. Convergence Tests for Differential Quadrature Method 

 
For convergence study, to find the minimum number of sampling point in DQM, 

the displacements of curved beam with the parameters a=a1=0.008, b=5 mm, h =5 mm, 

S=133 mm are calculated for different discretizations. 

The results are given in Table 3.1 and Figure 3.8. It is seen from the presented 

results that the reasonable number of sampling point n=24. 

 

Table 3.1. Convergence of displacements by using DQM 
 

n Displacement v (mm) 

8 1.5475 

12 1.5435 

16 1.5413 

20 1.5408 

24 1.5405 

28 1.5402 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Convergence of displacements by DQM. 
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3.3. Convergence Tests for Finite Element Method 
 

The results are given in Table 3.2 and Figure 3.9. It is seen from the presented 

results that the reasonable number of element N=26. 

 

Table 3.2. Convergence of displacements by using FEM 
 

N Displacement v (mm) 

6 1.5242 

8 1.5306 

10 1.5330 

12 1.5346 

14 1.5358 

16 1.5368 

18 1.5369 

20 1.5371 

22 1.5377 

24 1.5376 

26 1.5378 

28 1.5379 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.9. Convergence of displacements by FEM. 
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3.4. Parametric Studies for Out-of-Plane Displacements of Curved Beams 

 
In all cases, 25x25 mm square cross-section is used. Solutions are found by using 

n=24. Displacements at the load application points are presented in Figures 3.10-3.16. 

 

 

 

 

 

 

 

 

 

Figure 3.10. Displacements of the half parabolas with the same width. 
 

 

 

 

 

 

 

 

 

Figure 3.11. Displacements of the half parabolas with the same depth. 
 

 

 

 

 

 

 

 

 

Figure 3.12. Displacements of the half parabolas with the same length. 
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 It can be said from Figure 3.10 that displacements increase when a increases, since 

length of curved beam increases. Figure 3.11 shows opposite tendency according to Figure 

3.10. However, Figure 3.12 shows very close values due to the same curved length. 

 

 

 

 

 

 

 

 

 

Figure 3.13. Displacements of the full parabolas with the same width. 
 

 

 

 

 

 

 

 

 

Figure 3.14. Displacements of the full parabolas with the same depth. 
 

 

 

 

 

 

 

 

 

Figure 3.15. Displacements of the full parabolas with the same length. 
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 Similar to Figures 3.10 and 3.11, Figures 3.13 and 3.14 presents the similar 

tendencies, respectively. 

 Figure 3.10 and Figure 3.13 exhibit almost linear relationship between vertical 

displacement v and parabola parameter a. The physical situation can be stated for these two 

figures as follows: when the depth of parabola increases for the parabola having the same 

width, vertical displacement v increases due to the increasing of the length of the parabola. 

It should be pointed out that when parabola parameter a increases, depth and length of the 

parabola increases. 

 But, Figure 3.11 and Figure 3.14 show that the relation between vertical 

displacement v and parabola parameter a is nonlinear. Now, the physical situation can be 

stated for these two figures as follows: when the width of parabola decreases for the 

parabola having the same depth, vertical displacement v decreases due to the decreasing of 

the length of the parabola. It should be pointed out that when parabola parameter a 

increases, width and length of the parabola decreases. 

 On the other hand, Figure 3.15 shows very interesting behavior due to the width 

and depth of the parabolas shown in Figure 3.7. The parabola with depth of 707 mm and 

with width of 2x707=1414 mm has more vertical displacement than others. The reason 

behind this can be explained as follows: It is known that the stiffness of a straight 

cantilever beam and the stiffness of a beam fixed at both ends are based on the length of 

the beam. Using these simple ideas, it can be said that the parabola with the depth of 866 

mm is stiffer than the parabola with the depth of 707 mm due to its width. Also, the 

parabola with the depth of 500 mm is stiffer than the parabola with the depth of 707 mm 

due to the depth of it. 

 

 

 

 



 28

CHAPTER 4 

 
CONCLUSIONS 

 
When the differential equation has variable coefficient, its exact solution can not be 

obtained in all times. For these cases, numerical solutions are used. Due to the computer 

technologies, Power Series Method, Finite Difference Method, Finite Element Method, 

Differential Transform Method, and Differential Quadrature Method are developed. The 

Differential Quadrature Method (DQM) is a kind of the generalization of Finite Difference 

Method. 

The out-of-plane displacements of curved beams with variable curvature are 

modeled mathematically by two coupled differential equations with variable coefficients. 

Differential Quadrature Method (DQM) is used for the current problem and tested by the 

results Finite Element Method (FEM). Although, FEM is numerical method and gives 

approximate results, when the exact results are not available for a problem, it can be used 

for verifications. 

The effects of variable curvature parameter of the curved beam on out-of-plane 

displacements are studied as the practical application of DQM in structural mechanics. 
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