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Examining Committee Members:

Assoc. Prof. Dr. Jens ALLMER
Department of Molecular Biology and Genetics, İzmir Institute of Technology
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İzmir Institute of Technology İzmir Institute of Technology
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Dr. Bünyamin Akgül for accepting to be in my thesis defence committee and for their

valuable criticism towards completion of this thesis.
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ABSTRACT

AUTOMATIC, FAST AND ACCURATE SEQUENCE DECONTAMINATION

The introduction of massively parallel sequencing technologies was a revolution-

ary step in genomics. Their decreasing cost and powerful features have put them more

and more on demand in the last decade. It is now possible to sequence even complete

genomes of organisms, using massively parallel sequencing technologies even for small

laboratories around the world.

However, the power of this powerful technology comes with its challenges. The

challenges are both in technological and computational side of the work. In this work,

one of these computational challenges is addressed and a novel algorithm is offered to

solve the problem.

Sequencing by synthesis is one of the methods used in many different massively

parallel sequencing instruments. This method utilizes the biological process of DNA

replication and with the help of different means of detection, it allows sequencing a DNA

molecule while it is replicated.

Since DNA polymerase requires a primer to start the replication reaction, short

oligonucleotide adapters are used in sequencing by synthesis methods to initiate the reac-

tion. However, certain circumstances allow these adapters to contaminate final sequence

reads. Several tools have been offered to trim adapters from reads; but all depend on the

prior knowledge of the adapter sequence by the bioinformatician.

In this work, an algorithm is offered to detect and trim adapters only using the

sequences of reads, without relying on prior knowledge of adapter sequences. The algo-

rithm was shown to perform better or on the same grounds with existing methods in terms

of speed and efficiency.
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ÖZET

OTOMATİK, HIZLI VE DOĞRU DİZİ DEKONTAMİNASYONU

Kitlesel parallel dizileme yöntemlerinin ortaya çıkışı genomik alanında devrim

niteliğinde bir adım oldu. Giderek düşen fiyatları ve güçlü özellikleri bu yöntemleri her

geçen gün daha ilgi çekici hale getirdi. Günümüzde bu yöntemlerin kullanımı, dünya

çapında küçük laboratuvarların bile genom düzeyinde dizileme yapabilmesine olanak

sağlamaktadır.

Ancak bu yöntemin de güçlü özellikleri yanında bazı problemleriyle geliyor. Bu

problemler hem teknolojik, hem de bilişimsel alanlardadır. Bu çalışmada, bu bilişimsel

problemlerden biri ele alınmış ve çözümü için yeni bir algoritma önerilmiştir.

Sentez ile sekanslama, bir çok kitlesel parallel sekanslama aletinde kullanılan

yaygın bir yöntemdir. Bu yöntem biyolojik DNA kopyalanması reaksiyonunu kullanarak,

değişik algılama yöntemleriyle DNA dizilimesi yapmayı sağlar.

DNA polimeraz enzimi kopyalama reaksiyonunu başlatabilmek için bir primer’e

ihtiyaç duyduğu için, sentez ile sekanslama yöntemlerinde kısa adaptör sekansları kul-

lanılır. Ancak bazı durumlar bu adaptörlerin sonuçta çıkan dizi okumalarını kontamine

etmesine sebep olur. Bu dizileri temizlemek için çeşitli yöntemler önerilmiş olsa da, bun-

ların hepsi adaptör dizilerinin önceden biliniyor olması varsayımı üzerine çalışır.

Bu çalışmada, adaptör sekanslarını önceden herhangi bir bilgi olmadan sadece

okumaların kendilerini kullanarak bulan ve temizleyen bir algoritma önerilmektedir. Al-

goritmanın hız ve etkinlik açısından, var olan yöntemlerden daha iyi veya eşit düzeylerde

olduğu gösterilmiştir.
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CHAPTER 1

INTRODUCTION

Genome is the inheritable material of an organism and genomics is the field that

is concerned with the study of genomes in order to establish links between the genotypes

and phenotypes (Mardis, 2008a). Two separate studies published in 2001 on the first

draft of the human genome (Lander et al., 2001) (Venter et al., 2001) were the milestones

for the so-called genomic era (Guarnaccia et al., 2014). The availability of the genomic

data has changed the way genomes had been studied and it accelerated the advances in

high-throughput methods to study genomes.

1.1. History of DNA Sequencing

The sequencing of nucleic acids (Deoxyribonucleic acid or Ribonucleic acid), that

is determining the order of bases (nucleotides) in a nucleic acid was first achieved by Fiers

et. al. in 1972 (Min Jou et al., 1972) and 1976 (Fiers et al., 1976), when they sequenced

the complete RNA molecule of Bacteriophage MS2.

Maxam-Gilbert sequencing was the first of its kind that offered sequencing of

DNA molecules by chemically modifying and later cleaving them at specific bases. The

positions of cleavage (determined from the length of the cleaved molecule) were then

used to construct the sequence of DNA (Maxam and Gilbert, 1977).

An independent work, also in 1977, by Frederick Sanger demonstrated the use

of chain-termination method (Sanger sequencing) to sequence DNA molecules (Sanger

et al., 1977). The method relies on the biological process of DNA replication and utilizes

fluorescently labelled dideoxynucleotides which terminate the elongation of the DNA

when incorporated. The DNA fragment of interest is first amplified (i.e. multiple copies of

it are made). The amplified fragments, normal deoxynucleotides, fluorescently labelled

dideoxynucleotides, the enzyme DNA polymerase and primers are then mixed to carry

out the reaction. Each copy of the amplified DNA fragment results in a different length

depending on the time a dideoxynucleotide is incorporated. Running the DNA fragments

of different lengths in a capillary gel electrophoresis separates them by their length, thus

1



revealing the sequence of the DNA of interest (Figure 1.1) (Kircher and Kelso, 2010)

(Shendure and Ji, 2008).

Figure 1.1. A schematic representation of Sanger sequencing. The fragment of ampli-
fied to multiple copies. The amplified fragments are extended in a poly-
merization reaction with normal dNTPs and fluorescently labeled ddNTPs.
They are then separated based on their length on a capillary gel elec-
trophoresis to determine the sequence of the fragment based on light emit-
ted at different lengths of the extended copies. (Source: (Kircher and
Kelso, 2010))

Technological developments and automated procedures on the method described

by Sanger et. al., has shortly enabled sequencing of complete genes and eventually eu-

karyotic genomes (Goffeau et al., 1996) (Blattner et al., 1997) (Adams et al., 2000). It has

reached the capability to sequence with an accuracy of 99.999% and read lengths longer

than 1000 base pairs (bp) (Shendure and Ji, 2008). The first drafts of two human genome

projects (Lander et al., 2001) (Venter et al., 2001) were also sequenced using automated

Sanger sequencing technologies (Schuster, 2008). Although both projects producing a

successful and satisfactory outcomes for the time; they took 13 years to complete. The

Sanger sequencing method were not throughput and it was not applicable to individual

cases; as it required too much time, labour and had very high costs (Schuster, 2008).

2



1.2. Massively Parallel Sequencing

The DNA sequencing technology has continued to rapidly develop after the com-

pletion of the human genome projects. A funding program initiated by the National Hu-

man Genome Research Institute in 2004, aiming to reduce the cost to sequence a human

genome to $1000, has greatly encouraged the developments in this area (van Dijk et al.,

2014). The first ”next-generation sequencing” (NGS) platforms became commercially

available in 2004 (Mardis, 2008b) and they quickly replaced traditional Sanger sequenc-

ing for large scale genomic approaches (Metzker, 2010).

These massively parallel sequencing (MPS) (High throughput sequencing, Next-

generation sequencing) platforms, although different at the way they sequence the nucleic

acids, all share one thing in common that make them superior to the traditional Sanger

sequencing technologies - sequencing millions of DNA fragments in parallel, thus yield-

ing a high throughput (Schuster, 2008) (Shendure and Ji, 2008). Another feature mostly

common between these methods is that the library preparation methods for preparing

the sample to be sequenced varies only slightly between different instruments (Mardis,

2008b).

The low cost, which still continues to decrease, of massively parallel sequencing

has made the genome wide sequencing available to even small laboratories around the

world (van Dijk et al., 2014). It has enabled detection of variations between individuals,

de novo assembly of genomes of organisms, replaced microarrays to quantify gene ex-

pression and even made it possible to detect novel genes or isoforms of genes (van Dijk

et al., 2014).

The cost of sequencing today is decreasing even faster than the cost of storing data

computationally (Figure 1.2) (Hayden, 2014). This has created a necessity for algorithms

to analyze data become much more efficient as they form the bootleneck in many studies,

where sequencing finishes in a day but a complete de novo genome assembly can take

even months of CPU time.

3



Figure 1.2. The rapid decline in the cost of sequencing. The cost of sequencing de-
creases at a rate much faster than the cost to store the sequencing data. The
scales are logarithmic. (Source: (Hayden, 2014))

1.2.1. Sequencing by Synthesis

Sequencing by synthesis (SBS) is a principle of sequencing used in many mas-

sively parallel sequencing instruments (e.g. Illumina sequencing, pyrosequencing, ion

torrent semiconductor sequencing). The main idea behind SBS is that it utilizes a poly-

merase enzyme which replicates the DNA, similar to the Sanger sequencing method. Dur-

ing the replication of the DNA, nucleotides or short oligonucleotides are either added one

at a time or modified version of them (e.g. fluorescently labeled) are added to the sys-

tem to determine the nucleotide incorporated to the growing chain of DNA (Fuller et al.,

2009).

Unlike in Sanger sequencing, the addition of labelled deoxynucleotides to the

growing chain of DNA molecule do not terminate the replication reaction. This in turn

enables them to be magnitudes of order faster than the traditional Sanger sequencing

4



methods. In Illumina sequencing (described in more detail in Subsection 1.2.1.1), for

instance, the addition of a fluorescently labelled deoxynucleotide pauses the replication

at each step. This; however, is reversible and the cleavage of the fluorescence tag after it

is detected makes it possible for the reaction to continue.

The mean of detecting the nucleotide added to the DNA at each step in SBS

methods differ from one technology to another. Illumina sequencing and Pyrosequencing

methods detect the light emitted by either fluorescently labelled deoxynucleotides or by a

chemical reaction between the pyrophosphate molecule released the deoxynucleotide and

ATP, respectively. Ion semiconductor sequencing, on the other hand, detects the changes

in the pH from the hydrogen ions released when a deoxynucleotide is successfully incor-

porated by adding them one at a time in each cycle (Liu et al., 2012).

Since the SBS principle is based on the biological process of DNA replication

and it utilizes a DNA polymerase, raw DNA fragments right after isolation cannot be

sequenced using these methods. They need to undergo a collection of steps called li-

brary preparation, which differ from instrument to instrument but basically include DNA

fragmentation and adapter ligation at its core. Ligation of the adapters is essential, as

the enzyme DNA polymerase requires a primer in order to initiate the polymerization

(replication of DNA) reaction. The primers are then designed to be complementary to

the adapter, which bind to them and allow the initiation of the polymerization by DNA

polymerase (Figure 1.4) (Fuller et al., 2009).

As the details of each sequencing methodology is beyond the scope of this study,

Illumina sequencing will be explained in further detail as an example to SBS methods.

1.2.1.1. Illumina Sequencing

The library preparation step for Illumina sequencing begins with fragmentation of

the purified DNA into smaller pieces (these will be referred as fragments). These frag-

ments are further modified with end repair and dA tailing. They are then ligated with

adapters whose aim is to initiate polymerization reaction and optionally with marker (in-

dex) sequences in order to differentiate between fragments coming from different sources

but are mixed to be sequenced in one run. A mean of selection can be applied on adapter

ligated fragments (e.g. size selection, poly-A selection), and later they are PCR-enriched

(Figure 1.3 (Mardis, 2013) (Zhong et al., 2011).
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Figure 1.3. An example to Illumina library preparation protocol. Red and green seg-
ments in the end product are a pair of adapters that are ligated to the frag-
mented DNA molecule. (Source: (Zhong et al., 2011))

These PCR-enriched fragments then attach to specialized chips and undergo clus-

ter generation by bridge amplification. Sequencing by synthesis begins with attachment

of DNA-polymerase onto the fragments. At each cycle of the sequencing run, all 4 nu-

cleotides, each labelled with a different fluorescent label, are added to the system. In-

corporation of one of these prevents another nucleotide binding the growing fragment

with the help of a blocking group attached to 3’OH of the ribose sugar. After the in-

corporation, remaining nucleotides are washed away and the fluorescence image of the

added nucleotides are captured. Then the fluorescence tag and the 3’OH blocking group

is removed from the nucleotide to allow the next nucleotide incorporation. This repeats

until a predefined number of cycles, which determine the length of the reads (Figure 1.4)

(Mardis, 2013).
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Figure 1.4. Illumina reversible dye termination sequencing methodology. (Source:
(Mardis, 2013))

1.3. Computational Analysis of Sequence Data

The end products of an MPS run is a collection sequence reads (sequencing li-

brary). A sequence read (usually referred as a ”read”) is an ordered stretch of nucleotides

that are detected from one of the sequenced fragments and a sequencing library is made up

of the collection of these reads which come from the fragments generated in the first step

of the library preparation. Sequence reads are computationally stored as strings. Signals

detected from sequencing instrument (e.g. the light emitted) are converted to computa-

tional data with the help of base-calling algorithms (Ledergerber and Dessimoz, 2011).

Base-calling algorithms also assigns a quality score to each nucleotide in a read. A quality

score is a measure of how confident the algorithm is for the base-calling to be correct at

that position. There are several reasons that can affect the quality of base-calling due to

the noise in detected signals.
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Reads and their quality values are stored in 2 standard data formats. FASTQ file

format stores each read in 4 lines in a sequencing library. The first line starts with ”@”

is followed by a unique identifier for that read. The second line stores the sequence of

the read. The third line starts with ”+” and can contain the same unique identifier for

the read; and lastly the fourth line has the quality scores in letters and special characters

(there exists different quality formats) for each nucleotide in the read in the same order

(Figure: 1.5) (Cock et al., 2010). The format is then repeated for all reads coming from a

run.

Figure 1.5. An example to FASTQ file format. 3 reads from an Illumina sequencing
run is shown.

The reads can also be stored in a pair of files: a FASTA file and a qual file. A

FASTA file only stores the sequences; each taking at least 2 line. The identifier in FASTA

format is preceded with a greater than sign instead of ”@” and the sequences can take

multiple lines instead of only one like in FASTQ. qual files store the quality information

associated with each nucleotide in the FASTA file. They have the same identifiers and the

same format for the identifier as in FASTA format. They store the quality information in

a numeric format, separated by space for each nucleotide (Cock et al., 2010).

The left side of a sequence read is called its ”5 prime” (5’), while the right side of

it is called ”3 prime” (3’) for biological reasons. This is because, DNA is replicated from

its 5’ end to 3’ end; and computational storage of sequence data has also adopted this and

sequences are stored computational in 5’-to-3’ orientation.

Although the computational methods employed in the analysis of sequence data

produced from MPS methods differ from study to study depending on its aim; some steps

are expected in every pipeline. In this section, the focus will be more on preprocessing
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of sequence reads, which is a collection of steps that should be applied to raw sequence

data before any downstream analysis; and what the downstream analysis can include af-

terwards will briefly be introduced.

1.3.1. Preprocessing of Sequence Reads

The preprocessing step in sequencing data analysis mainly includes trimming se-

quence reads from adapters and low quality regions. Adapters, as explained in ”Sequenc-

ing by synthesis” section, are short nucleic acids that are used to initiate polymerization

reaction, thus the sequencing. The adapters do not belong to the sequence of interest, but

are inserted only to be used as a tool. Quality in sequence reads means the probability

of a base calling at a position being correct. Regions with adapters and of low quality

needs to be trimmed of sequences, because they do not represent the sequence of interest

and have the potential to disrupt downstream analysis steps (Bolger et al., 2014), as also

shown with examples in the Results chapter.

1.3.1.1. Adapter Trimming

Adapters are short oligonucleotides that are used in SBS methods to initiate se-

quencing. They are expected to serve as a tool; however, undesired circumstances can

lead to sequence reads which contain either partial or full length adapter sequences with

or without the biological sequence of interest. The main reason adapters being present

in sequence data is that due to the nature of fragmentation methods used to fragment pu-

rified DNA, a percentage of produced fragments ends up with lengths shorter than the

desired read length (Jiang et al., 2014a). When this is the case, a read belonging to a

fragment shorter than the read length turns out to contain a portion of the adapter used

in sequencing, sometimes even the full length adapter sequence (Figure 1.6). The per-

centage of adapter contaminated reads depends on the targeted fragment length in library

preparation and desired read length.

Another possible source is the multiplexed 5’ adapters in the fragment being se-

quenced. Sometimes more than one adapter may be ligated to a fragment (adapters lig-

ating to each other) and the primer to initiate sequencing may end up attaching to one of
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the multiplexed adapters other than the right-most in 5’ of the fragment. This makes it

inevitable to sequence the other multiplexed adapters downstream the adapter a primer is

attached to (Figure 1.6).

Figure 1.6. Sources of adapter contamination. Blue lines are fragments, while red
lines are adapters ligated to them. The arrows show the direction of the
sequencing. Black line shows the desired read length (number of cycles in
Illumina sequencing).

It is fundamental for downstream analysis to remove adapters and restore the target

DNA. Adapters left in the sequences may cause misalignment or reads not mapping back

to their reference genome/transcriptome; as read mapping is usually performed in end-

to-end alignment where the complete read must align to the reference. They also affect

de novo assemblies of genomes or transcriptomes badly. Assembly is the procedure of

organizing sequence reads based on the information of their ends matching with each

other in order to reconstruct the DNA or RNA molecule before it was fragmented to be

sequenced. Having adapter contaminations left; however, prevents the ends to align and

leaves gaps in the final assembly (Figure 1.7).
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Figure 1.7. Sources of adapter contamination. Blue lines are fragments, while red
lines are adapters ligated to them. The arrows show the direction of the
sequencing. Black line shows the desired read length (number of cycles in
Illumina sequencing).

Adapter trimming is especially important in microRNA (miRNA) sequencing stud-

ies. The length of a mature miRNA ranges from 18 to 30 (nt), whereas the typical min-

imum read length for sequencing platforms is 36 nt. This results in all reads (assuming

the sample was perfectly purified for miRNAs) having a portion of the adapter and the

trimming becomes obligatory to obtain real mature microRNA sequences. This is simi-

larly true for ancient DNA studies as well, where DNA from ancient samples are subject

to degradation, and the molecules that can be recovered are usually shorter than 100 bp

(Sawyer et al., 2012).
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1.3.2. Quality Trimming

Next-generation sequencing datasets tend to have sequencing errors due to the

nature of sequencing methods (Fuller et al., 2009). There are several possibilities which

can lead to wrong base callings or biases in reads, such as random hexamer priming

(Hansen et al., 2010), phasing errors (one read falling out of timing compared to others)

(Fuller et al., 2009), and accumulation of errors towards the end of the fragments (Dohm

et al., 2008). Like adapter contaminations, it is reported that these error have an impact

on the portion of reads that can be mapped back to a reference genome or transcriptome

(Fabbro et al., 2013). It has also been reported that they change the expression estimates

in RNA-Seq studies (Williams et al., 2016).

Each nucleotide in a read is given a quality score by the base calling algorithm,

which represents its error rate. Quality trimming tools for NGS data make use of these

quality scores and trim reads of low quality regions of base calling or discard them com-

pletely if the overall base calling generally of low quality for the whole read.

1.3.3. Downstream Data Analysis

There exists two many paths which can be taken depending on the situation af-

ter the raw reads have been preprocessed - reference based approaches and de novo ap-

proaches. The path to take usually depends on the availability and quality of a reference

genome and/or transcriptome assembly.

1.3.3.1. Reference Based Approaches

Reference based next-generation sequence data analysis pipelines are used in re-

sequencing studies where a reference genome and/or transcriptome assembly is available.

Reads are first mapped to reference assembly and the next steps may differ from exper-

iment to experiment depending on the aim. There exists many tools to map reads back

to reference assemblies, each with different aims and advantages; such as mapping effi-

ciently reads of different lengths or mapping them with gaps taking splicing events into

consideration for RNA-Seq data. The mapping results can then be used in reference
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based assemblies of genes or genomes, further annotation of the reference, quantification

of gene expression and comparison of them among samples, variation calling, detection

of novel genes or isoforms of known genes, microRNA identification and detection or-

ganisms from a sample in metagenomics samples.

1.3.3.2. De novo Approaches

De novo next-generation sequencing data analysis approaches are used when a

reference genome and/or transcriptome is not yet available. The reads are assembled by

de novo assembly methods from overlapping fragments between reads into larger con-

tigs. These larger contigs may then be used in scaffolding to produce final transcripts

(transcriptome) or chromosomes (genome). The resulting de novo assembly (genome or

transcriptome) can be used in annotation to assign it a functional meaning, discovery of

unknown genes or isoforms of known genes, development of genomic markers on the

genome.

1.4. Problem Definition

Having described possible paths an NGS dataset can go through, the analysis

should always start with preprocessing of reads which include trimming them from tech-

nical sequences (i.e. adapters) and from low quality regions. In this study, the main

interest is the process of trimming reads from adapter contaminations. Several methods

have been offered before to trim reads from adapters; all of which have based their opera-

tion on finding the sequence of an adapter or a set of user defined adapters in the sequence

of reads.

1.4.1. Current Methodologies

Several methodologies have been offered before to trim sequencing adapters from

sequence reads (Table 1.1). They all offer different advantages and focus on different

aspects of the problem. However; all methods that have been offered so far rely on the
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prior knowledge of the adapters used during the library preparation for an MPS exper-

iment. Some methods focus on trimming adapters from paired-end sequencing experi-

ments, some do not take advantage of mate-pair information, some focus on one specific

method of SBS (e.g. Nextera); and they also differ at the algorithms used to find the

adapter inside the reads. The algorithms to trim adapters from reads usually employ semi-

global alignments, where the given adapter sequence is aligned to all reads iteratively.

Table 1.1. Algorithms Offered for Adapter Trimming.

Name Trimming From Quality Control Citation
FastX 3’ SE Ns (Gordon and Hannon, 2010)

SeqTrim 3’ SE Ns & LQ (Falgueras et al., 2010)
TagCleaner 5’ & 3’ SE No (Schmieder et al., 2010)
Cutadapt 3’ & 5’ SE & PE LQ (Martin, 2011)

Btrim 5’ & 3’ SE & PE LQ (Kong, 2011)
Flexbar 5’ & 3’ SE & PE Ns & LQ (Dodt et al., 2012)

Trimmomatic 3’ SE & PE LQ (Bolger et al., 2014)
AdapterRemoval 5’ & 3’ SE & PE Ns & LQ (Lindgreen, 2012)

AlienTrimmer 5’ & 3’ SE & PE LQ (Criscuolo and Brisse, 2013)
NextClip LMP No (Leggett et al., 2013)
Skewer 5’ & 3’ SE & PE & LMP Ns & LQ (Jiang et al., 2014b)

5’ and 3’ shows whether the algorithm can detect and trim adapters in 5’ or 3’ ends of
the reads. SE and PE shows whether the algorithm can take single-end and/or paired-end

data as input. Ns mean the algorithm can also trim reads from Ns (unknown
nucleotides). LQ means the algorithm can also trim reads from low quality regions.

1.4.2. Aim

The aim of this study is to automatically detect adapters and any other contamina-

tion in sequence reads of a massively parallel sequencing dataset and to trim them effe-

ciently. To achieve this, an algorithm (RAT - RAdix Tree based read trimmer) employing

radix trees to detect adapters in a single sequencing run and trim them automatically is

offered.
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CHAPTER 2

METHODOLOGY

The source of technical contaminations (e.g. adapters) in a single sequencing

dataset ought to be similar due to the nature of sequencing by synthesis methods (the

same pair of adapters is used for all fragments). In this study, adapters are identified and

trimmed from reads without prior need for the information on adapter sequences used

during library preparation.

Biological sequencing reads are computationally stored as strings, each character

of the string denoting one of the nucleotides (A, C, G, T). The computational task to

identify adapters is to find a substring of length (l) at either end in a majority of a collection

of strings (reads). However, the length of the adapter (l is not constant and each read can

contain an unknown portion of it ranging from 0 to l.

2.1. Trees

The problem is offered to be solved by representing a library of reads (collection

of strings) in a tree data structure and finding paths in the tree, from root a node, where

many subsequences will branch (finding common subsequences at the ends of sequences).

In computer science, a tree is a non-linear data structure that arranges data (a

collection of items) hierarchically starting from its root to nodes that are linked to each

other. Their usage spans many areas of computer science, including analysing of electrical

circuits, representing electrical circuits, organizing data in database systems and indexing

biological data in bioinformatics (Aho et al., 1983).

A tree is basically a collection of nodes that are connected to each other by edges

(vertices) in a hierarchical manner, starting from the ”root” node. If n1, n2, ..., nk is a

sequence of nodes in a tree, meaning that n(i+1) can be reached from the connections of

ni, this is called a ”path” from n1 to nk. Hierarchically, ni is the ”parent” of n(i+1) in this

case, and n(i+1) is called a ”child” of ni. A node that does not have any child is called a

”leaf” or ”terminal node” (Aho et al., 1983).
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The use of tree structures for string operations has been offered long before com-

putational biology has made an impact (Weiner, 1973). Suffix trees, for example, provide

linear time solutions to exact string matching problem. Although, this is the worst-case

boundary as in Knuth-Morries-Pratt or Boyer-Moore algorithms as well; the power of suf-

fix trees comes in substring finding problem. Suffix trees can offer O(m) time to process

a string T of length m, and then O(n) time to solve the question of whether a string S of

length n is contained within the string T (Gusfield, 1997).

2.1.1. Tries and Radix Trees

A trie is a special type of tree used to store a collection of strings. All edges of a

trie must have a label and each node can have 0 to n children. The labels can be only one

character long for each edge. Only the root does not have a parent. All strings are stored

in unique paths from the root to leaves, thus each leaf represents the end point for a string

in the given collection of strings. The concatenation of edge labels in a root to leaf path

returns a complete string item (Figure 2.1).

Figure 2.1. An example to a trie, containing words ”hello”, ”help” and ”head”.
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A radix tree (also called Patricia tree, PAT tree, compressed trie) is a data struc-

ture that represents a collection of strings in the form of a tree. The difference it holds

compared to tries is that the edge labels are compressed to make it more space optimized.

Thus a node having only one child, can be combined with its child to become a node with

an edge labeled not only with a character but the concatenation of characters that will

have to at least 2 children (shared by at least 2 children). Thus, every node in a radix trie,

except the leaf nodes, must have at least 2 children different from the definition of tries.

Figure 2.2. An example to a radix tree, containing words ”hello”, ”help” and ”head”.

2.2. Radix Trees for Sequence Decontamination

If all reads belonging to a single sequencing run is stored on a radix tree in an

inverted orientation (i.e. starting from the end of the read - inverted radix tree), the fre-

quencies of substrings in the 3’ of all reads could be retrieved easily. Since the 3’ adapter

contamination, although for different lengths, would be present in an unexpected rate of

reads compared to the biological sequences, one would expect shared subsequences at the

right end of all reads containing a portion of the adapter.

Based on this assumption, a radix tree from all reads of a sequencing run is built.

If given FASTA input, sequence headers are treated as values in the leaves of the tree;

whereas for FASTQ input, a quality object is created with the sequence header and the

quality attached to it and it is used as the value in leaves. While building the tree, each
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node of the tree is assigned a score, which equals to the number of leaves reachable from

that node. This score represents the number of reads that end with the label (subsequence)

bound to that node (the path from the root to the node). After building the tree, it is

traversed starting from the root and visiting each node. While traversing, the scores of

each node and the label it is associated with (the path from root to that node) are collected

and sorted in a decreasing order; and subsequences are inverted back to their original

form. When the traversal and sorting is complete, starting from the label with the highest

score (assuming it is a contamination), the label is extended until further extension is not

possible. The extension is done by going down the list of labels and finding the next

longer label that contains the previous one. The labels are again extended in the original

orientation (5’ to 3’). The latest label when the extension is finished, is then assumed to

be the adapter. The radix tree is then searched for subsequences of this adapter and reads

are trimmed from it when found.

When the extension is not possible for the highest scoring label, or all extended

labels contain mostly the same nucleotide (e.g. poly-A), the search is restarted from the

next-highest scoring label and all previous labels used in extensions that ended up not

being useful are removed from the list.

2.2.1. Implementation

All parts of the algorithm is implemented in JAVA programming language. The

developed tool can work with both FASTA and FASTQ formatted sequences as input or

output. It also supports paired-end sequencing files, and the algorithm has additional step

of re-sorting the reads based on their definition lines for paired-end sequencing data in

order to preserve mate-pair information. The information on trimmed reads and sequences

trimmed from them are logged into separate files. Users can also tests the tool with

the option of simulating a sequencing run, with user defined sequencing depth, average

fragment and read length and their standard deviations.

Users can also decide to minimum number of nucleotides to trim from reads (de-

fault: 1), and a length threshold to completely discard reads if they fall below it (default:

none).

The algorithm requires around 15GB of heap space for a typical sequencing run

of 10000000 reads of length 100 nucleotides.
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CHAPTER 3

RESULTS

In this chapter, the results for test cases with simulated and real datasets used to

evaluate the effectiveness of the algorithm will be presented.

3.1. Simulation Tests

An in-house script was used to simulate NGS datasets with 5 different options:

read length, fragment length, fragment length deviation, depth and adapter sequence.

Read length is the number of bases that will be sequenced from a fragment (e.g. num-

ber of cycles in Illumina sequencing). Fragment length is the desired the length for a

simulated fragment; however, it can deviate from that as much as given fragment length

deviation following a normal distribution (e.g. if 100 is defined as the fragment length

with a deviation of 50, fragments of length from 50 to 150 can be produced following a

normal distribution). Depth is the number of fragments that will be produced. Adapter

sequence is a user defined string that will be used in place of an adapter during simulation

when necessary. The script does not use any reference genome or transcriptome, the reads

produced consist of totally random bases. It records the length of the fragment a read is

produced from; thus making it possible to tell whether an adapter has been trimmed cor-

rectly or not. The adapters are added to the end of the fragments until the read length is

satisfied, when the length of the fragment is shorter than the read length.

4 different sets of simulated data were produced, each with 5 replicates. Simula-

tion Dataset 1, 2 and 3 (sim1, sim2, sim3) had a depth of 1000000 fragments. Simulation

Dataset 4 (sim4) had a depth of 10000000 fragments. sim1 and sim4 had a read length of

100 nt, average fragment length of 100 nt with a deviation of 50 nt. sim2 had a shorter

read length at 50 nt. The fragments for the sim2 dataset had an average length of 50

nt with a deviation of 20 nt. sim3 had 250 nt long reads, which is longer than all other

datasets. The average fragment length for sim3 dataset were 250 with a deviation of 50.

The simulated data were stored as FASTA files and these were used as inputs for

both the algorithm described here (RAT) and 3 other adapter trimming tools that were used
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as a reference to compare the performance of RAT: cutadapt (Martin, 2011), AdapterRe-

moval (Lindgreen, 2012), skewer (Jiang et al., 2014b). All tools were executed with the

default settings and the complete sequence of the adapter that was inserted to the reads

during the simulation. The analysis were performed on a Linux machine with a 8-core

processor at 3.60GHz and 32GB of RAM. During the execution, the user runtimes and

peak memory usages were recorded. The outputs were used to determine the number of

reads in each simulation that were correctly trimmed (either trimmed to the length of the

original fragment or did not require trimming - true positives and true negatives), over-

trimmed (the simulated read was originally larger than the trimmed read- false positives)

and undertrimmed (a portion of adapter is left. Final trimmed read still contained adapter

and had a length longer than its fragment - false negatives).

Figure 3.1. Runtime comparison of RAT and 3 other algorithms compared for 4 dif-
ferent simulation scenarios. sim1, sim2 and sim3 had a depth of 1000000.
sim1 had a read length of 100nt, average fragment length of 100nt with a
deviation of 50nt; sim2 had a read length of 50nt, average fragment length
of 50nt with a deviation of 20nt; sim3 had a read length of 250nt, average
fragment length of 250nt with a deviation of 50nt; sim4 had a depth of
10000000, read length of 100nt, average fragment length of 100nt with a
deviation of 50nt.
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Figure 3.1 shows the average runtimes for the 4 different simulation scenarios

mentioned above with their error rates originating from 5 replicates for each scenario. In

all 4 scenarios RAT has outperformed cutadapt in terms of speed. The runtimes were

similar for RAT and skewer; but it was always slower than AdapterRemoval.

Table 3.1 lists the p-values for Welch Two Sample t-Test for testing the null hy-

pothesis that the means of runtime are equal for RAT and other 3 tools used as a reference.

It shows that RAT was in all test cases significantly faster than cutadapt, significantly

slower than AdapterRemoval in sim1, sim2 and sim4; and significantly faster than skewer

in sim1 and sim3 but slower in sim2.

Figure 3.2. Peak memory usage comparison of RAT and cutadapt for 4 different sim-
ulation scenarios. The y-axis in the figure is in logarithmic scale. sim1,
sim2 and sim3 had a depth of 1000000. sim1 had a read length of 100nt,
average fragment length of 100nt with a deviation of 50nt; sim2 had a read
length of 50nt, average fragment length of 50nt with a deviation of 20nt;
sim3 had a read length of 250nt, average fragment length of 250nt with
a deviation of 50nt; sim4 had a depth of 10000000, read length of 100nt,
average fragment length of 100nt with a deviation of 50nt.

As shown in Figure 3.2, peak memory usages had a great difference between the

two algorithms (note that the y-axis is in the logarithmic scale). RAT needed significantly

more memory compared to cutadapt. This comes from the design of algorithms, as RAT
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places all reads onto a radix tree; while cutadapt aligns them one-by-one two a reference

adapter sequence. RAT; on the other hand; does not need the reference adapter sequence,

and can trim sequences without prior knowledge of it.

Figure 3.3. Percentage of correctly trimmed reads in 4 test cases by RAT, cutadapt,
AdapterRemoval and skewer

In terms of efficiency (Figure 3.3, Figure 3.4 and Figure 3.5) both algorithms per-

formed on similar rates; although Figure 3.3 shows that percentage of correctly trimmed

reads are higher in cutadapt and AdapterRemoval in all test cases and generally higher in

skewer than RAT. This is due to percentage of overtrimmed reads being higher in RAT

(Figure 3.4. When added up, the efficiency in trimming the adapter is similar in both all

4 algorithms tested. RAT had significantly higher percentage of overtrimmed reads in all

cases (Figure 3.4, because by default it tries to trim the matching sequences at the end

of the reads regardless of their length even if it is only a single nucleotide. This causes

many short overtrimmed nucleotides at the ends of the reads; when they actually belong

the biological fragment but match to the beginning of the identified adapter sequence.
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Figure 3.4. Percentage of overtrimmed reads in 4 test cases by RAT, cutadapt, Adapter-
Removal and skewer

cutadapt for instance; however, do not trim the reads if the length of the match is shorter

than 3. This is configurable by the user in RAT; however, in most cases, it would be a

better approach to overtrim reads than leave adapters untrimmed even if the suspected

contamination is very short. The average length of overtrimming by RAT was 1.35 nt,

whereas it was 3.27 nt for cutadapt.

In all 4 test scenarios and for all 5 replicates of them, RAT had exactly 0 under-

trimmed reads, because it tried to trim every suspected contamination it found (thus a high

rate of overtrimming, as explained above). The other 3 algorithms; on the other hand, left

up to 2% of reads undertrimmed (Figure 3.5).

The details of all simulation results are available in Appendix A.
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Figure 3.5. Percentage of undertrimmed reads in 4 test cases by RAT, cutadapt,
AdapterRemoval and skewer

3.2. Effects of Adapter Trimming on Downstream Analysis

In order to test the effects of adapter trimming on downstream NGS data analysis

steps, RAT was used on real NGS datasets and its efficiency was compared to cutadapt,

AdapterRemoval and skewer, again. cutadapt, AdapterRemoval and skewer were again

run with default parameters. The adapter sequence supplied to them was the one identified

by RAT.

16 Illumina sequencing datasets were downloaded from Sequence Read Archive

(SRA). The datasets belong to a mouse (Mus musculus) transciptome sequencing project

(NCBI Bioproject: PRJNA66167). The accessions for retrieved datasets range from

SRR3192188 to SRR3192203. Each dataset had around 5 million reads of length 100

nt.
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The datasets were cleaned from adapters using RAT and cutadapt, AdapterRe-

moval, skewer in default settings, supplying the reference algorithms with full length

adapters identified by RAT. The identified adapters from the datasets is ”CTGTCTCT-

TATACACATCTCCGAGCCCACGAGACTAAGGCGAATCTCGTAT”. It is a patented

Illumina seqeunce (BAAS et al., 2012), used in library preparation for Illumina instru-

ments.

Both raw data (without any trimming) and datasets after trimming by 4 algorithms

mentioned were mapped back to Mus musculus reference genome (GRCm38) by Tophat

(Kim et al., 2013), and number of reads that mapped successfully were recorded in each

step.

The mapping rates in all datasets have shown an increase after adapter trimming.

The rates at which RAT improved mapping rates were again similar to that of cutadapt,

AdapterRemoval and skewer (Figure 3.6; although less because of RAT’s current incapa-

bility to trim reads with mismatches in adapter sequences.
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Figure 3.6. Number of reads recovered from the raw data by adapter trimming. 4 dif-
ferent algorithms were used to test the effect of adapter trimming.

Figure 3.7 shows the distribution of number of recovered reads in mapping by

adapter trimming. The performance of RAT was again similar to all 3 algorithms it was

compared to. Table 3.2 also shows that p-values of the difference in means (Student’s

t-Test) were not significant enough to say that one algorithm better than another in terms

of number of reads recovered.

Another dataset that was tested to evaluate the effect of adapter trimming and

compare RAT’s performance to cutadapt, AdapterRemoval and skewer was a microRNA

profiling dataset for human Homo sapiens embryonic stem cells (SRA: SRR026762). It

contained around 5 million reads of length 36 nt. microRNAs are short RNA molecules

of length 18 to 30 nt. This means that for true microRNAs in the sample, all reads must

contain the adapter sequence as the read length was 36 nt. Bowtie (Langmead et al.,

2009) mapping algorithm was used to map short microRNA reads back to human genome

(GRCh38). The adapter contaminations were removed from the datasets following the
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Figure 3.7. Distribution of number of reads recovered by adapter trimming for 4 algo-
rithms tested.

same procedure as in mouse transcriptome dataset.

Raw reads, without any trimming, showed a very low mapping rate around 3%.

As shown in Figure 3.8, removing the contaminations increased this from 46% up to 67%.

RAT, again has performed on a similar level to other 3 algorithms.
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Figure 3.8. Number of reads recovered by adapter trimming for the microRNA se-
quencing dataset by 4 algorithms tested.

Table 3.1. p-Values for Welch Two Sample t-Test for the null hypothesis that the
means of runtimes are equal for RAT and reference tools.

cutadapt AdapterRemoval skewer
sim1 2e-10 2e-7 0.04
sim2 2.8e-10 0.004 0.03
sim3 2e-5 0.9 6.9e-5
sim4 1.8e-4 7e-5 0.33

Table 3.2. P-values for Student’s t-Test on the increase in number of mapped reads
for mouse transcriptome project datasets.

cutadapt AdapterRemoval skewer
RAT 0.94 0.99 0.62
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CHAPTER 4

CONCLUSION

The need for pre-processing of next-generation sequencing reads have been shown

multiple times before (Del Fabbro et al., 2013) (Chen et al., 2014). It is a known fact that

adapter contaminations and low quality regions in NGS reads disrupt resequencing stud-

ies based on mapping to reference genomes or transcriptomes or de novo assemblies of

genomes and transcriptomes. Although, a crucial step in MPS data analysis, the sequence

of adapters used in library preparation are most of the time not available to the bioinfor-

matician, regardless of the dataset being obtained from an online resource, such as SRA

or through a sequencing service.

In this work, a novel algorithm (RAT) was offered to tackle this problem and

identify adapters used in an MPS run de novo; using the sequences of reads themselves.

This was accomplished placing all reads from a single sequencing run onto a reversed

radix tree and finding suffices which are common in a majority of the reads.

The use of speed-efficient radix trees has allowed RAT to perform on a similar

or even better level than similarity based adapter trimming approaches (e.g. cutadapt,

AdapterRemoval, skewer) in terms of speed and efficiency and it made RAT distinct from

all other adapter trimming tools that have been offered so far (see. Section: Current

Methodologies) in terms of not needing prior knowledge of the adapter sequence used in

library preparation. The efficiency of RAT was also better in simulated datasets (when

there was no sequencing errors) than similarity based approaches and it was comparable

in real sequencing data as well.
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CHAPTER 5

FURTHER WORK

Further work planned to improve the functionality of RAT is to enable it to trim

adapters from reads when a sequencing error occurs. This would improve its efficiency

to the level of, or even further than, current state-of-art methods. Another planned feature

is to offer quality trimming along with adapter trimming directly on the radix tree. Since

the qualities have to be stored on radix tree in order to produce the fastq file at the end,

this would not affect the runtime and memory requirement considerably; and statistics,

such as the average quality at a region, would be possible to calculate easily directly on

the tree since all leaves reachable from a node is always known.
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APPENDIX A

SIMULATION TESTS

Table A.1. Features of Simulation Datasets

Dataset Depth Read Length Avg Frag Len Frag Len Dev
sim1.r1 1000000 100 100 50
sim1.r2 1000000 100 100 50
sim1.r3 1000000 100 100 50
sim1.r4 1000000 100 100 50
sim1.r5 1000000 100 100 50
sim2.r1 1000000 50 50 20
sim2.r2 1000000 50 50 20
sim2.r3 1000000 50 50 20
sim2.r4 1000000 50 50 20
sim2.r5 1000000 50 50 20
sim3.r1 1000000 250 250 50
sim3.r2 1000000 250 250 50
sim3.r3 1000000 250 250 50
sim3.r4 1000000 250 250 50
sim3.r5 1000000 250 250 50
sim4.r1 10000000 100 100 50
sim4.r2 10000000 100 100 50
sim4.r3 10000000 100 100 50
sim4.r4 10000000 100 100 50
sim4.r5 10000000 100 100 50
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Table A.2. Runtimes in seconds of tested algorithms on simulated datasets.

Dataset RAT cutadapt AdapterRemoval skewer
sim1.r1 9.54 17.30 3.13 12.15
sim1.r2 9.50 17.36 3.25 9.21
sim1.r3 9.27 17.34 2.91 11.73
sim1.r4 9.63 17.46 3.18 12.17
sim1.r5 9.41 17.36 3.81 14.13
sim2.r1 8.89 11.98 3.23 6.91
sim2.r2 8.57 11.73 6.81 7.28
sim2.r3 8.84 11.85 1.89 9.68
sim2.r4 8.71 11.71 1.91 7.34
sim2.r5 8.67 11.67 1.82 7.31
sim3.r1 15.84 32.21 33.3 27.70
sim3.r2 11.24 31.89 14.13 27.25
sim3.r3 12.13 31.57 7.14 27.31
sim3.r4 12.77 31.65 7.15 27.35
sim3.r5 14.70 31.92 7.14 27.15
sim4.r1 118.45 172.75 39.6 111.14
sim4.r2 124.10 172.89 30.00 93.95
sim4.r3 102.90 171.94 64.30 119.75
sim4.r4 121.27 170.92 56.80 119.85
sim4.r5 111.93 171.51 57.68 99.57

Table A.3. Efficiency of RAT on simulation tests

sim tool Correct % Overtrimmed % Undertrimmed %
sim1 RAT 83.7087 16.2913 0
sim1 RAT 83.8144 16.1856 0
sim1 RAT 83.7108 16.2892 0
sim1 RAT 83.6923 16.3077 0
sim1 RAT 83.7843 16.2157 0
sim2 RAT 83.1549 16.8451 0
sim2 RAT 83.1517 16.8483 0
sim2 RAT 83.2044 16.7956 0
sim2 RAT 83.1955 16.8045 0
sim2 RAT 83.2127 16.7873 0
sim3 RAT 83.7207 16.2793 0
sim3 RAT 83.7167 16.2833 0
sim3 RAT 83.6531 16.3469 0
sim3 RAT 83.7338 16.2662 0
sim3 RAT 83.6863 16.3137 0
sim4 RAT 83.72011 16.27989 0
sim4 RAT 83.75837 16.24163 0
sim4 RAT 83.75173 16.24827 0
sim4 RAT 83.72045 16.27955 0
sim4 RAT 83.713 16.287 0
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Table A.4. Efficiency of cutadapt on simulation tests

sim tool Correct % Overtrimmed % Undertrimmed %
sim1 cutadapt 96.93 1.14 0.019
sim1 cutadapt 96.93 1.13 0.019
sim1 cutadapt 96.93 1.13 0.019
sim1 cutadapt 96.92 1.13 0.020
sim1 cutadapt 96.94 1.13 0.019
sim2 cutadapt 93.91 1.25 0.048
sim2 cutadapt 93.89 1.26 0.049
sim2 cutadapt 93.90 1.24 0.049
sim2 cutadapt 93.87 1.25 0.049
sim2 cutadapt 93.88 1.26 0.049
sim3 cutadapt 96.94 1.13 0.019
sim3 cutadapt 96.94 1.14 0.019
sim3 cutadapt 96.89 1.15 0.019
sim3 cutadapt 96.94 1.12 0.019
sim3 cutadapt 96.96 1.12 0.019
sim4 cutadapt 96.93 1.13 0.019
sim4 cutadapt 96.93 1.13 0.019
sim4 cutadapt 96.93 1.12 0.019
sim4 cutadapt 96.93 1.13 0.019
sim4 cutadapt 96.93 1.13 0.019

Table A.5. Efficiency of AdapterRemoval on simulated tests

sim tool Correct Overtrimmed Undertrimmed
sim1 AdapterRemoval 89.4 9.8 0.7
sim1 AdapterRemoval 89.6 9.7 0.7
sim1 AdapterRemoval 89.6 9.7 0.7
sim1 AdapterRemoval 89.5 9.7 0.8
sim1 AdapterRemoval 89.5 9.7 0.8
sim2 AdapterRemoval 49.4 48.8 1.89
sim2 AdapterRemoval 49.4 48.8 1.89
sim2 AdapterRemoval 49.5 48.6 1.9
sim2 AdapterRemoval 49.4 48.7 1.89
sim2 AdapterRemoval 49.4 48.7 1.89
sim3 AdapterRemoval 89.5 9.7 0.8
sim3 AdapterRemoval 89.5 9.8 0.7
sim3 AdapterRemoval 89.4 9.8 0.8
sim3 AdapterRemoval 89.5 9.7 0.8
sim3 AdapterRemoval 89.5 9.8 0.7
sim4 AdapterRemoval 89.5 9.7 0.8
sim4 AdapterRemoval 89.5 9.8 0.7
sim4 AdapterRemoval 89.4 9.8 0.8
sim4 AdapterRemoval 89.5 9.7 0.8
sim4 AdapterRemoval 89.5 9.8 0.7
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Table A.6. Efficiency of skewer on simulated datasets

sim tool Correct % Overtrimmed % Undertrimmed %
sim1 skewer 97 1.13 1.93
sim1 skewer 97 1.12 1.94
sim1 skewer 97 1.12 1.95
sim1 skewer 97 1.12 1.95
sim1 skewer 97 1.13 1.93
sim2 skewer 47.4 47.8 0.48
sim2 skewer 47.4 47.8 0.49
sim2 skewer 47.5 47.7 0.49
sim2 skewer 47.4 47.8 0.49
sim2 skewer 47.5 47.7 0.49
sim3 skewer 97 1.13 1.93
sim3 skewer 97 1.13 1.92
sim3 skewer 97 1.14 1.97
sim3 skewer 97 1.12 1.94
sim3 skewer 97 1.11 1.93
sim4 skewer 97 1.13 1.94
sim4 skewer 97 1.13 1.94
sim4 skewer 97 1.13 1.94
sim4 skewer 97 1.14 1.94
sim4 skewer 97 1.14 1.94
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APPENDIX B

MOUSE TRANSCRIPTOME DATA

Table B.1. Runtimes and memory usages for mouse transcriptome datasets. Time is
in seconds, memory usages is in kilobytes.

RATTime RATMem cutadaptTime cutadaptMem
SRR3192188 70 12073728 77 10832
SRR3192189 69 12208392 90 10860
SRR3192190 69 11074728 66 10864
SRR3192191 61 10877264 72 10804
SRR3192192 89 12331204 95 10868
SRR3192193 84 12751048 97 10764
SRR3192194 86 12789604 91 10948
SRR3192195 59 11998812 87 10704
SRR3192196 50 8269300 61 10812
SRR3192197 84 9237892 61 10780
SRR3192198 83 12125200 88 10944
SRR3192199 97 10875504 86 10892
SRR3192200 86 12417884 92 10836
SRR3192201 94 14061692 92 10908
SRR3192202 96 13102412 99 10728
SRR3192203 69 13240248 104 10720

adapterRemovalTime adapterRemovalMem skewerTime skewerMem
SRR3192188 40 7952 55 2384
SRR3192189 34 7884 59 2444
SRR3192190 37 8160 113 2520
SRR3192191 45 7980 61 2584
SRR3192192 57 7940 77 2532
SRR3192193 57 7872 86 2432
SRR3192194 53 7940 85 2576
SRR3192195 54 8088 69 2456
SRR3192196 38 7960 58 2408
SRR3192197 38 7900 53 2424
SRR3192198 51 8028 89 2308
SRR3192199 49 7832 77 2540
SRR3192200 54 7844 76 2404
SRR3192201 53 7948 70 2380
SRR3192202 60 7848 77 2404
SRR3192203 59 8116 70 2412
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