

DEVELOPMENT OF A FRAMEWORK FOR

FREQUENT ITEMSET MINING UNDER

MULTIPLE SUPPORT THRESHOLDS

A Thesis submitted to

the Graduate School of Engineering and Sciences of

İzmir Institute of Technology

in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Engineering

by

Sadeq Hussein Saleh DARRAB

July 2016

İZMİR

iv

We approve the thesis of Sadeq Hussein Saleh DARRAB

Examining Committee Members:

Assist. Prof. Dr. Belgin Ergenç BOSTANOĞLU

Department of Computer Engineering, Izmir Institute of Technology

Doç. Dr. Adil ALPKOÇAK

Department of Computer Engineering, Dokuz Eylul University

Assist. Prof. Dr. Serap ŞAHİN

Department of Computer Engineering, Izmir Institute of Technology

13 July 2016

Assist. Prof. Dr. Belgin Ergenç BOSTANOĞLU
Supervisor, Department of Computer Engineering

Izmir Institute of Technology

__________________________ __________________________

Doç. Dr. Y. Murat ERTEN Prof. Dr. Bilge KARAÇALI
Head of the Department Dean of the Graduate School of

of Computer Engineering Engineering and Sciences

v

ACKNOWLEDGMENTS

I would like to take this opportunity to express my gratitude to my supervisor

Assist. Prof. Dr. Belgin Ergenç Bostanoğlu for her guidance throughout the time of

preparation of my thesis. I sincerely thank her for her incessant encouragement as well as

for providing essential information and support. I extremely appreciate her attention and

valuable time that contributed in completing this thesis successfully.

Second, my deep appreciation to my family especially my parents for the sacrifice

they offered to me to reach this level of higher education and confidence in my practice.

I would also like to extend my thanks to my wife and daughters who helped me

to carry out this thesis by their patience. Their continuous support has sustained my efforts

at all stages of this thesis. They assist me in accomplishing this thesis by their motivation

and inspiration.

vi

ABSTRACT

DEVELOPMENT OF A FRAMEWORK FOR FREQUENT ITEMSET

MINING UNDER MULTIPLE SUPPORT THRESHOLDS

Frequent pattern mining is an essential method of data mining that is used to

extract interesting patterns from massive databases. Traditional methods use single

minimum support threshold to find out the complete set of frequent patterns. However,

in real word applications, using single minimum support threshold is not adequate since

it does not reflect the nature of each item and causes a problem called rare item problem.

Recently, several methods have been studied to tackle this problem by avoiding using

single minimum item support threshold. The nature of each item is considered where

different items are specified with different minimum support thresholds. By this, the

complete set of frequent patters are generated without creating uninteresting patterns and

losing substantial patterns. In this thesis, we propose an efficient method, Multiple Item

Support Frequent Pattern growth algorithm, MISFP-growth, to mine the complete set of

frequent patterns with multiple item support thresholds. In this method, Multiple Item

Support Frequent Pattern tree, MISFP-Tree, is constructed to store all crucial information

to mine frequent patterns. Since in the construction of the MISFP-Tree is done with

respect to minimum of Multiple Itemset Support values; pruning and reconstruction

phases are not required. To show the efficiency of the proposed method, it is compared

with a recent tree-based algorithm, CFP-growth++. To evaluate the performance of the

proposed algorithm, various experiments are conducted on both real and synthetic

datasets. Experimental results reveal that MISFP-growth outperforms the previous

algorithm in terms of execution time, memory space as well as scalability.

vii

ÖZET

ÇOKLU DESTEK EŞİKLERİNDE SIK KÜMELER MADENCİLİĞİ

İÇİN UYGULAMA İSKELETİ GELİŞTİRİLMESİ

Sık kümeler madenciliği yöntemleri yoğun veri tabanlarındaki özellikli

örüntülerin bulunmasını sağlarlar. Bu yöntemler, sık kümeler setlerini bulurken tek bir

destek eşik değerini esas alırlar. Oysa gerçek dunya uygulamalarında tek bir destek eşik

değeri örüntülerin tek başlarına özelliğini yansıtmakta yetersiz kalmakta ve seyrek örüntü

(rare item) problemi ortaya çıkarmaktadır. Son zamanlarda, bu seyrek örüntü probleminin

çözümüne odaklanan çalışmalar bulunmaktadır. Bu çalışmalar kümelere ve küme

elemanlarına farklı destek eşik değerleri atanmasına izin vermektedir. Böylece gereksiz

örüntüler oluşturulmadan seyrek örüntüler ele geçirilebilmektedir. Bu tez kapsamında,

etkin bir Çoklu Destek Eşiklerinde Sık Kümeler (Multiple Item Support Frequent Pattern

growth algorithm, MISFP-growth) yöntemi önerilmektedir. Bu yöntem veri tabanından

sık örüntülerin bulunmasını sağlayacak veriyi bir ağaçta saklamaktadır (MISFP-Tree). Bu

ağaç tüm veriyi değil de çoklu eşiklerin minimumunu dikkate alarak oluşturulduğu için,

oluşturulma sonrası budama ve yeniden oluşturulmaya gereksinim duymamaktadır. Bu

yöntemin etkinliği yeni bir ağaç tabanlı yöntemle (CFP-growth++) karşılaştırılarak

gösterilmiştir. Karşılaştırma çalışmaları gerçek ve sentetik veri tabanları üzerinde

gerçekleştirilmiştir. Başarım değerlendirme sonuçları MISFP-growth yönteminin diğer

yönteme göre, çalışma zamanı, bellek kullanımı ve ölçeklenebilirlik açısından daha

başarılı olduğunu göstermiştir.

viii

TABLE OF CONTENTS

LIST OF FIGURES .. IX

LIST OF TABLES .. IX

CHAPTER 1. INTRODUCTION ... 1

CHAPTER 2. PRELIMINARIES ... 5

CHAPTER 3. RELATED WORK .. 9

 3.1. Rare Item Problem .. 11

 3.2. Mining Frequent Patterns with Multiple Thresholds 12

 3.2.1. Apriori-Like Methods ... 13

 3.2.2. FP-growth-Like Methods .. 17

CHAPTER 4. MISFP-GROWTH ALGORITHM .. 24

 4.1. CONSTRUCTION OF MISFP-TREE... 26

 4.2. Mining Frequent Patterns from MISFP-Tree....................................... 31

CHAPTER 5. PERFORMANCE EVALUATION ... 35

 5.1. Experimental Environment and Datasets .. 35

 5.2. Execution Time .. 39

 5.3. Memory Usage ... 42

 5.4. Scalability .. 46

 5.5. Computational complexity ... 49

 5.5.1 Computational complexity of MISFP-Tree 50

 5.5.2 Computational complexity of MIS-Tree..................................... 50

 5.5.3 Computational complexity of compact MIS-Tree 52

 5.6. Discussion on the Performance Evaluation Results 54

CHAPTER 6. CONCLUSION AND FUTURE WORK .. 57

REFERENCES ... 59

ix

LIST OF FIGURES

Figure Page

Figure 3.1. MIS-Tree after inserting all transactions .. 19

Figure 3.2. The compact MIS-Tree .. 19

Figure 4.1. Construction of MISFP-Tree .. 27

Figure 4.2. Insertion into MISFP-Tree ... 28

Figure 4.3. After inserting the first transaction ... 30

Figure 4.4. After inserting the second transaction .. 30

Figure 4.5. After inserting the third transaction .. 31

Figure 4.6. MISFP-Tree after adding all transactions .. 31

Figure 5.1. Frequent patterns in Kosarak dataset .. 37

Figure 5.2. Frequent patterns in Retail dataset ... 37

Figure 5.3. Frequent patterns in T10I4D100K dataset ... 38

Figure 5.4. Frequent patterns in Pumsb dataset .. 38

Figure 5.5. Frequent patterns in Mushroom dataset ... 38

Figure 5.6. Execution time for Kosarak dataset .. 39

Figure 5.7. Execution time for Retail dataset ... 40

Figure 5.8. Execution time for Pumsb dataset .. 40

Figure 5.9. Execution time for T10I4D100K dataset ... 41

Figure 5.10. Execution time for Mushroom dataset ... 41

Figure 5.11. Memory usage for Kosarak dataset .. 43

Figure 5.12. Memory usage for Retail dataset .. 43

Figure 5.13. Memory usage for Pumsb dataset .. 44

Figure 5.14. Memory usage for T10I4D100K dataset .. 44

Figure 5.15. Memory usage for Mushroom dataset. ... 45

Figure 5.16. Scalability for Kosarak dataset ... 47

Figure 5.17. Scalability for Retail dataset ... 47

Figure 5.18. Scalability for Pumsb dataset ... 48

Figure 5.19. Scalability for T10I4D100K dataset. .. 48

Figure 5.20. Scalability for Mushroom dataset ... 49

Figure 5.21. Construction of initial MIS-Tree .. 51

Figure 5.22. Insertion into MIS-Tree .. 51

x

Figure 5.23. MIS pruning operation ... 53

Figure 5.24. MIS merging operation .. 53

xi

LIST OF TABLES

Table Page

Table 2.1. Transaction database .. 6

Table 2.2. Frequent patterns with single threshold ... 6

Table 2.3. Frequent patterns with multiple thresholds.. 8

Table 3.1. Transaction database .. 15

Table 3.2. MIS and the actual support of items .. 15

Table 3.3. The whole frequent patterns using MSapriori ... 15

Table 3.4. Transaction database .. 18

Table 3.5. MIS values of items ... 18

Table 3.6. The complete set of frequent patterns using CFP-growth 20

Table 4.1. Items, their minimum item support and actual support 24

Table 4.2. Transaction database .. 28

Table 4.3. MIS and actual support of items .. 29

Table 4.4. The complete set of frequent patterns from MISFP-Tree 34

Table 5.1. Characteristics of datasets .. 36

Table 5.2. The speed-up of MISFP-growth on five datasets .. 42

Table 5.3. Memory gain of the proposed method on five datasets 46

Table 5.4. The speed-up of MISFP-growth on five datasets .. 49

1

CHAPTER 1

INTRODUCTION

Data mining is defined as “the analysis of the large quantities of data that are

stored in computers” [29]. It is a computational process to find out interesting information

from masses of data. It is used in various domains such as: medical field, elections,

telecommunication firms, banks [30, 34]. The methods in data mining include association

rule mining [35], clustering [36, 37] and classification [38].

Association Rule Mining (ARM) is an important pattern analysis technique that

focuses on finding out the sequences of actions or events known as itemsets (patterns)

that are items that occur together. It has drawn attention since it was first proposed in [1].

This is due to its applicability in various domains. The overall goal of ARM is to discover

all interesting rules from a dataset that have the form: 𝑋 → 𝑌 | 𝑋 ∩ 𝑌 = Ø where X

and Y are the set of items in the dataset. An interesting rule should satisfy two statistical

measures known as minimum support threshold denoted as minsup and minimum

confidence threshold denoted as minconf. Minsup refers to the percentage of transactions

in the dataset that contain 𝑋 ∪ 𝑌 whereas minconf denotes to the conditional probability

of finding 𝑋 ∪ 𝑌 given the transactions of which each contains X.

Market Basket Analysis is an application of association rule mining. In this

application, relationship between items that purchased together is analyzed. Customers

who purchase bread also tends to purchase milk at the same time can be represented by

association rule: milk ⇒ bread [sup= 30%, conf = 75%]. A support of 30% for the

previous association rule means that 30% of all transactions in database contain bread and

milk whereas a confidence of 75% for the previous association rule shows that 75% of

the customers who buy bread also tends to buy milk.

Association rules can be found in two essential steps as follows.

1. Finding all frequent patterns that exceeds a given minsup.

2. Generating association rules. From the frequent patterns that are found in step 1,

we extract the all interesting rules that satisfy both of minsup and minconf.

Since the first step is more expensive, almost all research in frequent pattern

mining algorithms focused on generating the frequent patterns. Also, once the frequent

2

patterns are generated, generating association rules is straight forward since confidence

does not possess closure property as support. Hence, Frequent Pattern Mining (FPM) is

essentially focuses on finding out items that occur together (known as patterns or

itemsets).

There are various methods proposed to find out frequent patterns in large

databases. Initially, a brute-force approach (primitive method) is used to find out all

frequent patterns [35, 39]. The main idea behind this method is that all possible itemsets

are generated. Then, all itemsets that satisfy a given minimum support threshold are

considered frequent patterns. Although this approach has guarantee to fınd out all

frequent patterns, it requires O(NMw) comparisons, where N is the number of

transactions, M =2k-1 is the number of candidate itemsets, w is the maximum transaction

width and k is the number of distinct items. Hence, using this approach is very expensive

[39].

To overcome a combinatorial explosion, Apriori principle has been proposed in

[2] to prune itemsets contain at least one infrequent subset itemset. Subsequently, many

methods have been proposed in order to improve the implementations of the first

proposed algorithm [1] as Apriori-like methods [2, 44, and 45], depth-first search

methods [46], vertical methods [40, 41, and 42], node-based methods [25, 27] and FP-

growth-like methods [3, 5, 6, 26, and 7]. All these methods share the same aim as to

reduce both of search space and execution time. A single minsup is used to extract the

whole set of frequent patterns. But using a single minsup in real-life applications does not

reflect the importance of individual items since mining with a single minsup implicitly

assumes that all items in the database are of the same nature in the database. In the real-

life applications, some items are bought frequently whereas others are bought very rarely.

Cheaper goods such as, milk and bread, are frequently purchased while the luxury and

expensive products such as, electric devices are infrequently purchased. Although those

infrequent items they may create more profit than frequent items. Hence, finding rare

itemsets is desired but without generate large amount of meaningless itemsets.

To generate a rare itemsets, minsup must be set too low, in this case too many

meaningless itemsets are generated. In contrast, if minsup is too high, lots of useful

itemsets are lost. This problem is called rare itemset problem [23]. To overcome this

problem, a numerous methods have been proposed to discover rare itemsets. In [8],

instead of using a single minsup for all items, each item can have its minimum item

support to precisely reflect the accurate nature of each item in database. By this, both of

3

rare itemsets and frequent itemsets are generated. Thus, mining itemsets with Multiple

minimum Item Supports thresholds, MIS, effectively discovers the frequent itemsets as

well as rare items without generating a huge amount of useless frequent itemsets and

losing desired rare itemsets become possible.

Since MSapriori [8], many methods have been proposed to reduce search space

and execution time while generating frequent patterns under MIS. These methods

discover all meaningful rules with MIS, containing rarely occurred by applying different

MIS to each different items. They can be classified into two types: 1) Apriori-like

methods [4, 8, 9, 10, 19, 20, and 22] and 2) FP-growth-like methods [11, 12, 13, 14, 15,

17, 18, and 16]. In Apriori-like methods, the databases have to be scanned many times to

create all candidates items since they are based on Apriori algorithm. Apriori-like

methods consume an enormous amount of runtime, especially when databases contain

too many transactions since it performs several database scans and uses a candidate

generation-and-test method. To solve this problem, FP-growth-like methods were

proposed. These methods require scanning database twice as they use FP-Tree to hold all

necessary information that is needed in mining process. They construct MIS-Tree with a

single scan and the MIS-Tree is reconstructed by pruning operations. However, these

methods still consume a huge amount of memory space and execution time. They are

poor in performance since they require pruning and reconstructing the MIS-Tree.

In this thesis, we propose an efficient algorithm called Multiple Item Support

Frequent Pattern growth, MISFP-growth, which is an extended version of FP-growth, for

mining frequent patterns with MIS over big databases. The proposed algorithm is

intended to create all potential itemsets from huge transactional datasets. We propose

Multiple Item Support Frequent Pattern tree, MISFP-Tree, which is based on FP-Tree, to

hold all necessary information to discover the complete set of frequent patterns with MIS.

At the same time, a frequent item header table, MIN-MIS-Frequent table, is generated

with all items that have support no less than the lowest minimum item support threshold,

MIN-MIS. The proposed tree is efficiently built without any reconstruction or pruning

operations. Then, the proposed method, MISFP-growth, extracts frequent patterns from

MISFP-Tree. The experimental results on both real and synthetic datasets show the

superiority of the proposed method in terms of runtime and memory with respect to

varying minimum item support thresholds and database sizes. Major part of this work has

been presented in Wseas 16th International Conference on Applied Computer Science

and it is published in its proceedings, WSEAS Transactions on Computer Research [61].

http://wseas.org/wseas/cms.action?id=13372

4

To assess the efficiency of MISFP-growth in term of execution time, memory

space and scalability, experiments are carried on both real and synthetic datasets that are

commonly used in the data mining literature. In these experiments, we compare the

performance of the proposed algorithm with the recent based-tree algorithm, CFP-

growth++, based on multiple minimum item support thresholds [14]. To evaluate the

execution time and memory usage of both algorithms, we vary MIS of items and number

of transactions. The experimental results show that the proposed algorithm, MISFP-

growth, is faster, consumes less memory and is more scalable. Most of this work has been

published in [61].

This thesis is organized as follows; Chapter 2 focuses on introducing several

concepts and definitions about mining frequent patterns. Chapter 3 provides a review

about the rare item problem and the up-to-date methods that are used to discover frequent

patterns under multiple support thresholds. Chapter 4 introduces the proposed method

called, MISFP-growth that tackles the rare item problem by mining frequent patterns with

multiple minimum support thresholds. Chapter 5 gives the results of experimental set up

of MISFP-Growth algorithm and finally Chapter 6 provides a summary about the

proposed method and remarks on future work.

In this thesis, the terms method and algorithm; itemset and pattern as well as dataset and

database are used interchangeably

5

CHAPTER 2

PRELIMINARIES

In this chapter, we introduce the basic terminologies related to frequent pattern

mining under both of single and multiple thresholds.

Let 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑚} represents the set of m distinct items, and 𝐷𝐵 =

{𝑇1, 𝑇2, … , 𝑇𝑛} be a transaction database where Ti (i ∈ [1…n]) is a transaction, which

contains a set of items in I. Each transaction is associated with an identifier, called TID.

A transaction can be defined as Ti = (TIDi, X), which is a tuple has number TID and

contains an itemset {X}. The itemset X= {x1, x2... xk} is a set of k items in T. Thus, the

itemset {X} have at least one item and at most all items in specific transaction. The itemset

that contains K items is called K-itemset. If support of the itemset is greater than or equal

to minsup, then it is a frequent pattern. The support of the itemset X, denoted as sup(X),

is the number of transactions that contain {X} in DB as follows:

 𝑠𝑢𝑝(𝑋, 𝐷𝐵) ∶= {𝑇𝐼𝐷| (𝑇𝐼𝐷, 𝐼) ∈ 𝐷𝐵, 𝑋 ⊆ 𝐼}. (2.1)

Definition 2.1: (Frequent Pattern with Single Threshold). Let DB be a transaction

database over a set of items I, and minsup is a given minimal support threshold given by

the user. The set of frequent patterns in DB, which they exceed minsup is defined as

follows:

 𝐹(𝐷𝐵, 𝑚𝑖𝑛𝑠𝑢𝑝) = {X ⊆ I , sup(X, DB)/|𝐷𝐵| ≥ 𝑚𝑖𝑛𝑠𝑢𝑝}, (2.2)

where F represents all the frequent itemsets in DB and |𝐷𝐵| is the number of transactions

in DB.

An association rule is represented as an expression of the form 𝑋

⇒ 𝑌 in DB,

where(𝑋, 𝑌 ⊆ I and 𝑋 ∩ 𝑌 = 𝜃). Itemsets X and Y are called antecedent and consequent

of the rule respectively. The two statistical measures (support and confidence) are used

to determine the importance of an association rule. The association rule’s support is

represented by the union of its antecedent and consequent whereas the confidence of a

rule represent by the conditional probability of consequent (Y) given antecedent (X).

Hence, the support (sup) and confidence (conf) of a rule 𝑋

⇒ 𝑌 is as follows.

 sup (𝑋

⇒ 𝑌, 𝐷𝐵) =
sup (𝑋∪𝑌)

|𝐷𝐵|
, (2.3)

6

𝑐𝑜𝑛𝑓 (𝑋

⇒ 𝑌, 𝐷𝐵) = 𝑃(𝑋) = (sup (𝑋 ∪ 𝑌))/(sup (𝑋)). (2.4)

Definition 2.2: Association Rule (AR). Let I be a set of items, DB be a transaction

database I, minsup is a user-specified minimal support threshold, and minconf is a user-

specified minimal confidence threshold. The set of interesting association rules that

satisfy both of minsup and minconf defined as follows:

𝐴𝑅(𝐷𝐵, 𝑚𝑖𝑛𝑠𝑢𝑝, 𝑚𝑖𝑛𝑐𝑜𝑛𝑓) ≔ {𝑋 (⇒ 𝑌|𝑋, 𝑌 ⊆ I, X ∩ Y = θ, X ∪ Y ∈ F, conf (X ⇒) 𝑌, 𝐷𝐵)≥ 𝑚𝑖𝑛𝑐𝑜𝑛𝑓}. (2.5)

The following example illustrates the concepts of Frequent Patterns (FP) and Association

Rule (AR).

Example 2.1: Let I be a set of items {a, b, c, d, e, f, k}, and a set of transaction database

DB over I showed in Table 2.1, find out all frequent pattern F (DB, minsup =50%) and

AR (DB, minsup = 50%, minconf = 60%). The complete set of frequent patterns and their

supports can be obtained in Table 2.2.

 Table 2.1. Transaction database

TID Items

1 a ,b, c ,d, e

2 a, b, e

3 c, d, f

4 b, c, k

5 a, b, c, d

Table 2.2. Frequent patterns with single threshold

Patterns Support Frequency Status

{} 5 100% Frequent

{a} 3 60% Frequent

{b} 4 80% Frequent

{c} 4 80% Frequent

{d} 3 60% Frequent

{a, b} 3 60% Frequent

{c, d} 3 60% Frequent

{b, c} 3 60% Frequent

7

For association rule {𝑐}

⇒ {𝑑}, we can get the support and confidence of the rule as

follows.

sup ({𝑐}

⇒ {𝑌}) = sup({𝑐} ∪ {𝑑}) = 60%,

 𝑐𝑜𝑛𝑓 ({𝑐}

⇒ {𝑑}) =
sup({𝑐} ∪ {𝑑})

sup({𝑐})
=

60%

80%
= 75%.

Property 2.1: Downward Closure Property. All subset of frequent itemset must be

frequent, in other words, an infrequent itemset will not generate any frequent itemset. For

example, itemset {a, e} is not frequent itemset since it contains infrequent subset itemset,

{e}.

Definition 2.3: Rare Itemset (RI). Let DB be a transaction database over a set of items

I, and minsup is a given minimal support threshold. The set of rare itemsets in DB, which

have support bellow than minsup is defined as follows:

𝑅𝐼(𝐷𝐵, 𝑚𝑖𝑛𝑠𝑢𝑝) = {X ⊆ I , sup(X, DB)/|𝐷𝐵| < 𝑚𝑖𝑛𝑠𝑢𝑝}, (2.6)

where RI represents all the rare itemsets in DB and |𝐷𝐵| is the number of

transactions in DB. For example itemset {b, e} is rare itemset since its support = 40%,

which is less than minsup = 50%.

Definition 2.4: Multiple Item Support (MIS). Let I be a set of items, I = {i1,…, in}, an

itemset X = {i1, …, ik}, the minimum item support(MIS) of itemset X is defined as follows.

𝑀𝐼𝑆(𝑋) = MIN{MIS(𝑖1), MIS(𝑖2), … , MIS(𝑖𝑘)}. (2.7)

Example 2.2. Assume that an itemset K={x, y, z} has an actual support = 8% in a given

database. Suppose that the MIS and the actual support of items are given as follows:

𝑀𝐼𝑆(𝑥) = 5%, 𝑀𝐼𝑆(𝑦) = 10% 𝑎𝑛𝑑 𝑀𝐼𝑆 (𝑧) = 15%,

𝑠𝑢𝑝(𝑥) = 10%, 𝑠𝑢𝑝(𝑦) = 9% 𝑎𝑛𝑑 𝑠𝑢𝑝 (𝑧) = 11%.

Then the MIS of the itemset K can be defined as follows:

𝑀𝐼𝑆(𝐾) = 𝑀𝐼𝑁 {𝑀𝐼𝑆(𝑥) = 5%, 𝑀𝐼𝑆(𝑦) = 10%, 𝑀𝐼𝑆 (𝑧) = 15%} = 5%.

Thus, the itemset K is frequent as its support = 8%, which exceeds MIS (K) = 5%.

Definition 2.5: (Frequent Itemset with Multiple Thresholds). Let DB be a transaction

database over a set of items I, and MIS is specified for each item. The set of frequent

patterns with MIS in DB, is as follows:

𝑀𝑆𝐹(𝐷𝐵, MIS) = {X ⊆ I , sup(X, DB) ≥ MIS(X)}, (2.6)

where MSF represents all the frequent itemsets.

Example 2.3. Consider the database in Table 2.1 and the minimum item supports of items

are given as follows:

8

MIS(a) = 30%, MIS(b) = 25%, MIS(c) =30%, MIS(d) = 40%, MIS(e) = 25%,

MIS(f)= 30% and MIS(k)=25%. The complete set of frequent patterns with MIS can be

obtained in Table 2.3.

Table 2.3. Frequent patterns with multiple thresholds

For the itemset {a, f}, it is infrequent itemset as its support = 20%, which is less

than its MIS = MIN {MIS (a), MIS (f)} = 30%.

Note that although the itemset {b, e} not appear while mining patterns under

single threshold and it considered as rare itemset, it is appear as interesting pattern when

we mine patterns with MIS. Thus, mining frequent patterns with multiple thresholds

efficiently discovers interesting patterns, which include frequent and rare patterns.

Patterns Support Frequency MIS Status

{a} 3 60% 30% Frequent

{b} 4 80% 25% Frequent

{c} 4 80% 30% Frequent

{d} 3 60% 40% Frequent

{e} 2 40% 25% Frequent

{a, b} 3 60% 25% Frequent

{a, c} 2 40% 30% Frequent

{a, d} 2 40% 30% Frequent

{a, e} 2 40% 25% Frequent

{b, c} 3 60% 25% Frequent

{b, d} 2 40% 25% Frequent

{b, e} 2 40% 25% Frequent

{c, d} 3 60% 30% Frequent

9

CHAPTER 3

RELATED WORK

Data mining is a nontrivial process of discovering interesting knowledge from big

databases. Frequent pattern mining is an essential step of data mining, which aims at

discovering a set of itemsets that frequently co-occur in a database. Frequent itemsets

should satisfy user-specified minimum support threshold, minsup. Since the first method

was introduced to extract frequent patterns in [1], there are numerous algorithms that have

been proposed for mining frequent patterns under single threshold. Most of these methods

utilize the downward closure property to considerably reduce the search space of frequent

patterns [2, 3, 5, 6, 7, 40, 41, 44 and 45]. In these methods, the database is scanned to

determine all frequent items (or 1-itemsets) based on the single minsup threshold. Then,

only data of frequent items are used to determine the frequent itemsets (i.e. frequent

patterns). Thus, these methods significantly decrease the memory space and execution

time by avoiding a large amount of infrequent data from being loaded into memory.

Frequent itemset mining methods can be classified into two main categories:

Apriori-like methods [1, 2, 35, 54, 55, 56, and 57] and FP-growth-like methods [3, 5, 6,

7, and 60]. Apriori methods deploy a breadth-first search to count the support of (k+1)-

itemsets that are created from frequent k-itemsets. It achieves good performance by

reducing the search space as the downward closure property is utilized. Since it is

considered an innovation that opened new doors for many frequent pattern mining

applications, many variants of Apriori [2] have been proposed to enhance the performance

of Apriori such as BitApriori [54], Hybrid Search Based Association Rule Mining [55],

Direct Hashing and Pruning (DHP) [56], and Dynamic Itemset Counting (DIC) [57], etc.

On the other hand, the multiple database scan approach of Apriori algorithm is I/O

expensive for large databases. In addition, due to the candidate generation-and-test

approach, it requires huge computational time and memory usage when too many

candidate itemsets are generated.

To handle these weaknesses, FP-growth [3] and its improvements [5, 6, 7, 26, and

60] have been proposed to generate frequent patterns without creating a huge amount of

candidate itemsets as Apriori. FP-growth methods utilizes FP-Tree, an extended prefix-

tree, which compresses all transactions of database in horizontal data format in memory.

10

This enables FP-growth to search for the complete set of frequent patterns and to reduce

the number of database scans. FP-growth outperforms previously developed methods

including Eclat [59] and Apriori methods [2, 53, 54, 55, and 56]. However, a huge amount

of frequent patterns are generated while mining from some dense databases and mining

with low minimum support threshold. In addition, for each frequent k-itemset, FP-growth

creates set of conditional FP-Tree used to find the frequent (k+1)-itemsets. This leads to

create a large number of FP-Trees which results in the degradation of performance. Thus,

FP-growth does not work as well as Eclat [59], in such cases. The extensions of FP-

growth have been proposed to enhance the performance that includes an array technique

to reduce the FP-Tree traversal time [58], FP-growth with database partition projection

[60], H-mine [52] and the use of FP-array data structure [28].

Many different data structures are used to represent databases in memory such as

Matrix Apriori [53], MAFIA [51], FP-Tree [3], etc by avoiding re-scanning the original

DB from disks as in the Apriori method [2]. These data structures and their mining

methods are quite different which result in different performance for a given dataset.

Methods like Apriori [2], FP-growth [3] and H-mine [52] exploit horizontal format of

data while Eclat [40] and MAFIA [51] present data in vertical format. Thus, applying a

suitable mining method for mining frequent patterns is crucial to improve the

performance of frequent pattern mining.

Above methods are used to find frequent patterns with single minsup. Using the

single minsup considerably reduces the search space and computation by avoiding a huge

amount of infrequent itemsets from being loaded into memory. However, mining frequent

patterns with the single minsup faces two problems: 1) extremely large amount of

meaningless patterns might be generated if the minsup is set too low, 2) useful patterns

may be lost when the minsup is set too high. This problem is called rare item problem.

The remaining of this chapter is divided into two subsections. In first subsection,

we briefly discuss the rare item problem. In the second subsection, we review the methods

that have been proposed to mine frequent patterns under multiple support thresholds.

11

3.1 Rare Item Problem

In many applications, frequent items are less interesting than rarely occurred ones

since frequent patterns signify the known and the expected associations while rare

patterns suggest unexpected or previously unknown associations, which is more valuable

to users [48]. A rare itemset contains items that have support less than minsup, which are

called rare items. These items can be obtained by setting minsup at a low value but this

leads to combinatorial explosion in number of frequent itemsets. Thus, the problem of

specifying single support threshold causes rare item problem [8]. By mining frequent

patterns with a high minsup, we cannot find itemsets that contain useful rare items while

mining with a low minsup generates large amount of frequent patterns which are not

useful. Many methods have been proposed to tackle this problem [24, 23, 47, and 48].

The main effort of these methods is discovering rare itemsets.

In [24], two automated support thresholds are used to mine rare itemsets. These

support thresholds can be calculated as follows. One support threshold represents the

average support of all items, which is denoted as AvgSup, and the second support

threshold can be found as the average of the lowest support and large support, which is

called MedianSup. According to these support thresholds, this method mines frequent and

rare itemsets belonging to three different item groups namely Most_interesting_ Group

(MiG), Somewhat_interesting_Group (SiG), Rare_interesting_Group (RiG). These

groups consist of itemsets which have support greater than AvgSup, between MedianSup

and AvgSup and less than AvgSup and MedianSup respectively. Thus, the rare itemsets

are found by scanning the itemsets in RiG.

In [23], two methods have been proposed to extract the rare itemsets. In these

methods, three type of itemsets are defined: minimal generators (MG), minimal rare

generators (MRG), and minimal zero generators (MZG). They represent itemsets with

lower support than its subsets, itemsets with non-zero support and whose subsets are all

frequent and itemsets with zero support and whose subsets all have non-zero support

respectively. MRGs play an important role in these methods since they represent a

boundary that separates the frequent and rare itemsets. In addition, MRG is used by MRG-

Exp method to create candidates in bottom-up fashion by using MGs. MRGs is utilized

by the second method, called ARIMA, to create the whole set of rare itemsets which was

12

created in the first method. This method stops the search for non-zero rare itemsets when

MZG reaches to border since above that boundary there are only no rare itemsets.

In [47], RP-Tree is proposed to mine rare itemsets using a tree structure. The aim

of this method is to find out rare itemsets using a tree structure. It is the first rare

association rule mining algorithm that uses a tree structure. It is a modification of the FP-

Growth algorithm. Like FP-growth method, this method scan database twice. In the first

scan, it calculates the actual supports of items whereas in the second scan it builds initial

tree. RP-Tree is used to store the transactions that have at least one rare item. By this, all

the transactions that have non-rare item are not included in RP-Tree construction. This

method uses tree data structure to extract rare itemsets.

The improvement method of RP-Tree [48], called MCRP-Tree, was proposed to

mine rare itemsets. The main aim of this method is to find rare itemsets using tree structure

with maximum constraint model. RP-Tree is level-wise approach which generates and

tests all combinations of rare itemsets, whereas MCRP-Tree does not test all items

containing in the rare itemset. Instead the MCRP-Tree discovers only rare items from the

transactional dataset. It avoids expensive pruning step and item generation by using tree

data structure based on FP-Tree to find rare items. It focuses on rare itemsets which gives

interesting rule and does not spend time in finding uninteresting rules. MCRP-Tree

contains only rare items by discarding all the transactions that does not have rare items.

3.2 Mining Frequent Patterns with Multiple Thresholds

Recently, to tackle the rare item problem, several methods have been proposed to

extract frequent patterns involving rare itemsets with multiple support thresholds [8, 9,

10, 11, 12, 13, 14, 19, and 22]. In these methods, the definition of minimum item support

is changed while the definition of association rule remains the same while mining frequent

patterns with MIS. Each item is assigned by MIS to reflect the nature of that item in a

database. The main idea behind these methods is that any itemset must satisfy the lowest

MIS of its items. Thus, these methods enable us to find interesting patterns including rare

patterns without creating a huge number of meaningless patterns.

To find out frequent patterns with single minsup threshold, downward closure

property (an itemset is frequent if and only if all its subsets are frequent) must hold. In

[8], it has be shown that this property no more holds for mining with MIS and they

13

proposed a new property called sorted closure property to overcome this problem. The

next example 3.1 illustrates why the downward closure property cannot hold to mine

frequent patterns with MIS.

Example 3.1. Consider four items {a, b, c, d} in a database and their minimum item

supports are:

MIS(a) = 15%, MIS(b) = 25%, MIS(c) = 10%, and MIS(d) = 9%.

Assume that the support of {a, b} is 10% at level 2, the itemset’s support is not

greater than either MIS (a) or MIS (b). Thus, {a, b} is discarded since it is infrequent

itemset according to the definition of mining patterns with MIS. Therefore, {a, b, c} and

{a, b, d} are infrequent patterns since they include {a, b}. Suppose we find that itemset

{a, b, c} has 12% of support at level 3, then it satisfies: min {MIS (a), MIS (b), MIS(c)}

since the MIS(c) is less than the actual support of itemset. As result, {a, b, c} is considered

as desired pattern although its subset {a, b} is infrequent. Thus, downward closure

property is no more valid to find frequent patterns with MIS instead a new property

proposed to solve this problem called sorted closure property.

Definition 3.1 Sorted Closure Property. Items I must be sorted in ascending order

according their MISs. Assume that Lk denote to set of K-itemsets, any itemset x consist

of k items { x1, x2, …, xk} , then MIS(x(1)) ≤ MIS(x(2)) ≤ … ≤ MIS(x(k)).

Example 3.2. Following the above example assume that an itemset, k = {a, b, c}. The

items that is contained in this itemset must be sorted in ascending order according to their

MIS. Therefore, K ={c, a, b}.

In the following subsections, we will discuss these methods that can be divided

into two parts: Apriori-like methods and FP-growth-like methods.

3.2.1 Apriori-Like Methods

To avoid the rare item problem, an algorithm called MSapriori [8] is proposed to

find out frequent patterns with multiple item support thresholds. It is an extension of

Apriori algorithm, which is used to discover frequent itemsets involving rare items. This

method assigns a minsup value known as MIS for each item. Frequent itemsets are found

if an itemset satisfies the lowest MIS value among the respective items. In this method,

the frequent items are assigned with a higher MIS value whereas rare items are assigned

14

with a lower MIS value. Thus, the MSapriori algorithm addresses the rare itemset problem

and improves the performance over single minsup based algorithms.

The algorithm MSapriori works as Apriori algorithm with some modification in

the second candidate itemsets generation as follows:

1- The database is scanned once to count the actual support of items and to determine

first-frequent patterns (L1) .

2- In each subsequent scan, it generates k-candidates itemsets by using the seeds of

frequent patterns found in Lk-1 and it creates Lk frequent patterns based on Ck

candidate’s items, this step repeats tell no more candidate’s itemsets can be

generated. There is an exception in the second step as we will see later in the

following example.

3- All items are sorted in ascending order according to their MIS values and all

subsequent operations of this method used this order.

4- An itemset X: {a1, a2, …, an} is frequent if and only if its actual support in the

database is no less than to: min {MIS(a1), MIS(a2), …, MIS(an)}.

To understand how this method works to find out the whole set of frequent

patterns, the following Example 3.3 illustrates all steps involved in this algorithm.

Example 3.3. Given a transaction database DB as shown in Table 3.1 and the multiple

item supports of items in Table 3.2, find the whole set of frequent patterns with MIS in

DB.

To find the frequent patterns from the data in Table 3.1 with the multiple

predefined minimum support values in Table 3.2, the MSapriori proceeds as follows.

1. Scan the database once to find the actual support of each item. The items are sorted

in ascending order according to their MIS as shown in the right column in Table 3.1

and the actual support of items is counted as shown in the third row in Table 3.2.

2. After we get the frequencies of all items, we find out the 1-candidates itemsets that

have support greater or equal to the MIS’ value of the first item = 2. Thus, The items

{g, f, c, b, a} form F’ list that used to create the 2-candidate itemsets as special stage

of MSapriori.

3. The 1-frequent patterns {g, c, f} are generated since their MIS values are greater or

equal to 2 and their actual support is greater or equal to their predefined MIS.

Therefore, L1 = {g, c, f}. You can see that items {a, b} are removed since their support

in database less than their MIS.

15

4. Find the 2-candaidate itemsets is an exception for another steps since it will be involve

items found in F to create 2-candidate patterns. Thus, the 2-candiadate itemsets are

created from F’ list instead of L1. All the 2-candiataes itemsets are given in second

row in the Table 3.3, where the number after “:” represents the actual support of the

itemsets. Then , the 2-frequent patterns L2= { (g, f) : 2 , (f ,c) :3 , (f, b) : 2 , (f, a) :3 }

are generated.

5. The same process is repeated to generate all frequent pattern Lk based on candidate

itemsets in Ck. by repeating the same steps tell no more candidate itemset can be

created, all candidate itemsets and the complete set of frequent patterns are found as

shown in Table 3.3.

 Table 3.1. Transaction database

 Table 3.2. MIS and the actual support of items

Table 3.3. The whole frequent patterns using MSapriori

Step no Candidate Itemsets Frequent Patterns Notes

1 F={g :2, f:2, c:4 , b: 3, a :3} L1={ g :2, c :4, f:2 }

2

C2={ (g, a) : 1 , (g, b) : 1, (g, c) :1, (g, f) : 2,(f ,c)

:3 , (f, b) : 2 , (f, a) :3, (c, b) :1, (c, a) : 3, (b, a) :1

}

L2={ (g, f) : 2 , ,(f ,c) :3 ,

(f, b) : 2 , (f, a) :3 }

C2

created

from F

3 C3={(f, c, b) : 1,(f, c, a) : 3} L3={f, c, a}

Several studies have been proposed to improve the performance of MSapriori [9,

10, 19, and 22]. In [9], an MSB_apriori method was proposed to find frequent itemsets

with MIS based on Apriori algorithm. In this method, each item in the database has its

own MIS determined by the user and each itemset can satisfy a different minsup based on

the items within it. Unlike MSapriori which uses different steps from Apriori algorithm

to mine frequent patterns with MIS, MSB_apriori uses the same steps involved in basic

TID Items
Items in ascending

order in MIS values

1 d, c, a, f f, d, c, a

2 g, c, a, f, e g, f, e, c, a

3 b, a, c, f, h h, f, c, b, a

4 g, b, f g, f, b

5 b, c b, c

Item a b c d e f g h

MIS 4 4 4 3 3 2 2 2

Actual

support
3 3 4 1 1 4 2 1

16

Apriori to find frequent patterns. MSB_apriori has two main steps as follows: 1) mine

frequent patterns L by basic Apriori with a single minimum support, 2) choose all frequent

patterns from L that satisfy the definition of frequent patterns with multiple minimum

supports from L. So, any itemset F (F∈L) must satisfy sup (F) ≥ MIS (1) to be frequent

since items are in ascending order according their MIS.

In [10], another method have been proposed to mine frequent patters with MIS

called an Improved Multiple Support Apriori Algorithm (IMSApriori). This method is

different from MSapriori in the approach of specifying minsup for each item. The Support

Difference (SD) is used to assign the minimum item support thresholds to items and it

refers to the acceptable deviation of an item from its frequency so that an itemset

involving that item can be considered as a frequent itemset. The following formula is used

to calculate the minsup known as MIS (i) for each item ‘i’ as follows:

𝑀𝐼𝑆(𝑖) = {
𝑆(𝑖) − 𝑆𝐷 𝑖𝑓(𝑆(𝑖) − 𝑆𝐷) > 𝐿𝑆

𝐿𝑆 𝑜𝑡ℎ𝑒𝑤𝑖𝑠𝑒
 (3.1)

where, S (i) denotes the support of item ‘i’ and LS refers to the given least support.

 The support difference SD can be calculated as in following equation:

SD = λ (1−α) (3.2)

where λ represents the parameter maximum support of the item supports and α is the

parameter ranging between 0 to 1 and SD values changed from (0, λ). It efficiently

decreases the explosion of frequent itemsets including frequent items without affecting

the extraction of frequent itemsets involving rare items.

In [19 and 22], two methods have been proposed to mine frequent patterns with

MIS. These methods work as MSapriori with the some differences as follows. In [19], it

first finds all the frequent 1-itemsets for the given database by comparing the support of

each item with its predefined minimum support. It then finds all the frequent k-itemsets

for the database by comparing the support of each candidate k-itemset with the maximum

of the minimum supports of the items contained in it. In [22], all the steps that are used

in this method are same as that used in MSapriori with following exception. The minimum

item support thresholds for each item, i, can be calculated by the following equation:

𝑀𝐼𝑆(𝑖) = {
𝛽 𝑠(𝑖) 𝛽𝑠(𝑖) > 𝐿𝑆

𝑠(𝑖) 𝑒𝑙𝑠𝑒
 (3.3)

where 𝛽 , s(i) and LS stand for a user-specified value which can be ranged from 0 to 1,

support of an item (i), and the least minimum support threshold respectively .

17

This method uses the above equation to ensure the extraction of frequent itemsets

involving rare itemsets. Furthermore, it prunes frequent itemsets involving frequent items

in a more efficient manner and without missing the frequent itemsets involving rare items.

3.2.2 FP-growth-Like Methods

The above methods adopt an Apriori-like candidate set generation-and-test

approach and it is always time consuming, especially when there exists long patterns. So,

a novel multiple item support tree (MIS-Tree) structure [12], which extends the FP-tree

structure [3], is proposed for storing compressed and crucial information about frequent

patterns. MIS-Tree-based mining method (CFP-growth algorithm) is also developed for

mining the complete set of frequent patterns with multiple support thresholds.

The CFP-growth algorithm is designed based on the FP- growth algorithm but it

is different from FP-growth in the structure, construction and mining procedures. The

CFP-growth algorithm receives as an input both of MIS values of items and transaction

database. It finds out the whole set of frequent itemsets with a single scan of the

transaction database. The CFP-growth has four phases as follows.

1- Items are sorted in decreasing order of their MIS values. Using the sorted list of

items, an FP-Tree-like structure known as MIS-Tree is built with a single scan of

the transaction database. Concurrently, the frequency of each item in the MIS-

Tree is counted.

2- To discard items that cannot create any frequent pattern, a tree-pruning operation

is carried out to prune them.

3- After some items are removed from MIS-Tree by the tree-pruning operation, some

items in the tree may have child nodes with the same name. Therefore, to merge

the child nodes of a parent node that share the same item, the tree-merging

operation is carried out on the MIS-Tree to merge them. After tree-pruning and

tree-merging operations, the compact structure will be formed called a compact

MIS-Tree, which holds the substantial information that is needed to mine frequent

itemsets.

4- Lastly, to discover the whole set of frequent patterns form the compact MIS-Tree

,each item is selected from the compact MIS-Tree as the suffix item (or itemset),

18

its conditional pattern base (i.e., prefix sub-paths) is constructed to generate the

complete set of frequent itemsets. Due to mining frequent itemsets with MIS does

not satisfy downward closure property, CFP-growth attempts to find out a

complete set of frequent itemsets by building suffix patters till its respective

conditional pattern base is empty.

Example 3.4. Consider the transaction database given in Table 3.4 and the MIS values of

items in Table 3.5, find the whole set of frequent patterns using CFP-growth algorithm.

Table 3.4. Transaction database

Table 3.5. MIS values of items

Constructing of MIS-Tree phase

The database has to be scanned once to calculate the support of items in DB and

to build MIS-Tree. Similar to FP-Tree construction, transactions are inserted into MIS-

Tree with an exception that here items are in descending order according their MIS. By

adding all transaction, the MIS-Tree is created as shown in the Figure 3.1.

MIN-frequent-header table is constructed to facilitate MIS-Tree traversal, each

item in this table points to items that carry the same item-name via the head of node-links.

The supports of items after scanning all transactions are ((a:3, b:3, c:4, d:1, e:1, f:4, g:2,

h:1). Thus, the pruning operation is implemented to discard items that have actual support

less than the lowest MIS = 2. So, the items (d, e, h) are pruned from the MIS-Tree. After

pruning operation, some nodes may have child nodes carrying the same name and the

child nodes have to be merged to one node with the same name and its count is set as the

sum of merged child nodes.

TID Items
Items in descending order in

MIS values

1 d , c , a , f a, c, d, f

2 g , c , a ,f , e a, c, e, f, g

3 b , a , c , f, h a, b, c, f, h

4 g , b ,f b, f, g

5 b , c b, c

Item a b c d e f g h

MIS 4 4 4 3 3 2 2 2

19

Figure 3.1. MIS-Tree after inserting all transactions [12]

In our example we can notice that node (c: 2) has two child nodes with the same

item-name f. Therefore, these two nodes are merged into a single node with item-name

= f, and its count is set as the sum of counts of these two child nodes (f: 2). After pruning

and merging operations, the resulted structure as shown in Figure 3.2 is called the

compact MIS-Tree which contains all necessary information needed to extract the whole

set of frequent patterns.

Figure 3.2. The compact MIS-Tree [12]

Mining frequent patterns from MIS-Tree phase

The CFP-growth algorithm works similary to FP-growth algorithm to mine

frequent patterns from the compact MIS-Tree. It starts from the bottom of the MIN-

frequent-header table to extract the whole set of frequent patterns from the compact MIS-

Tree. To explain how this algorithm works, let us illustrate how a conditional pattern base

20

and conditional MIS-Tree are built for item {f}. Following f’s node-link, it occurs in three

paths in compact MIS-Tree. The paths are {a:3, c:2, f:2}, {a:3, b:1, c:1, f:1} and {b:2,

f:1}. Item f with MIS (f), i.e 2, is a suffix item that has the least MIS among items occur

with it since items are ordered in descending order according their MIS. By eliminating

item f from these paths, the conditional prefix paths are {a: 2, c: 2}, {a:1, b:1, c:1} and

{b:1}, which called f’ conditional pattern base. Notice that because the counter value of

item {f} in paths are 2, 1 and 1, the counter of the nodes in these three paths are set to 2,

1 and 1 respectively. Since the item {f} has the least minimum item support threshold

among all items that occur with it in these paths, all frequent patterns generated based on

the item {f} must have support no less than minimum of suffix item, here item {f} (i.e,

2). Thus, all frequent patterns must have support no less than 2. Otherwise, they cannot

be frequent.

After the conditional pattern base of item {f} are identified, the f’s conditional

MIS-Tree is generated by calculation the counts along the link and searching for patterns

that exceed the minimum support threshold value of item {f} (i.e, 2). In the conditional

MIS-Tree for suffix item {f}, since only the items {a, b, c }have support no less than the

minimum support threshold of item {f} (i.e ,2), the only conditional frequent patterns {(

af:2), (cf:2), (bf:2), (acf:2)} are generated. Hence, we generate f’s conditional frequent

pattern {(af: 2), (cf: 2), (bf: 2), (acf: 2)}. By iterating the same process for the remaining

items in MIN-frequent header table, we extract the complete set of frequent patterns as

shown in Table 3.6.

Table 3.6. The complete set of frequent patterns using CFP-growth

Item MIS Conditional Pattern Base Conditional MIS-Tree Frequent patterns

g 2 { a, c , f :1} , { b , f : 1} {f:2} fg:2

f 2 {a, c :2}, {a, b, c :1 } , {b :1 }
{a:2} ,{c:2} ,{b:2} ,

{ac:3}
af:2 ,cf:2 ,bf:2 , acf:2

c 4 {a:2}, {a,h:1} , {b} - -

b 4 {a:1} - -

a 4 - - -

There are two performance issues that is found in CFP-growth as follows.

1) Some infrequent items have been considered by CFP-growth to construct compact

MIS-Tree where they cannot play any role to generate the frequent pattern.

2) Some infrequent items are examined to build suffix patterns until its respective

conditional pattern base is empty by CFP-growth which will never generate any

21

frequent pattern. Thus, CFP-growth needs additional more time to figure out the

whole set of frequent patterns [14].

To tackle these issues, an improved CFP-growth method called CFP-growth++

has been proposed [14]. They used the first frequent item for pruning operation, called

the lowest minimum support (abbreviation as, LMS) whereas CFP-growth uses the lowest

minimum item support MIN. Furthermore, they proposed a new operation to remove a

leaf node that cannot be used to generate any frequent patterns. CFP-growth carries out

exhaustive search in constructed MIS-Tree Since downward closure property no longer

holds in multiple item support framework. In contrary, a conditional closure property has

been proposed by CFP-growth++, by which this algorithm mines all frequent patterns

without carrying out mining process till a conditional pattern base becomes empty.

Therefore, execution time and search space can be reduced.

There are also some studies as [13, 15, 17, 18, and 62] that have been proposed to

extract frequent patterns with multiple item supports thresholds based on FP-growth

method.

In [13], MIS-Tree based on FP-Tree is used to store the crucial information about

frequent itemsets. In this research, the main advantage of MIS-Tree is again in avoiding

rescanning database since it holds all information that is needed to extract frequent

patterns. They showed that using MIS-Tree is significantly better than using Apriori-like

structures as MSapriori.

A multi-support method has been proposed in [15], called MS-FP-Growth, which

is an extension version of FP-growth method. In this method, instead of using one minsup

value for all items, the minsup value is changed from one level to another. The minsup is

varied by in increasing and decreasing the minsup value for each level (K-itemsets). The

minsup value is changed as follows.

1. Increasing minsup value, the minsup value is increased from one level to another.

2. Decreasing minsup value, the minsup value is decreased for each level.

3. The last one, the minsup value is varied randomly (increasing and decreasing).

In case 1 and 2, the variation of minsup is done according to the length of the

largest itemset in the dataset. Thus, the size of the multiple support (MS) set is equal to

the length of the largest itemset in the database. This is done by fixing the first value of

the MS set and the remaining values of MS are determined by dividing or multiplying the

first value on or by the length of the current itemset. The third case is similarly done

except the first values is chosen randomly.

22

The Central Limit Theorem [21] has been utilized in [17] to identify MIS values

of items automatically. An automatic tuning MIS method is used to specify the MIS value

for each item by the following equations.

𝜇(𝑖𝑗) =
1

𝑛
∑ sup (𝑖𝑗)𝑛

𝑗=1 (3.4)

𝑀𝐼𝑆(𝑖𝑗) = 𝜇(𝑖𝑗) − √
1

𝑛
∑ (sup(𝑖𝑗) − 𝜇(𝑖𝑗))

2𝑛
𝑗=1 (3.5)

where 𝜇(𝑖𝑗) leads to the average frequency of the items i1, …, in that belongs to the same

level nodes of each category. In [17], all processes as same as CFP-growth++ except

specifying MIS of items as mentioned above.

In [18], they claimed that using only MIS does not represent precisely the

occurrence of items in the database. Hence, the characteristics of real world databases,

the significance of each item and non-binary values of the items in transactions have to

be considered to efficiently reflect the nature of each item. To achieve this, they proposed

a novel tree structure, called MHU-Tree (Multiple item supports with High Utility Tree),

which is built with a single database scan to maintain information of transactions and high

utility of items. Moreover, four pruning conditions were used to reduce the search space

and the number of generated itemsets. MHU-Growth (Multiple item supports with High

Utility Growth) was proposed also to extract high utility patterns with considering

multiple item minimum support thresholds as well as utilities of items.

In [16], another method has been proposed for mining frequent patterns with MIS

from incremental database. Since the database is frequently updated, an infrequent item

may be frequent or a frequent item may be infrequent. Thus, in this method, two

algorithms have been developed for maintenance of the tree after support tuning and

incremental update of database without rescanning the database. The MIS-Tree

maintenance method that proposed in [12] have been modified by violating the

restrictions that were used in it. These restrictions state that all the data items should be

same in the MIS-Tree after tuning since it was not possible to recover a deleted data in

the MIS-Tree without rescanning the database again. In this method, there is no need to

any kind of restrictions since the deleted_node_info table, which is used to store all

information about the deleted items, helps to recover deleted node if needed from the

MIS-Tree after support tuning by traversing the path according to the prefix and suffix

value of data item. Another method has proposed to only scan incremental update of

database (d) without the reconstruction of MIS-Tree after update of database.

23

The above tree-based methods are used to find frequent patterns with MIS by one

database scan. Then, several pruning and merging operations are used to reduce the search

space and execution time. Although these operations reduce the search space and

execution time, they consume time for rebuilding the tree because of infrequent item

pruning. They also occupy unnecessary memory space for items that will not be used in

association rule generation in the final phase.

24

CHAPTER 4

MISFP-GROWTH ALGORITHM

The proposed method, Multiple Item Support Frequent Pattern growth (MISFP-

growth), is extended version of FP-growth [3]. We utilize FP-growth with a slight

difference to mine frequent patterns with multiple support thresholds. The main

differences between our method and FP-growth is as follows.

1- FP-growth is used to create frequent itemsets based on single threshold whereas

MISFP-growth is used to mine frequent patterns with multiple support thresholds.

2- Items in FP-growth are arranged in descending order in terms of their actual

support but in MISFP-growth items are sorted in descending order in terms of

their minimum item support threshold values.

MISFP-growth reduces search space based on the minimum of minimum item

support threshold, MIN-MIS. This idea plays a big role to reduce search space since it is

used to discard unpromising items that play no role in creating frequent patterns at high

order. In property 4.1, the minimal minimum item support threshold (MIN-MIS) which

plays a big role to reduce search space is defined. Since the items that have support less

than MIN-MIS play no role to create any frequent patterns at high order, we use it to

discard any item that has support less than MIN-MIS before adding items to MISFP-Tree.

Property 4.1. Discarding property (MIN-MIS). Any item that has support less than

MIN-MIS will be discarded and it cannot be used to build MISFP-Tree.

To understand this property, we illustrate the following example.

Example 4.1. Suppose the following items, their actual support and the minimum support

of items are given as in Table 4.1.

The least minimum support threshold in this example is the value of item {h} (i.e,

3), any item that have actual support less than 3 will be discarded since no frequent

patterns can be generated from it. Thus, items {d, g, h} will be discarded.

Table 4.1. Items, their minimum item support and actual support

Item a b c d e f g h

MIS 6 6 6 5 4 3 3 3

Actual

support
6 5 5 2 4 3 2 1

25

 Notice, although some items such as {b, c, e} have support less than their

minimum item support thresholds, we keep them as they may be used to generate frequent

patterns with other items. Assume that we have itemsets {(a, c, f): 3, (b, c, f): 2}, where

the number after “:” represents the actual support of these itemsets in a given database.

Therefore, the itemset {(a, c, f): 3} is frequent as its support (i.e, 3) is not less than the

lowest minimum support threshold (i.e, 3) of items containing in this itemset. Thus,

although the item {c} has support 5 that is less than its minimum support threshold 6, it

generates frequent itemset with remaining items whose supports are greater or equal than

the least minimum item support threshold. The itemset {(b, c, f): 2} is infrequent itemset

since its support less than 3.

We build our tree by only those promising items that have support more or equal

to MIN-MIS. MISFP-growth utilizes MISFP-Tree, an extended prefix-tree, which

compresses all transactions of database in horizontal data format in memory. This enables

MISFP-growth to search for the complete set of frequent patterns without the requirement

of generating a large number of candidate itemsets. MISFP-growth requires the following

essential steps:

1. Scan database DB once to find out the actual support of each item.

2. Find the lowest minimum support threshold (MIN-MIS) among all items in

database.

3. Scan DB once again to collect items that satisfy MIN-MIS in each transaction,

sort them in the descending order of their predefined MIS and insert these items

into the MISFP-Tree. If the appropriate node of an item exists, its count is

increased by one. Otherwise, a new node is inserted in the MISFP-Tree.

4. Create MIN-MIS-frequent header table of MISFP-Tree, which is used to hold

items with support no less than MIN-MIS in descending order of MIS values of

items. It consists of item-name, MIS of item and the head of node-link that point

to item’s occurrences in the MISFP-Tree. Nodes that have the same item-name

are linked in sequence. Such node-links simplify tree traversal.

5. Build the conditional pattern base and the conditional MISFP-Tree of each suffix

item whose support is greater or equal to its predefined MIS. These two data

structures represent the knowledge extracted from MISFP-Tree.

26

As a summary, MISFP-growth algorithm involves two main steps to mine the

whole set of frequent patterns and rare patterns with MIS as follows; construction of

MISFP-Tree (steps 1-4) and mining frequent patterns from MISFP-Tree (step 5).

4.1 Construction of MISFP-Tree

We use a new tree structure, called the MISFP-Tree which is an extended version

of FP-Tree [3]. It is used to hold all the information that is needed to extract frequent

patterns with multiple item support thresholds.

Definition 4.1. Construction of MISFP-Tree. A multiple support frequent pattern tree

(MISFP-Tree) is a tree structure that can be defined as follows.

1- It composes of a root named as null, a set of item prefix subtrees as the children

of the root, and a MIN-MIS-frequent item header table which contains all items

have support more than MIN-MIS.

2- Each node in the item prefix subtree composes of three fields: item-name, count

and node link, where item-name represents which item this node presents, count

records the number of transactions represented by the portion of the branch

reaching this node, and node-link links to the next node in the MISFP-Tree

carrying the same item-name, or null if there is none.

3- Each entry in the MIN-MIS-frequent item header table consists of three fields:

item-name, item’s minimum support thresholds and head of node-link which

points to the first node in the MISFP-Tree carrying the item-name.

4- All the items in the table are sorted in descending order in terms of their minimum

item support thresholds values.

5- The MISFP-Tree and MIN-MIS-frequent header table consist only of items that

have support no less than MIN-MIS.

The process of building MISFP-Tree works as follows;

1- Scan database once to get the actual support of items.

2- Find the lowest minimal support threshold (MIN-MIS) among all items in

database.

3- All items that have support less than MIN-MIS are discarded because they play

no role to create any frequent items according to Property 1.

27

4- Items are sorted in descending order in terms of their multiple item support

thresholds.

5- To Build MISFP-Tree, we scan database once again and insert transactions into

the tree arranged according their multiple item support thresholds in descending

order.

6- After MISFP-Tree is constructed, we extract all frequent patterns from the MISFP

-Tree structure which contains the complete information that is needed to create

the whole set of frequent patterns.

Figure 4.1. Construction of MISFP-Tree

The steps involving in construction of MISFP-Tree are described in a pseudocode

as shown in Figure 4.1.

Line 1 in algorithm 4.1, makes a pass over the database to register the actual

support count of each item in database. In line 2, the least minimum support threshold

(MIN-MIS) is found. All items that have support less than MIN-MIS are discarded in line

3 whereas the line 5 and 6 are used to insert all items that have support no less than MIN-

MIS into MISFP-Tree. Line 4 is used to create MIN-MIS-frequent header table that used

to store all distinct items in the tree to facilitate tree traversal.

Input: DB: Database, MIS: minimum item support value for all items in DB.

Output: MISFP-Tree, MIN-frequent header table.

Method:

1: Scan DB once. * count the support of each item

2: Find the MIN-MIS * represents the lowest minimum item support threshold

3: Discard all items that have support less than MIN-MIS

4: Create MIN-MIS-frequent header table * in descending order of MIS

5: Create the root of a MISFP-Tree R, labeled as “null”

6: For each transaction 𝑡 ∈ 𝐷𝐵 do

 Sort items in t. * in descending order in terms of their minimum item

 * support threshold

 Call Insert_MISFP-Tree (p|P, R) * p represents the first item, P represents the remaining

 * items and R is root of tree

 End for

28

In procedure shown in Figure 4.2, Line 1 is used to insert all items in specified

transaction to the MISFP-Tree. Lines 2 and 3 are used to increment the count of the item

by 1 if it has been added before. Lines 5, 6 and 7 are used to create a new node with count

equals to 1, to link it to its parent and to link the other nodes carrying the same name via

node-link.

Figure 4.2. Insertion into MISFP-Tree

To illustrate how MISFP-growth works, the steps of its process can be best

understood using the following example.

 Example 4.2. Given a transaction database DB as shown in Table 4.2 and the

multiple item supports of items in Table 4.3, construct the MISFP-Tree with MIS in DB.

Table 4.2. Transaction database

TID Items
Items have support no less than

MIN_MIS

1 d , c , a , f a , c, f

2 g , c , a ,f , e a, c, f, g

3 b , a , c , f, h a, b, c, f

4 g , b ,f b, f, g

5 b , c b, c

1: While (P ≠ null)

2: if R has a child node M such that p.item-name = M.item-name then

3: Increase M’s count by 1.

4: else

5: Create a new node M, and let its count be 1.

6: Link its parent to R.

7: Link its node-link to the nodes with the same item-name via the node-link structure.

8: end if

9: Call Insert_MISFP-Tree (P, M)

10: End while

29

Table 4.3. MIS and actual support of items

 To build MISFP-Tree from the data in Table 4.2 with the multiple predefined

minimum support values in Table 4.3, the process of MISFP-Tree that shown in Figure

4.1 works as follows.

1. Scan database once to find out the support of items in the database DB. The Table 4.3

shows the items, MIS of items and their actual support in the consecutive rows of the

table.

2. Find out the least minimum support threshold among all minimum item support

thresholds of items: MIN-MIS = min {MIS(a), MIS(b), …, MIS(h)} = 2.

3. Compare the actual support of items with MIN-MIS value (i.e, 2) and each item has

support less than 2 is discarded since they play no role in generation of frequent

patterns. Hence, items {h, e, d} are discarded. The remaining items that have support

no less than 2 are arranged according to their minimum item support thresholds in

descending order as shown in the right column in Table 4.2.

4. Scan database once again to construct MISFP-Tree. We use items in the right column

of the Table 4.2 to build our tree. The process of inserting transactions into the tree

works as follows.

4.1 The root of MISFP-Tree is created and labeled as “null”.

4.2 For the first transaction {a, c, f}; the first branch of MSFP-Tree is created as

shown in Figure 4.3. Notice that all items in the transaction are inserted into the

tree in descending order in term of their minimum item support thresholds.

4.3 For the second transaction {a, c, f, g}; since it shares the prefix {a, c, f} with the

first transactions, the count of each node along the prefix is increased by 1, a new

node (g: 1) is generated and linked as child of (f:2) as shown in Figure 4.4.

4.4 For the third transaction { a, b, c, f } , since it shares the prefix {a} in the previous

transaction , the count of node {a} will be incremented by 1 , the new path will be

created for remaining items , a new node (b:1) is created and linked as child of

(a:3), a new node (c:1) also is generated and linked as child of (b: 1) and another

new node (f:1) is created as child of node (b:1) as shown in Figure 4.5.

4.5 By repeating the steps 4.2- 4.4, consecutive transactions are added to the tree.

Figure 4.6 shows the complete MISFP-Tree after we insert all transactions.

Item a b c d e f g h

MIS 4 4 4 3 3 2 2 2

Sup 3 3 4 1 1 2 2 1

30

We generate a MIN-MIS-frequent item header table to facilitate tree traversal.

Nodes that have the same item-name are linked in sequence by node-links.

Figure 4.3. After inserting the first transaction

Figure 4.4. After inserting the second transaction

31

Figure 4.5. After inserting the third transaction

Figure 4.6. MISFP-Tree after adding all transactions

4.2 Mining Frequent Patterns from MISFP-Tree

For the generation of frequent patterns with MIS, the proposed method, MISFP-

growth, consists of two main phases. In the first phase, a compact data structure, MISFP-

Tree, is constructed which holds crucial information about frequent patterns as we see in

the above section. In the second phase, an efficient method is proposed called MISFP-

growth algorithm to mine the whole set of frequent patterns from MISFP-Tree. This

method is a modified version of FP-growth algorithm [3].

In this method, the process of mining patterns using MISFP-Tree is almost same

as mining the FP-tree in FP-growth. The variance between the two methods is as follows.

In FP-growth mining process, the conditional pattern base and conditional FP-Tree for

32

each item are built based on a single minsup and then the frequent patterns are created if

the support of a pattern is greater than or equals to the minsup. However, MISFP-growth

method builds the conditional pattern base and conditional MISFP-Tree for each item

based on MIS of the suffix item as MIS is specified for each item. Then, a frequent pattern

is generated if pattern’s support is greater than or equals to predefined MIS of the suffix

item.

There are some important definition and properties of MISFP-Tree structure that

should be defined.

Definition 4.2 (Conditional pattern base). A pattern P is called x’s conditional pattern

base if and only if x is in P and MIS(P) = MIS(x).

Example 4.3. Consider three items x, y and z in a given database. Their MIS values are:

MIS(x) = 15%, MIS(y) = 25% and MIS(z) = 30%.

Suppose there is a pattern {x, y, z} with support = 10%.Then, pattern {x, y, z} is

an x’s conditional pattern since MIS(x) = MIS(x, y, z).

Definition 4.3. (Conditional frequent pattern). A frequent pattern P is called x’s

conditional frequent pattern if and only if x is in P and MIS(P) = MIS(x).

Example 4.4. Following Example 4.3, assume that the pattern{x, y, z} has support =

20%, then the pattern {x, y, z} is x’s conditional frequent pattern since it is frequent and

MIS(x) = MIS(x, y, z).

Property 4.2. (Node-link property). For each item x, we can get all possible x’s

conditional frequent patterns by following x’s node-link, starting from x’s head in the

MIN-MIS-frequent header table.

For example, following f’’s node-links in Figure 4.6, we can get all f’s conditional

frequent patterns from paths : { a, c, f}, {a, b, c, f} and { b, c, f}.

Property 4.3. Downward closure property with MIS. Any itemset contains an item

with support less than the lowest minimum support threshold cannot be considered as

frequent.

 Following the example 4.1, consider the itemset {a, c, g}. Since the actual

support of item {g} equals 2, the items {a, c} occur only twice with item {g}. Thus, the

support of itemset {a, c, g} can never be more than 2. According to the definition of

minimum item support thresholds, MIS of {a, c, g} = min {(MIS (a), MIS(c), MIS (g)} =

3. Therefore, itemset {a, c, g} cannot be frequent since its support always is less than 3.

MISFP-growth is similar to CFP-growth++ [14] in extracting the complete set of

frequent patterns from MISFP-Tree with the following difference.

33

Since we do not discard those items whose support greater than MIN-MIS and

less than their predefined MIS, those items can be used to generate frequent patterns with

others but from them no frequent pattern can be generated. Therefore, we avoid

generating conditional pattern base and conditional MISFP-tree for these items by

checking the item’s support of each item against its predefined MIS. Then, a frequent

pattern is generated if pattern’s support is greater than or equals to predefined MIS of the

suffix item.

The process of mining frequent patterns from MISFP-Tree works as follows.

In order to mine frequent patterns from MISFP-Tree in Figure 4.6, we start to mine

frequent patterns that can be created from item {g} since it has the least minimum

threshold among all items in the MIN-MIS-frequent table header. Following the node-

link of item {g}, there are two branches contain item {g} : { a: 3, c: 2, f: 2, g: 1} and

{b:1, f: 1, g: 1}. Considering the item {g} as suffix item, all frequent patterns generated

based on item {g} must have support no less than MIS of suffix item, here item {g} (i.e,

2). Since items are ordered in descending order in terms of their minimum item support

thresholds, the item {g} has the least minimum thresholds among all items that occur with

it in these paths. Therefore, all patterns that have support less than 2 cannot be frequent.

To construct the conditional pattern base and the conditional MISFP-Tree for item

{g}, we exclude it from two paths that it occurs with them. Hence, the conditional pattern

base of item {g} is { a: 1,c: 1, f: 1} and {b:1, f: 1}. Notice that since the counter value of

{g} in each path is 1, the counter of the nodes in these two branches are set to 1. After the

conditional pattern base of item {g} are identified, the g’s conditional MISFP-Tree is

created by adding the counts along the link and searching for patterns that exceed the

minimum support threshold value of item {g}.

In the conditional MISFP-Tree for suffix item {g}, since only the item {f }has

support no less than the minimum support threshold of item {g} (i.e., 2), the only

conditional frequent pattern {(fg:2)} is generated. Since the support count of the

remaining items {a, b, c} is 1, no frequent patterns can be created from them. Thus, we

create g’s conditional frequent pattern (fg: 2). By repeating the same process for the

remaining items in MIN-MIS-frequent header table, we find out the whole set of frequent

patterns as shown in Table 4.4.

34

Table 4.4. The complete set of frequent patterns from MISFP-Tree

Suffix

Item
Minsup Conditional Pattern Base

Conditional MISFP-

Tree

Frequent

Patterns

g 2 { a, c , f :1} , { b , f : 1} {f:2} fg:2

f 2 {a, c :2},{a, b, c :1 } ,{b :1 }
{a:2} ,{c:2} ,{b:2} ,

{ac:3}

af:2 ,cf:2

,bf:2 , acf:2

c 4 {a:2},{a,h:1} ,{b} - -

b 4 {a:1} - -

a 4 - - -

35

CHAPTER 5

PERFORMANCE EVALUATION

In this chapter, the proposed method, MISFP-growth, is compared with the recent

tree based method, CFP-growth++ [14], to discover frequent patterns under multiple item

support. To verify the effectiveness of and efficiency of the proposed method, several

experiments are conducted using five datasets with different characteristics. This chapter

is divided into five subsections where in the first, the experimental environment and five

datasets are presented. In the subsections, 5.2, 5.3 and 5.4, the experiments that are carried

out to measure execution time, memory space and scalability performance of the

algorithms respectively are explained. In subsection 5.5, computational complexity of

MISFP-growth and CFP-growth++ is analyzed. In the last subsection, discussion of

results is explained. Note that, the frequent patterns generated by the MISFP-growth

algorithm are the same as those created by CFP-growth++ algorithm in all experiments.

This indicates that the experimental results discovered by the proposed method is correct

and complete. In the last section, discussion on the performance evaluation results is

introduced.

5.1 Experimental Environment and Datasets

We conduct three experiments using different type of datasets to measure the

performance of the proposed method, MISFP-growth. All experiments are executed on

an Intl(R) core i7 -5500u CPU@ 3.40 GHz with 8GB main memory, running on Microsoft

Windows 10 operating system. All the programs are implemented with C#.

We use two kinds of datasets in our experiments; one synthetic dataset

(T10I4D100K) and four real world datasets (Kosarak, Pumsb, Retail, and Mushroom).

The synthetic dataset T10I4D100K is created with the data generator [2] which is widely

used for evaluating association rule mining algorithms. The real world datasets are taken

from the FIMI data repository page [51]. The important characteristics of the synthetic

and real word datasets are shown in Table 5.1. The experiments are carried on both of

sparse (T10I4D100K, Kosarak and Retail) and dense dataset (Pumsb and Mushroom). A

36

dense dataset is a dataset where each instance (e.g. transaction) are very similar to each

other. For example, if you consider a dataset represented by a binary matrix, a dense

dataset is the one with a lot of "1"s and few "0"s. In contrast, a sparse dataset is a dataset

where transactions are different from each other, in other words, sparse datasets have too

many distinct items or/and small average transaction length.

Table 5.1. Characteristics of datasets

Datasets Density (%) 1

Size

(MB)

of

Distinct

Items

Average

Transaction

Length

of

Transactions

Kosarak 0.002 30.5 41271 8.1 990002

Retail 0.006 4.2 16470 10.3 88126

Pumsb 3.5 16.3 2113 74 49046

Mushroom 19.3 0.56 119 23 8124

T10I4D100k 1,15 3.83 870 10.1 100000

We use the following formula for assigning MIS of items that is based on their

actual supports [8]. LS represents the user-specified least minimum item support, β ∈

[0,1] represents the parameter used to control how the minimum support values of items

should be related to their occurrence in database and 𝑓(𝑖) represents the number of

transactions that contain item i (the support of item i).

𝑀𝐼𝑆(𝑖) = {
𝑓(𝑖) ∗ 𝛽, 𝑓(𝑖) ∗ 𝛽 > 𝐿𝑆

𝐿𝑆, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5.1)

Notice, if β = 1 and 𝑓(𝑖) ≥ LS, then the minimum item support threshold values

of items are the actual support of items, 𝑓(𝑖), whereas if β = 0, then there is only one

minimum support LS. The same process of mining with single threshold is implemented

as FP-growth algorithm. In our experiments the β parameter is calculated by the following

formula: 𝛽 =
1

𝛼

According to this formula, increasing the value of α leads to decrease in MIS of

items and that increases the number of frequent patterns that are generated. A series of

experiments are carried out to measure the performance of MISFP-growth and CFP-

growth++ while the value of α is increased and value of LS is fixed as we will see in

sections 5.2, 5.3 and 5.4. For the datasets Kosarak, Retail, T10I4D100k and Mushroom,

α is varied from 1 to 10 and we set LS at 0.001, 0.001, 0.01 and 0.1 respectively. In dense

dataset, Pumsb, α is varied from 1 to 1.9 and we set LS at 0.6. Figures 5.1, 5.2, 5.3, 5.4

1 Density (%) = (Average Transaction Length / # of Distinct Items) × 100

37

and 5.5 show the number of frequent patterns, which are generated with respect to α. It

can be seen from the graphs that increasing α leads to increase in the number of frequent

patterns for all datasets. This is due to the fact that at higher values of α, MIS’ values of

items are decreased and they become closer to LS threshold.

Figure 5.1. Frequent patterns in Kosarak dataset

Figure 5.2. Frequent patterns in Retail dataset

0

100000

200000

300000

400000

500000

600000

700000

800000

1 2 3 4 5 6 7 8 9 1 0

F
re

q
u

en
t

p
a

tt
er

n
s

α

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9 1 0

F
re

q
u

en
t

p
a

tt
er

n
s

α

38

Figure 5.3. Frequent patterns in T10I4D100K dataset

Figure 5.4. Frequent patterns in Pumsb dataset

Figure 5.5. Frequent patterns in Mushroom dataset

370

372

374

376

378

380

382

384

386

1 2 3 4 5 6 7 8 9 1 0

Fr
e
q

u
en

t
p

a
tt

er
n

s

α

0

5000000

10000000

15000000

20000000

25000000

1 1 . 1 1 . 2 1 . 3 1 . 4 1 . 5 1 . 6 1 . 7 1 . 8 1 . 9

F
re

q
u

en
t

p
a

tt
er

n
s

α

0

100000

200000

300000

400000

500000

600000

700000

1 2 3 4 5 6 7 8 9 1 0

F
re

q
u

en
t

p
a

tt
er

n
s

α

39

5.2 Execution Time

The execution time performance of our proposed method, MISFP-growth and the

recent tree-based algorithm, CFP-growth++ is measured on four real world datasets

(Kosarak, Pumsb, Retail, and Mushroom) and one Synthetic dataset (T10I4D100K). In

this experiment, the values of α is changed and LS is fixed.

For the real world sparse dataset, Kosarak, we fix the LS = 0.001 and α is changed

from 1 to 10. In the Figure 5.6, it can be clearly seen that the performance of the proposed

method, MISFP-growth, is significantly better than CFP-growth++ performance in terms

of execution time. Kosarak dataset is so sparse, lots of items that are used to build MIS-

Tree have to be discarded and CFP-growth++ rebuilds the compact MIS-Tree. Therefore,

the execution time that is required by MISFP-growth is significantly less since rebuilding

phase is not required.

Figure 5.6. Execution time for Kosarak dataset

For the sparse datasets Retail, we set LS = 0.001 and the parameter 𝜶 is changed

from 1 to 10. Figure 5.7 shows the performance of proposed method at various α values

for real world dataset Retail. It can be seen that the execution time that is required by

proposed method is significantly less than CFP-growth++. This is due to the effect of the

time that is required by CFP-growth++ to re-build the MIS-Tree since there are lots of

infrequent items that have to be discarded. In the proposed MISFP-Tree, there is no need

to discard any items since it is constructed by only those items that have support no less

than MIN-MIS.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 1 0

T
im

e
(s

ec
)

𝜶

CFP-growth++ MISFP-growth

40

Figure 5.7. Execution time for Retail dataset

In the experiment on the Pumsb dataset, we fix the value of LS = 0.6 and the

parameter 𝛂 is changed from 1 to 1.9. Note that, this real dense dataset has a large number

of distinct items and the average of transaction is large as well. For example, when the

value of 𝛂 is set to 1.5 and LS = 0.6, the number of frequent itemsets discovered from the

Pumsb dataset is about 2 millions. Figure 5.8 shows the execution time of proposed

method and CFP-growth++. In this graph, we can notice that the proposed method,

MISFP-growth, is much faster than CFP-growth++. This is mainly due to that, the

MISFP-growth decreases execution time effectively by building an efficient tree, MISFP-

Tree without any unpromising items.

Figure 5.8. Execution time for Pumsb dataset

For the synthetic dataset, T10I4D100K, we set LS to 0.01, the parameter 𝛂 is

changed from 1 to 10. Figure 5.9 shows the execution time consumed by MISFP-growth

comparing with CFP-growth++. It is obvious from the graph that the proposed algorithm,

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 1 0

T
im

e
(s

ec
)

α

CFP-growth++ MISFP-growth

0

100

200

300

400

500

600

700

800

900

1000

1 1 . 1 1 . 2 1 . 3 1 . 4 1 . 5 1 . 6 1 . 7 1 . 8 1 . 9

T
im

e
(s

ec
)

α

CFP-growth++ MISFP-growth

41

MISFP-growth, consumes less time. This is due to the fact the lots of items can be

discarded from MIS-Tree by CFP-growth++. Therefore, MISFP-growth performance is

better than CFP-growth++ performance for the synthetic dataset T10I4D100K in terms

of the execution time.

Figure 5.9. Execution time for T10I4D100K dataset

For the real world dense dataset, Mushroom, the LS is set at 0.1 and α changed

from 1 to 10 as shown in the Figure 5.10. From the experimental result on this graph, it

can be noticed that the execution times are approximately the same. Although the

performance seems almost same, the performance of the proposed approach, MISFP-

growth, is still faster.

Figure 5.10. Execution time for Mushroom dataset

The reason why overall performance of the proposed method and the compared

algorithm, CFP-growth++, is almost same as follows; in dense dataset, a few items have

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 1 0

T
im

e
(s

ec
)

𝛂

CFP-growth++ MISFP-growth

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 1 0

T
im

e
(s

ec
)

α

CFP-growth++ MISFP-growth

42

to be discarded since most of them are frequent. So, there is no need to discard lots of

items in MIS-Tree.

The speed-up of the proposed method is summarized in Table 5.2. In this table,

Column 4 contains the minimum speed-up (MIN) and the maximum speed-up (MAX) of

MISFP-growth against the compared method. The speed-up is defined as the ratio

between the execution time of CFP-growth++ and MISFP-growth. Speed-up can be up to

magnitude of 8-9 for sparse dataset like Retail. On the other hand, on a dense dataset like

Mushroom, execution time of MISFP-growth can be half of CFP-growth++. As a

summary, from this table it can be seen that MISFP-growth performs much better than

CFP-growth++ for all sparse and dense datasets.

Table 5.2. The speed-up of MISFP-growth on five datasets

5.3 Memory Usage

Experiment is carried on to compare memory usage performance of MISFP-

growth and CFP-growth++ on the datasets given in Table 5.1. Similar to execution time

experiment, we change α and fix the value of LS. Figures 5.11 - 5.15 show memory

consumption of the two algorithms on these datasets.

2 Speed-up = execution time of CFP-growth++ / execution time of MISFP-growth

Datasets Density Varied (α)
Speed-up2

[MIN, MAX]

Kosarak 0.002 [1, 2, …, 10] [2.4, 2.9]

Retail 0.006 [1, 2, …, 10] [8, 9]

Pumsb 3.5 [1.1, 1.2, …, 1.9] [1.8, 6.5]

T10I4D100k 1.15 [1, 2, …, 10] [1.5, 3]

Mushroom 19.3 [1, 2, …, 10] [1, 2]

43

Figure 5.11. Memory usage for Kosarak dataset

For the real world sparse dataset, Kosarak, we fix LS = 0.001 and α is changed

from 1 to 10. Figure 5.11 shows the memory space, which is consumed by MISFP-growth

and CFP-growth++. It can be observed from the graph that the memory space increases

as α increases. This is due to the fact that increasing α leads to decrease the MIS of items.

It can be seen that at all α values, MISFP-growth performance is significantly better than

the CFP-growth++.

Figure 5.12. Memory usage for Retail dataset

For real world sparse dataset, Retail, the parameter α is changed from 1 to 10 and

we set LS as 0.001. It can be noticed from the Figure 5.12 that the memory usage appears

to be almost linear for both of MISFP-growth and CFP-growth++. This is due to the small

difference between the number of frequent patterns generated while increasing the value

of parameter α. It can be seen from graph that at all α values, MISFP-growth consumes

less memory than CFP-growth++.

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 1 0

M
em

o
ry

(M
B

)

α

CFP-growth++ MISFP-growth

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 1 0

M
em

o
ry

(M
B

)

α

CFP-growth++ MISFP-growth

44

Figure 5.13. Memory usage for Pumsb dataset

For the real world dense dataset, Pumsb, memory consumption of the proposed

approach and CFP-growth++ is shown in the Figure 5.13 under varied α. The α values

are changed from 1 to 1.9 and we fix LS = 0.6. It can be observed from the graph that at

all α values, CFP-growth++ consumes a huge amount of memory whereas MISFP-growth

consumes less memory. Although the number of frequent patterns generated becomes

larger as the number of α increases as shown in Figure 5.4, MISFP-growth consumes

less memory than CFP-growth++. This is due to the effect of larger size MIS-Tree of

CFP-growth++ algorithm since it contains unnecessary items.

Figure 5.14. Memory usage for T10I4D100K dataset

For the synthetic dataset, T10I4D100K, Figure 5.14 shows the performance of the

two algorithms as the values of α increases from 1 to 10 and LS = 0.01. It can be noticed

from the graph that the memory consumption of the two algorithms appears to be linear.

This is also because of the number of frequent patterns, which are generated with MIS

0

50

100

150

200

250

300

350

400

1 1 . 1 1 . 2 1 . 3 1 . 4 1 . 5 1 . 6 1 . 7 1 . 8 1 . 9

M
em

o
ry

(M
B

)

α

CFP-growth++ MISFP-growth

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 1 0

M
em

o
ry

(M
B

)

α

CFP-growth++ MISFP-growth

45

while increasing the value of α, are approximately constant as shown in Figure 5.3. As it

can be observed, MISFP-growth is still better than CFP-growth++ in terms of memory

consumption on the synthetic dataset, T10I4D100K.

Figure 5.15. Memory usage for Mushroom dataset.

For the real world dense dataset, Mushroom, memory consumption of MISFP-

growth and CFP-growth++ is shown in the Figures 5.15 under varied α. The α values are

changed from 1 to 10 and LS = 0.1. It can be observed from the graph that the memory

usage of both algorithms increases with increasing α. It can be seen from the graph that

at all α values, the difference in the memory consumption of MISFP-growth and CFP-

growth++ is small. This is because a few items have to be discarded in very dense

datasets.

Table 5.3 shows the memory gain of the proposed method compared to CFP-

growth++ under varied α. Column 4 in this table shows the minimum memory gain (MIN)

and the maximum memory gain (MAX) of MISFP-growth against the compared method.

Memory gain is defined as the percent of the difference between the peak memory

consumed CFP-growth++ and MISFP-growth divided by the peak memory consumed by

CFP-growth++. It can be noticed that MISFP-growth consumes less memory in all cases

except in Mushroom dataset where the memory consumption of the proposed method is

slightly less than memory consumption of the compared method. For a quite dense dataset

like Pumsb, memory gain can reach up to 90%, on the other hand for a very dense dataset

like Mushroom, memory gain can be 6% only.

26

27

28

29

30

31

32

33

34

35

1 2 3 4 5 6 7 8 9 1 0

M
em

o
ry

(M
B

)

α

CFP-growth++ MISFP-growth

46

Table 5.3. Memory gain of the proposed method on five datasets

5.4 Scalability

In this section, we compare the performance of MISFP-growth and CFP-

growth++ in terms of the size of datasets. Several measurements are carried on to find out

how MISFP-growth scales up as the number of transactions increases in the datasets. In

fact the aim of these measurements is to show how the proposed data structure scales up

with the increasing number of transactions. To verify the performance of the two

algorithms, four real and one synthetic datasets, which are shown in Table 5.1, are used

in the evaluation of mining frequent patterns under MIS while varying the size of datasets.

The datasets are decomposed into 10 even sections with approximately 10% of the dataset

size. We measure the execution time for each part after aggregating it with previous parts.

We set the parameter α to 4 as it is stated in [8] that this value is common in many real

world applications.

For Kosarak dataset, we set LS = 0.001. Figure 5.16 shows the performance of

two algorithms with respect to the size of Kosarak dataset. It can be observed from the

graph that the execution time increases as the size of dataset increases. From the graph,

we can see that MISFP-growth scales better than CFP-growth++ as the number of

transactions is increased.

3 Memory gain = ((Memory consumption of CFP-growth++ - Memory consumption of MISFP-growth) /

Memory consumption of CFP-growth++) * 100

Datasets Density Varied (α)
Memory Gain3 (%)

[MIN, MAX]

Kosarak 0.002 [1, 2, …, 10] [30, 41]

Retail 0.006 [1, 2, …, 10] [22, 25]

Pumsb 3.5 [1.1, 1.2, …, 1.9] [81, 90]

T10I4D100k 1.15 [1, 2, …, 10] [19, 20]

Mushroom 19.3 [1, 2, …, 10] [3, 6]

47

Figure 5.16. Scalability for Kosarak dataset

For the Retail dataset, the parameter LS is set at 0.001. Figure 5.17 illustrates the

effect of dataset size on the performance of our proposed method, MISFP-growth, and

CFP-growth++. As it can be noticed, MISFP-growth scales much better than CFP-

growth++. This is because our proposed data structure is efficiently constructed without

any useless items.

Figure 5.17. Scalability for Retail dataset

Similar results are also obtained for Pumsb dataset with LS = 0.7 as shown in the

Figure 5.18. Figure shows that the execution time sharply increases with the increasing

dataset size in CFP-growth++, while MISFP-growth seems unaffected. We can see that

with Pumsb dataset, MISFP-growth is substantially much better than CFP-growth++ as

the size of dataset increases.

0

10

20

30

40

50

60

70

80

90

100

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

T
im

e
(s

ec
)

Dataset size (%)

CFP-growth++ MISFP-growth

0

5

10

15

20

25

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

T
im

e
(s

ec
)

Dataset size (%)

CFP-growth++ MISFP-growth

48

Figure 5.18. Scalability for Pumsb dataset

For the synthetic dataset, T10I4D100K, the parameter LS is set to 0.01. Similar

to real world datasets, our proposed method is much better than CFP-growth++ under

varied dataset size as shown in Figure 5.19 in terms of scalability.

Figure 5.19. Scalability for T10I4D100K dataset.

For the very dense dataset, Mushroom, Figure 5.20 illustrates the performance of

two methods under varied datasets size with LS = 0.1. As it can be seen, the execution

time decreases with the increasing dataset size in the two methods. This is due to the

effects of the decreased paths, which is created while constructing the tree in both

methods. The performance of two methods is almost same since most of items in dense

datasets are frequent and there is no need for pruning and merging operation in MIS-Tree.

It can be observed from the graph that our method is slightly better than CFP-growth++.

0

100

200

300

400

500

600

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

T
im

e
(s

ec
)

Dataset size (%)

CFP-growth++ MISFP-growth

0

1

2

3

4

5

6

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

T
im

e
(s

ec
)

Dataset size (%)

CFP-growth++ MISFP-growth

49

Figure 5.20. Scalability for Mushroom dataset

Table 5.4 shows the speed-up and the overall performance of the proposed method

on all datasets under varied dataset size. Column 4 in this table stands for the minimum

speed-up (MIN) and the maximum speed-up (MAX) of MISFP-growth against the

compared method. As it can be observed from the table that MISFP-growth speeds up

much better than CFP-growth++ on sparse datasets; it can be up to magnitude of 28.9. On

the other hand we see relatively less speed-up between the ranges of 1 to 2 for dense

datasets.

Table 5.4. The speed-up of MISFP-growth on five datasets

Datasets Density Dataset size (%)
Speed-up4

[MIN, MAX]

Kosarak 0.002 [10, 20, …, 100] [2, 4.2]

Retail 0.006 [10, 20, …, 100] [6.7, 18]

Pumsb 3.5 [10, 20, …, 100] [1.5, 28.9]

T10I4D100k 1.15 [10, 20, …, 100] [1.5, 4.5]

Mushroom 19.3 [10, 20, …, 100] [1, 2]

5.5 Computational complexity

In this subsection, computational complexity of MISFP-growth and CFP-

growth++ is analyzed. In complexity analysis we only care about what happens to the

instruction-counting function as the algorithm input (n) grows large. Therefore, we drop

4 Speed-up = execution time of CFP-growth++ / execution time of MISFP-growth

0

2

4

6

8

10

12

14

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

T
im

e
(s

ec
)

Dataset size (%)

CFP-growth++ MISFP-growth

50

all the terms that grow slowly such as (assigning value to a variable, comparing two

values, etc.) and only keep the ones that grow fast as n becomes larger like (loops,

searching for an item in an array, etc).

5.5.1 Computational complexity of MISFP-Tree

Computational cost of building MISFP-Tree is bounded by the number of

transactions in a dataset. MISFP-Tree involves the following main steps to build the tree

as described in a pseudocode in Figure 4.1:

 Scanning database once to find the support of items. This involves O(|DB|) time,

where |DB| is the number of transactions.

 In line 2, a loop has to run to find MIN-MIS. This requires O(|MIS|), where MIS

stands for the number of MISs.

 Passing over the database once again to add all transactions to the tree. The order

cost is O(|DB|) time.

 An inner loop iteration runs to add the items of a transaction to MISFP-Tree in

Figure 4.2. This order is O (average transaction length).

The computational complexity of building MISFP-Tree is as follows:

T(MISFP-Tree) = O(|MIS|) + O (|DB|) + O (|DB|) * average transaction length). (5.2)

5.5.2 Computational complexity of MIS-Tree

The computational complexity of building initial MIS-Tree is similar to MISFP-

Tree. Thus, analysis of a pseudocode of the initial MIS-Tree as shown in Figure 5.21

would be as follwos.

 A loop in line 4 iterates to add all transactions to the MIS-Tree. This needs O(|DB|)

time.

 For each transaction, an inner loop repeats in line 1 in the called procedure,

Insert_MIS-Tree, in Figure 5.22 to add the items of this transaction to the tree.

This order is O(average transaction length).

 A loop repeats to fınd LMS in line 9. This operation costs O(n), where n stands

for the number of MISs.

51

Thus, this order is O ((|DB|) * average transaction length) which is similar to

building MISFP-Tree.

Figure 5.21. Construction of initial MIS-Tree [14]

Figure 5.22. Insertion into MIS-Tree[14]

Input: DB, MIS

Output: Initial MIS-Tree, LMS

1: Insert items into the MIS-list with S = 0

2: Create the root of a MIS-Tree, Tree, and label it as “null”.

3: For each transaction t ∈ DB do

4: Sort all the items in t in L order.

5: Count the support values of any item i, denoted as S(i) in t.

6: Let the sorted items in t be [p|P], where p is the first element and P is the remaining list.

7: Call Insert_MIS-Tree([p|P],T).

8: End for

9: Find LMS * search for the lowest minimum support.

Insert_MIS-Tree([p|P],T)

1: While (P ≠ null)

2: If T has a child node N such that p.item-name = N.item-name then

3: Increment N’s count by 1.

4: Else

5: Create a new node N, and let its count be 1.

6: Let its parent link be linked to T.

7: Let its node-link be linked to the nodes with the same item-name via the node-link structure.

8: End if

9: Call Insert_MIS-Tree([P,N).

10: End while

52

5.5.3 Computational complexity of compact MIS-Tree

The cost of the additional approaches which involving in the CFP-growth++ to

reconstruct MIS-Tree is analyzed as follows.

Pruning unpromising items:

The complexity cost of pseudocode of pruning approach in Figure 5.23 is

analyzed. The computational cost for this process depends on the following.

 A loop iterates to search for each useless item, m, of the header table in line 1.

This order is O(m) time.

 An inner loop repeats to traverse through paths in MIS-Tree for each useless item,

m, in the header table. This depends on the depth of the tree by following the

node-link of the item m as it can be seen in line 4 in Figure 5.23. Maximum depth

of the tree is upper-bounded by the number of transactions in a dataset, N. Thus,

this operation requires O(N) time.

T(Pruning items) = O(m*N), (5.3)

where m stands for number of items in the header table and N represents the

maximum depth of the tree.

Merging child nodes:

To merge the child nodes that carry the same name and linked to the same parent

node, pairs of child nodes are merged to create a new node with support equals to the

summation support of merged nodes. Analyzing the computational cost of pseudocode of

merging approach in Figure 5.24 works as follows.

 For each item in the header table, N, a loop iterates in line 1 in Figure 5.24, to

search for any node has tow child nodes carry the same name to be merged. This

iteration costs O(N) time.

 An inner loop also runs in line 4 to search for nodes that have same name, N, via

the node-link of N in the tree. In the worst-case, this approach requires O(N) time.

The computational complexity of merging approach depends on searching of

paths in MIS-Tree for each item of the header table. This also depends on the depth of the

tree, N. Thus, the order is O(number of items in header table * maximum depth of MIS-

Tree) = O(N*N). In the worst-case scenario, the number of paths that are traversed, for

each item in the header table, equals to number of items in the header table and each path

53

in the tree has a unique transaction. In this case, the computational cost of merging

approach requires O(N2), where N represents the number of transactions.

 Thus, computational cost of merging approach in CFP-growth++ is O(N2) time

which is very high complexity that consumes a lot of time.

T(compact MIS-Tree) = O(m*N) + O(N2) = O(N2). (5.4)

As a result, construction of MISFP-Tree in MISFP-growth runs in linear time as

its time execution is directly proportional to the size of dataset whereas a compact MIS-

Tree in CFP-growth++ runs in quadratic time since its time execution is proportional to

the square of the size of dataset.

Figure 5.23. MIS pruning operation [14]

Figure 5.24. MIS merging operation[14]

MISpruning(Tree T, Header table m, LMS)

1: While (mi ≠ null) * for each item in the header table

2: If (S[mi] < LMS) then * if the support of an item mi less than LMS

3: Delete the item mi in header table.

4: For each node in the node-link of mi in T do

5: If the node is a leaf then

6: Remove the node directly.

7: Else

8: Remove the node and then its parent node will be linked to its child node(s).

9: End if

10: End for

11: End if

12: End while

MISMerging(Tree T)

1: For each item n in the HeaderTable do

2: For each node in the node-link of n in T do

3: If there are child nodes with the same item-name then then

3: Merge the nodes and set the count as the summation of these nodes’ counts.

4: End if

5: End for

6: End for

54

Therefore, computational cost of MISFP-growth and CFP-growth++ can be

affected by the following factors;

1- The lowest support threshold (LS):

Decreasing LS often leads to increase the number of frequent patterns. This results

in an adverse effect on the computational complexity of CFP-growth++ and MISFP-

growth because a bigger tree must be generated with lower LS. Therefore, the algorithms

need to make more traversals through the tree to create frequent patterns. On the other

hand, increasing LS leads to decrease the number of frequent patterns. Although the

frequent patterns decreased which result in decreasing the computation cost in MISFP-

growth as it is expected, the computational time is increased in CFP-growth++. This is

because CFP-growth++ requires an exhaustive search through the tree to employ pruning

and merging operations that are used to reconstruct the tree. Thus, its time cost rises with

increasing LS.

2- Number of items:

More computational time will be needed in case the number of useless items

grows large in CFP-growth++. This is due to the additional time that is required to prune

those unpromising items from the tree. In contrast, MISFP-growth does not consume any

time to rebuild the tree as it is built with promising items.

3- The size of dataset:

Increasing the size of a dataset has an adverse effect on the computational cost for

both of MISFP-growth and CFP-growth++. If the number of useless items increases, more

computation time will be needed in CFP-growth++ as the number of MIS-Tree traversals

that are performed during reconstructing MIS-Tree is increased.

5.6 Discussion on the Performance Evaluation Results

We carry out tests with our proposed method and CFP-growth++ and compare

time, memory usage and scalability performances under varied α and the size of datasets.

Tests are carried on both real world and synthetic datasets with different characteristics

as density, size, distinct items, average transaction length and number of transactions.

55

For the execution time, the performance of two algorithms on five datasets with

various α is measured. The experimental results reveal that MISFP-growth is substantially

faster than CFP-growth++ for all datasets except in the very dense dataset, Mushroom,

where the performance of two methods is almost same. For the sparse datasets, Kosarak,

Retail and T10I4D100K, MISFP-growth achieves speed-up from 2.9 to 9 times over CFP-

growth++. For the quite dense dataset, Pumsb, MISFP-growth provides speed-up of 6.5.

In very dense dataset, Mushroom, MISFP-growth achieves speed-up between 1 and 2.

This is due to the fact that there is few items that have to be discarded in this dataset

during rebuilding MIS-Tree in very dense datasets. In general, MISFP-growth is about 3

to 9 orders of magnitude faster than CFP-growth++. MISFP-growth effectively decreases

consumption of time since it trims the search space by utilizing only the useful items that

have supports greater than or equal to MIN-MIS during construction of MISFP-Tree.

Furthermore, the proposed method avoids pruning and merging techniques which often

greatly reduces the cost of tree rebuilding. In addition, in the mining process we avoid

generating patterns from unpromising items by skipping building conditional pattern base

and conditional MISFP-Tree for items whose support is not greater than or equals its

predefined MIS. In contrast, the MIS-Tree is constructed with all items then pruning and

merging techniques are used to rebuild the tree.

We evaluate memory usage of both algorithms on the same datasets as well.

MISFP-growth consumes much less memory than CFP-growth++ for all five datasets.

We can observe that the memory consumption of MISFP-growth is much less than CFP-

growth++ on both sparse and dense datasets. For Kosarak, retail, Pumsb, T10I4D100k

and Mushroom datasets, MISFP-growth respectively consumes 41%, 25%, 90%, 20%

and 6% times less memory than CFP-growth++. MISFP-growth is so memory efficient

since it uses only promising items from a database to construct the tree, which does not

requires to maintain much information in memory for useless items. However, CFP-

growth++ builds both of tree and the header table by all items in the database, which

requires additional memory.

Finally, a series of tests are also conducted to reveal how the two methods scale

up as the size of the datasets increases. The measurements are done on the same five

datasets. MISFP-growth algorithm scales much better than the CFP-growth++ algorithm

with respect to increasing the size of datasets. For the sparse datasets, MISFP-growth

achieves speed-up of 4.2, 18 and 4.5 times faster than CFP-growth++ for Kosarak, Retail

and T10I4D100k, respectively. For quite dense dataset, Pumsb, MISFP-growth provides

56

speed-up of 28.9 over CFP-growth++. In very dense dataset, Mushroom, MISFP-growth

provides speed-up of 2. This is due to the effect of increasing the number of useless items

that CFP-growth++ must process by applying pruning and merging operations.

Discarding infrequent items by searching through the tree becomes very expensive in

MIS-Tree. It can also be seen that the performance of two methods while the size of

transactions increase is almost same in very dense dataset, Mushroom, as few useless

items are discarded and most of items are frequent while mining with MIS. In general,

the experimental results demonstrate significant scale up by MISFP-growth and its

performance continues to improve with increasing size of datasets.

As a result, experimental results show that MISFP-growth significantly

outperforms CFP-growth++ on both real and synthetic datasets in terms of execution

time, memory usage and scalability. The percent of reduction in both of execution time

and memory are quite high for the sparse datasets but not quite significant for very dense

datasets (like Mushroom). On the sparse datasets, the generated trees are much bigger

than those on dense datasets. Hence, the bigger is the tree, the more is time cost. Thus,

MISFP-growth is more efficient than CFP-growth++ on the whole sparse datasets. With

very dense datasets, MISFP-growth and CFP-growth++ work almost same. This is quite

expected, as in the case of very dense dataset, most of items are frequent and only few

pruning techniques are needed which is the main drawback of CFP-growth++ against

MISFP-growth algorithm. For example, in the case of Mushroom dataset, we can observe

that the performance efficiency of two compared methods is almost same.

57

CHAPTER 6

CONCLUSION AND FUTURE WORK

Traditional methods find frequent patterns with a single support threshold. These

methods implicitly assume that all items in the database are of the same nature or have

similar frequencies in the database. However, this assumption is not valid in the real world

applications since some items appear very frequently while others rarely appear in the

database. Furthermore, setting an appropriate single minsup is a crucial issue since we

will encounter the following problem. By mining with high minsup, we cannot find

interesting patterns involving infrequent items. To produce these patterns, we should set

minsup very low. In this case, too many meaningless patterns will be generated. To avoid

this problem, it is necessary to extract useful patterns involving rare items and reflect the

nature of each item in database. The existing methods have been extended to allow the

user to specify minsup value for each item. By this way, each item in the database can

have a minimum item support specified by the user. Therefore, different MIS values for

different items enable us to extract different patterns.

Several methods have been proposed to mine frequent patterns with MIS.

Recently, a tree-based methods have been proposed to extract frequent patterns under

multiple thresholds. However, these methods consume a huge amount of memory and

time since they carry out exhaustive search to discard infrequent items and rebuild the

tree.

In this thesis, we propose an improved method to extract interesting patterns

involving both of frequent and rare patterns. To proficiently discover interesting patterns,

this method dynamically assigns appropriate minimum item support threshold to each

item instead of using a single minimum support threshold. We propose MISFP-Tree to

hold all necessary information that are needed in mining process. This tree is efficiently

constructed with only useful items that will potentially play role to generate frequent and

rare patterns. Thus, reconstructing the tree is not needed since our proposed tree, MISFP-

Tree, is built without any useless items. In this thesis also, MISFP-growth algorithm has

been proposed to efficiently mine interesting patterns from MISFP-Tree under multiple

support thresholds.

58

To show the effectiveness of the proposed method, we evaluate its performance

by running experiments on both sparse and dense datasets. The experimental results

reveal that our proposed method outperforms the recent tree-based, CFP-growth++

method, almost in all cases. The results indicate that MISFP-growth is better than CFP-

growth++ in term of both runtime and memory consumption. A set of experiments also

confirm that MISFP-growth scales up better than CFP-growth++ as the size of the

datasets is increased in both of real and synthetic datasets.

 Up to now, a few methods have been proposed to mine frequent patterns with

MIS. We can sense that there is much more to do in this field. For upcoming studies, the

interesting patterns can be discovered from rare items as frequent patterns indicate the

known and the expected information while rare patterns represent unexpected or

previously unknown knowledge, which is more interesting to users. Because of this, our

method can be extended to find meaningful rare patterns with multiple thresholds without

generating a huge number of frequent patterns. In addition, MISFP-growth algorithm can

be extended to mine frequent patterns under multiple support thresholds in incremental

databases.

59

REFERENCES

[1] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami, Mining association rules

between sets of items in large databases. ACM SIGMOD Record 22, no. 2, 1993,

p.207-216.

[2] Rakesh Agrawal, and Ramakrishnan Srikant, Fast algorithms for mining

association rules. In Proc. 20th int. conf. very large data bases, VLDB, vol. 1215,

1994, p.487-499.

[3] Han, Jiawei, Jian Pei, and Yiwen Yin, Mining frequent patterns without candidate

generation. In ACM Sigmod Record, vol. 29, no. 2, 2000, p.1-12.

[4] Liu, Yu-Cheng, Chun-Pei Cheng, and Vincent S. Tseng, Discovering relational-

based association rules with multiple minimum supports on microarray datasets.

Bioinformatics 27, no. 22, 2011, p.3142-3148.

[5] Grahne, Gosta, and Jianfei Zhu, Fast algorithms for frequent itemset mining using

fp-trees. Knowledge and Data Engineering, IEEE Transactions on 17, no. 10,

2005, p.1347-1362.

[6] Jalan Shalini, Anurag Srivastava, and G. K. Sharma, A non-recursive approach

for FP-tree based frequent pattern generation. In Research and Development

(SCOReD), IEEE Student Conference on, 2009, p. 160-163.

[7] Wei Zhang, Hongzhi Liao, and Na Zhao, Research on the FP growth algorithm

about association rule mining. In Business and Information Management, 2008.

ISBIM'08. International Seminar on, vol. 1, 2008, p. 315-318.

[8] Liu Bing, Wynne Hsu, and Yiming Ma, Mining association rules with multiple

minimum supports. In Proceedings of the fifth ACM SIGKDD international

conference on Knowledge discovery and data mining, 1999, p.337-341.

[9] Tiantian Xu, and Xiangjun Dong, Mining frequent patterns with multiple

minimum supports using basic Apriori. In Natural Computation (ICNC), 2013

Ninth International Conference on,2013, p. 957-961.

[10] Kiran, R. Uday, and P. Krishna Re, An improved multiple minimum support

based approach to mine rare association rules. In Computational Intelligence and

Data Mining, 2009. CIDM'09. IEEE Symposium on, 2009, p. 340-347.

[11] Tseng, Ming-Cheng, and Wen-Yang Lin, Maintenance of generalized association

rules with multiple minimum supports. Intelligent Data Analysis 8, no. 4, 2004,

p.417-436.

[12] Hu, Ya-Han, and Yen-Liang Chen, Mining association rules with multiple

minimum supports: a new mining algorithm and a support tuning mechanism.

Decision Support Systems 42.1, 2006, p.1-24.

60

[13] Sinthuja, M., S. Sheeba Rachel, and G. Janani, MIS-Tree Algorithm for Mining

Association Rules with Multiple Minimum Supports. Bonfring International

Journal of Data Mining 1.Special Issue Inaugural Special Issue, 2011, p.1-5.

[14] R. Uday Kiran, and P. Krishna Reddy, Novel techniques to reduce search space

in multiple minimum supports-based frequent pattern mining algorithms.

In Proceedings of the 14th International Conference on Extending Database

Technology, 2011, p.11-20.

[15] Taktak, Wiem, and Yahya Slimani, MS-FP-Growth: A multi-support Vrsion of

FP-Growth Agorithm. International Journal of Hybrid Information Technology 7,

no. 3, 2014, p.155-166.

[16] Hoque, F. A., M. Debnath, N. Easmin, and K. Rashed, Frequent pattern mining

for multiple minimum supports with support tuning and tree maintenance on

incremental database. Research Journal of Information Technology 3, no. 2, 2011.

p.79-90.

[17] Chen, Yi-Chun, Grace Lin, Ya-Hui Chan, and Meng-Jung Shih, Mining Frequent

Patterns with Multiple Item Support Thresholds in Tourism Information

Databases. In Technologies and Applications of Artificial Intelligence, Springer

International Publishing, 2014, p.89-98.

[18] Ryang, Heungmo, Unil Yun, and Keun Ho Ryu, Discovering high utility itemsets

with multiple minimum supports. Intelligent data analysis 18, no. 6, 2014,

p.1027-1047.

[19] Lee, Yeong-Chyi, Tzung-Pei Hong, and Wen-Yang Lin, Mining association rules

with multiple minimum supports using maximum constraints. International

Journal of Approximate Reasoning 40, no. 1, 2005, p.44-54.

[20] Han, Jiawei, and Yongjian Fu, Discovery of multiple-level association rules from

large databases. In VLDB, vol. 95, 1995, p.420-431.

[21] Rice, John A, Mathematical statistics and data analysis, 1995.

[22] Bansal, Anubha, Neelima Baghel, and Shruti Tiwari, An novel approach to mine

rare association rules based on multiple minimum support approach. International

Journal of Advanced Electrical and Electronics Engineering,(IJAEEE) 10, p.75-

80.

[23] Szathmary, Laszlo, Amedeo Napoli, and Petko Valtchev, Towards rare itemset

mining. In Tools with Artificial Intelligence, 2007. ICTAI 2007. 19th IEEE

International Conference on, vol. 1, 2007, p.305-312.

[24] Sadhasivam, Kanimozhi SC, and Tamilarasi Angamuthu, Mining rare itemset

with automated support thresholds. Journal of Computer Science 7, no. 3, 2011,

p.394.

[25] Deng, Zhi-Hong, and Sheng-Long Lv, Fast mining frequent itemsets using

Nodesets. Expert Systems with Applications 41, no. 10, 2014, p.4505-4512.

61

[26] Zhang, Wei, Hongzhi Liao, and Na Zhao, Research on the FP growth algorithm

about association rule mining. In Business and Information Management, 2008.

ISBIM'08. International Seminar on, vol. 1, 2008, p. 315-318.

[27] Deng, ZhiHong, ZhongHui Wang, and JiaJian Jiang, A new algorithm for fast

mining frequent itemsets using N-lists. Science China Information Sciences 55,

no. 9, 2012, p.2008-2030.

[28] Liu, Li, Eric Li, Yimin Zhang, and Zhizhong Tang, Optimization of frequent

itemset mining on multiple-core processor. In Proceedings of the 33rd

international conference on Very large data bases, 2007, p.1275-1285.

[29] Olson, David L., and Dursun Delen. Advanced data mining techniques. Springer

Science & Business Media, 2008.

[30] Swartz, Nikki. IBM, Mayo Clinic to mine medical data. Information Management

Journal 38.6, 2004, p.8-9.

[31] Roche, T. G, Expect increased adoption rates of certain types of EHRs,

EMRs. Managed Healthcare Executive 16.4, 2006, p.58.

[32] Havenstein, Heather, IT efforts to help determine election successes, failures:

Dems deploy data tools; GOP expands microtargeting use. Computerworld 40,

no. 45, 2006, p.1.

[33] Weng, Sung-Shun, Ben-Jeng Wang, Ruey-Kei Chiu, and Sheng-Hung Su, The

study and verification of mathematical modeling for customer purchasing

behavior. Journal of Computer Information Systems 47, no. 2, 2006, p.46-57.

[34] Rejesus, Roderick M., Bertis B. Little, and Ashley C. Lovell, Using data mining

to detect crop insurance fraud: is there a role for social scientists. Journal of

Financial Crime 12, no. 1, 2005, p.24-32.

[35] Aggarwal, Charu C., and Jiawei Han, eds, Frequent pattern mining. Springer,

2014.

[36] Aggarwal, Charu C., and Chandan K. Reddy, eds, Data clustering: algorithms and

applications. CRC Press, 2013.

[37] Jain, Anil K, Data clustering: 50 years beyond K-means. Pattern recognition

letters 31, no. 8, 2010, p.651-666.

[38] Ma, Bing Liu Wynne Hsu Yiming, Integrating classification and association rule

mining. In Proceedings of the fourth international conference on knowledge

discovery and data mining. 1998.

[39] Tan, Pang-Ning, M. Steinbach, and V. Kumar, Chapter 6. Association analysis:

basic concepts and algorithms. Introduction to Data Mining, 2005.

[40] Zaki, Mohammed J, Scalable algorithms for association mining. Knowledge and

Data Engineering, IEEE Transactions on 12, no. 3, 2000, p.372-390.

62

[41] Shenoy, Pradeep, Jayant R. Haritsa, S. Sudarshan, Gaurav Bhalotia, Mayank

Bawa, and Devavrat Shah, Turbo-charging vertical mining of large databases.

In ACM SIGMOD Record, vol. 29, no. 2, 2000, p.22-33.

[42] Zaki, Mohammed Javeed, Srinivasan Parthasarathy, Mitsunori Ogihara, and Wei

Li, New Algorithms for Fast Discovery of Association Rules. In KDD, vol. 97,

1997, p.283-286.

[43] Stanišić, Predrag, and Savo Tomović, Apriori multiple algorithm for mining

association rules. Information Technology And Control 37, no. 4, 2015.

[44] Yao, Jun, and Yi Lin, Analysis of Aprior algorithm in mining association rules.

In Applied Mechanics and Materials, vol. 411, 2013, p.1072-1075.

[45] Jin, Kan, An efficient algorithm for association mining, In Knowledge Acquisition

and Modeling, 2009. KAM'09. Second International Symposium on, vol. 1, 2009,

p.291-295.

[46] Agarwal, Ramesh C., Charu C. Aggarwal, and V. V. V. Prasad, Depth first

generation of long patterns. In Proceedings of the sixth ACM SIGKDD

international conference on Knowledge discovery and data mining, 2000, p.108-

118.

[47] Tsang, Sidney, Yun Sing Koh, and Gillian Dobbie, Finding interesting rare

association rules using rare pattern tree. In Transactions on Large-Scale Data-and

Knowledge-Centered Systems VIII, 2013, p.157-173.

[48] Bhatt, Urvi Y., and Pratik A. Patel, An effective approach to mine rare items using

Maximum Constraint. In Intelligent Systems and Control (ISCO), 2015 IEEE 9th

International Conference on, 2015, p.1-6.

[49] Ahmed, Chowdhury Farhan, Syed Khairuzzaman Tanbeer, Byeong-Soo Jeong,

Young-Koo Lee, and Ho-Jin Choi, Single-pass incremental and interactive mining

for weighted frequent patterns, Expert Systems with Applications 39, no. 9, 2012,

p.7976-7994.

[50] Frequent Itemset Mining Implementations Repository http://fimi.ua.ac.be/data/

[51] Burdick, Douglas, Manuel Calimlim, Jason Flannick, Johannes Gehrke, and Tomi

Yiu, Data Mining-MAFIA: A Maximal Frequent Itemset Algorithm. IEEE

Transactions on Knowledge and Data Engineering 17, no. 11, 2005, p.1490-

1504.

[52] Pei, Jian, Jiawei Han, Hongjun Lu, Shojiro Nishio, Shiwei Tang, and Dongqing

Yang. H-mine: Hyper-structure mining of frequent patterns in large databases.

In Data Mining, 2001. ICDM 2001, Proceedings IEEE International Conference

on, 2001, p.441-448.

[53] Pavón, Judith, Sidney Viana, and Santiago Gómez. Matrix Apriori: Speeding Up

the Search for Frequent Patterns. In Databases and Applications, 2006, p.75-82.

63

[54] Le, Thi, Thi Nguyen, and Tae Chong Chung, BitApriori: an apriori-based frequent

itemsets mining using bit streams. In Information Science and Applications

(ICISA), 2010 International Conference on, 2010, p.1-6.

[55] Ghanem, Ahmed M., and Hamed M. Sallam, Hybrid search based association rule

mining. In Proceedings of 2011 IEEE Pacific Rim Conference on

Communications, Computers and Signal Processing, 2011.

[56] Park, Jong Soo, Ming-Syan Chen, and Philip S. Yu, Using a hash-based method

with transaction trimming for mining association rules. Knowledge and Data

Engineering, IEEE Transactions on 9, no. 5, 1997, p.813-825.

[57] Brin, Sergey, Rajeev Motwani, Jeffrey D. Ullman, and Shalom Tsur, Dynamic

itemset counting and implication rules for market basket data.InACM SIGMOD

Record, vol. 26, no. 2, 1997, p.255-264.

[58] Grahne, Gösta, and Jianfei Zhu, Efficiently using prefix-trees in mining frequent

itemsets. In FIMI, vol. 90, 2003.

[59] Schmidt-Thieme, Lars, Algorithmic Features of Eclat, FIMI. 2004.

[60] Moriwal, R, FP-growth tree for large and dynamic data set and improve

efficiency. J. Inform. Comput. Sci 9, 2014, p.83-90.

[61] Sadeq darrab, Belgin Ergenç, Frequent pattern mining under multiple support

thresholds. WSEAS transactions on computer research, ISSN / E-ISSN: 1991-

8755 / 2415-1521, vol. 4, 2016, p. 1-10.

http://wseas.org/wseas/cms.action?id=13372
http://wseas.org/wseas/cms.action?id=13372
http://www.wseas.org/wseas/cms.action?id=13375

