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Prof. Dr. Oğuz Gülseren
Department of Physics, Bilkent University

Assoc. Prof. Dr. Cem Sevik
Department of Mechanical Engineering, Anadolu University

29 July 2016

Prof. Dr. Ramazan Tuğrul Senger
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İzmir Institute of Technology
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whose sincerity, help, motivation and encouragement I am very indebt to. I also would

like thank Assoc. Prof. Dr. Hasan Şahin for his priceless and endless contributions, sug-

gestions and support. I am sincerely grateful to my groupmates Cihan Bacaksız, Fadıl
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ABSTRACT

MODELLING ELECTRONIC AND STRUCTURAL PROPERTIES OF
GRAPHENE AND TRANSITION METAL CHALCOGENIDE

NANOSTRUCTURES

The purpose of this thesis is to investigate the electronic and structural properties

of one- and two-dimensional materials such as graphene, graphene-like transition metal

chalcogenides by using density functional theory. The single-atom thickness of graphene

sheet is a novel material and attracts great interest due to its unique features. In recent

years, theoretical and experimental studies on graphene provide quick knowledge and

have opened up possibilities for many other two-dimensional new materials. Among

these materials, especially transition metal chalcogenides have recently been the focus of

studies of condensed matter physics.

Unlike many superior properties of graphene, lack of band gap in electronic struc-

ture have highlighted the necessity of such transition metal chalcogenides materials for

electronic applications. As compared to graphene, transition metal chalcogenides have

various physical properties and possess sizable band gaps, for this reason they are promis-

ing candidate for many applications.

Many experiments have revealed that the surfaces of graphene and graphene-like

structures can play an active role as a host surface for clusterization of metal atoms.

Motivated by these observations, we investigate characteristic properties of Pt atoms on

graphene, MoS2 and TaS2. Similarly, TiSe2 is very recently synthesized two-dimensional

transition metal dichalcogenide material and stable in 1T phase. Two-dimensional TiSe2

has a metallic electronic property and widely studied material. We analyze how to change

the structural and electronic properties of TiSe2 by functionalization with hydrogen atom.

Again to the effects of hydrogenation on two-dimensional TiSe2 monolayer we also study

the structural and electronic properties of this material in nanoribbon form. At the same

time, PtSe2 which is also very recently synthesized two-dimensional transition metal

dichalcogenide and stable in 1T phase like TiSe2, its nanoribbon structural and electronic

properties have also been investigated and compared with TiSe2 nanoribbons. Finally,

TiS3 which is also transition metal chalcogenide but entirely different crystal structure,

is recently widely studied materials. The structural and electronic properties as well as

carrier mobility and strain response of TiS3 nanoribbons have been investigated.

Besides many comprehensive theoretical studies, a lot of experimental studies are

avaibale about the synthesis of these materials. In brief, these materials which tackles a
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contemporary and rapidly developing field, the nanoribbon form and functionalization of

them that hold promise for many other applications.
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ÖZET

GRAFEN ve GEÇİŞ METALİ KALKOJENİT NANOYAPILARIN
ELEKTRONİK ve YAPISAL ÖZELLİKLERİNİN MODELLENMESİ

Bu tezin amacı, grafen ve benzeri geçiş metali kalkojenitlerin bir ve iki boyutlu

nanoyapılarının elektronik ve yapısal özelliklerinin yoğunluk fonksiyoneli teorisi ile in-

celenmesidir. Tek atom kalınlığındaki grafen, bilinen ilk iki boyutlu nanomalzemedir

ve benzersiz özellikleri nedeniyle oldukça ilgi çekmektedir. Son yıllarda yapılan grafen

araştırmaları, gerek deneysel gerekse teorik olarak hızlı bir bilgi birikimi sağlayarak farklı

birçok 2 boyutlu yeni malzemelerin de önünü açmıştır. Bu malzemeler arasında özellikle

geçiş metali kalkojenitleri yakın zamanlarda yapılan yoğun madde fiziği araştırmalarının

odağı olmuştur.

Grafen malzemesinin birçok üstün özelliğine rağmen, bant aralığının olmayışı

elektronik uygulamalarda geçiş metali kalkojenitleri gibi malzemelerin gerekliliği öne

çıkarmıştır. Grafene kıyasla geçiş metali kalkojenitlerinin fiziksel özellikleri daha çeşit-

lidir ve yasak bant aralığının varlığı, pek çok elektronik uygulama alanı için umut ver-

mektedir.

Grafen ve benzeri yüzeylerde yapılan deneyler çeşitli metal atomlarının yüzeyde

hızlı difüzyonlarının mümkün olduğunu ve bunların atom öbekleri oluşturma eğiliminde

olduklarını ortaya koymuştur. Yaptığımız çalışmada Pt atomlarının grafen, MoS2 ve

TaS2 üzerindeki karakteristik davranışları incelenmiştir. Benzer şekilde, TiSe2 malzemesi

yeni sentezlenmiş iki boyutlu geçiş metali dikalkojenitidir ve 1T fazında metalik özel-

lik gösteren bu malzeme oldukça fazla çalışılmıştır. Bu iki-boyutlu malzemenin hidrojen

atomu ile fonksiyonelleştirdiğimizde yapısal ve elektronik özelliklerinin nasıl değiştiği

araştırılmıştır. Yine bu malzemenin nanoşeritlerinin elektronik ve yapısal özellikleri ile,

benzer 1T fazında ve yeni sentezlenmiş olan iki-boyutlu PtSe2 malzemesinin nanoşerit-

lerinin elektronik özellikleri kıyaslanmıştır. En son olarak da, geçiş metali kalkojeniti

olan ama tamamen farklı kristal yapıya sahip ve son zamanlarda oldukça fazla çalışılan

TiS3 malzemesinin, nanoşeritlerinin yapısal ve elektronik özelliklerinin yanısıra mobilite

ve mekanik gerilim altında elektronik yapısının nasıl değiştiğine bakılmıştır.

Teorik olarak yapılan kapsamlı birçok çalışmanın yanısıra deneysel olarak bu

malzemelerin sentezi konusunda da çok fazla yeni çalışma mevcuttur. Kısacası, konusu

güncel ve hızla gelişen bir alana giren bu malzemelerin nanoşeritleri ve işlevselleştirmeleri

birçok uygulama alanı için umut vaad etmektedir.
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CHAPTER 1

INTRODUCTION

Two-dimensional (2D) materials and ultrathin films have historically been one

of the most extensively studied classes of materials and have been investigated for over

the 50 years, because of the abundance of unusual physical phenomena that occur when

charge and heat transport is confined into a plane (Butler et al., 2013). Carbon is a basic

element of nature which has a central focus in both life and physical sciences. Since the

isolation of graphene (Novoselov et al., 2004) in 2004, there has been growing interest in

the field because of its potential applications in future nanoelectronic devices (Neto et al.,

2009). At the same time, the rapid pace of progress in graphene has led to exploration of

other 2D materials (Wang et al., 2012; Mak et al., 2010; Yin et al., 2011).

Electronic devices are everywhere in our lifes since miniaturization has allowed

exteremly powerful devices to be portable. Miniaturization itself was made possible

thanks to the development of nanoelectronics. Thus, the identification and production

of low dimensionality materials (Nicolosi et al., 2013; Eda et al., 2011) have opened up a

range of applications especially specialised electronic devices (Zhu et al., 2013; Li et al.,

2012). Theoretical calculations have become essential in this field because the control of

electronic properties and confinement effects all due to reduced dimensionality.

Therefore, specific materials of interest in this thesis are low dimensional materials

such as graphene, transition metal chalcogenides, also including their one-dimensional

nanoribbon forms. Before dealing with the structural and electronic properties of these

nanostructures with adsorption of metal atoms, hydrogenation or their nanoribbon form;

we will explore a more detailed discussion about these materials starting with the most

well-known graphene and comparing its structural and electronic properties with other

layered nanostructures.

1.1. Graphene

In 2004, Andre Geim and Kostya Novoselov at Manchester University managed

to extract single-atom-thick crystallites (graphene) from bulk graphite (Novoselov et al.,

2004). In fact, numerous attempts to synthesize two-dimensional atomic crystals have
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Figure 1.1. (Color online) Primitive unit cell of the honeycomb structure of graphene
with the reciprocal lattice vectors and correspoding Brillouin zone (BZ)
having special k-points Γ, M, and K. Calculated electronic band structure
of graphene.

usually failed (Oshima and Nagashima, 1997), and commonly belief that 2D materials

are thermodynamically unstable and thus can not be used in applications (Peierls, 1934,

1935; Landau and Lifshitz, 1980). Stable graphene has disproved previous theories, since

then, graphene has been the center of theoretical and experimental studies. Graphene is a

single-layer of graphite with covalently bonded 2D honeycomb structure of carbon atoms.

The primitive vectors of hexagonal lattice structure and the high symmetry points of the

reciprocal lattice vectors are shown in Fig.1.1. The lattice vectors can be written as:

a1 = a
(3
2
,

√
3

2

)
, a2 = a

(3
2
,−
√

3
2

)
. (1.1)
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where a ≈1.42 Å is the nearest carbon-carbon distance. The reciprocal lattice vectors are

given by:

b1 =
2π
3a

(√
3, 1, 0

)
b2 =

2π
3a

(
−
√

3, 1, 0
)
. (1.2)

This kind of lattice occurs due to sp2 hybridization of carbon atoms. Carbon has

four valence orbitals; 2s, 2px, 2py, 2pz. sp2 hybridization is created by one 2s and two 2p

(2px, 2py) electrons of the carbon. Every carbon atom creates σ bonds with three other

carbon atoms. In other words, graphene consists of covalently bonded carbon atoms and

this strong binding comes from the σ bonds. However, the last 2pz orbitals electron where

z shows the perpendicular direction to the x-y plane of graphene layer, remains unpaired

and creates the π and π∗ bonding. The perpendicular π bond is weak Van der Waals bond

and hence, each graphene layer is weakly interacting (Wallace, 1947; Dubois et al., 2009).

Due to this unpaired electron, the electronic property of graphene can be characterized as

a zero band gap semiconductor (or alternatively as a semi-metal). As can be seen from

Fig.1.1(c) the conduction and valance bands cross linearly at point K at the Fermi level

(EF), so the two points (K and K
′
) at the corners of graphene’s Brillouin Zone (BZ) is of

particular importance for the electronic properties. These points are called Dirac points

and their positions are given by:

K =
( 2π

3
√

3a
,

2π
3a

)
, K′ =

(
− 2π

3
√

3a
,

√
2π

3a

)
. (1.3)

The linear electronic band dispersion leads to the term massless Dirac fermions be-

cause electrons and holes at these special points of BZ have zero effective mass (Novoselov

et al., 2005). Moreover, graphene displaying exceptional properties; such as Klein tun-

neling, anomalous quantum hall effect and the ambipolar effect and also even at room

temperature the mobility is really high (around 15.000 cm2/Vs) (Novoselov et al., 2007;

Robinson, 2012).

However, pristine graphene lacks a finite band gap, and it is essential for elec-

tronic devices. Thus, for nanoelectronics and optics, it is necessary to open a band gap in

graphene by different methods such as chemical functionalization by an atom (the mostly

studied one is hydrogenation) or molecule (Ryu et al., 2008; Pumera and Wong, 2013;

Jaiswal et al., 2011), cutting graphene in nanoribbon form or explore other 2D materials
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Figure 1.2. (Color online) Schematic representation of the periodic table in which
about 40 different layered transition metal dichalcogenides exist. The tran-
sition metal and three chalcogen elements are highlighted blue and yellow
in the periodic table, respectively. (from Ref. Kuc, 2014)

with suitable band gaps.

Especially, not only 2D graphene, but also its quasi 1D nanostructures, which

is generally called Graphene Nanoribbons (GNRs) display a rich variety of electronic

behaivors. Depending on their structure (zigzag or armchair nanoribbons), GNRs realize

magnetic metallic or nonmagnetic semiconducting electronic structures with band gaps

that can be tuned across broad ranges (Son et al., 2006b; Han et al., 2007; Li et al., 2008;

Cai et al., 2010).

At the same time, recent advances in synthesis and physical understanding of

graphene has opened up an important possibilities for many other two- and one-dimensional

materials, so more and more materials have joined this familiy such as silicene, ger-

manene, hexagonal boron nitride, transition metal chalcogenides, phosphorene (O’hare

et al., 2012; Balendhran et al., 2015; Ni et al., 2011; Bianco et al., 2013) etc. Furthermore,

layered crystals of transition metal chalcogenides have attracted tramendous interest ow-

ing to their remarkable electronic, mechanical and optical properties.

1.2. Transition Metal Chalcogenides

Many transition metal chalcogenides (TMCs) present non-layered structures such

as zinc-blende or wurtzite, while layered TMCs are commonly restricted to metal groups

in: group IV with elements Ti, Zr, Hf; group V with elements V, Nb, Ta; group VI with
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Figure 1.3. (Color online) Atomic structure of a typical transition metal dichalco-
genides, such that TMDs have a hexagonal structure with an upper and
lower sublattice of chalcogen atoms (yellow) and a middle layer of transi-
tion metal atom (purple).

elements Mo and W, as well as group X with elements Pd and Pt. Typical 2D TMCs are

transition metal dichalcogenides (TMDs) which belong to a class of layered compounds

and always present MX2 stoichiometry where M is a transition metal atom, and X is one

of the chalcogens; sulfur, selenium or tellerium (Chhowalla et al., 2013a). TMDs are

not atomically thin instead they are arranged in triatomic layers with a metal atom in the

middle that is strongly covalent bonded to chalcogenide atoms located above and below

(Wang et al., 2012), while the interlayer interactions are weak van der waals. see Fig.1.3.

These materials have 2D hexagonal lattices like graphene while each metal atom

has six nearest chalcogen atoms instead of three neighboring carbon atoms in graphene.

Furthermore, TMDs phases posses two types of atomic arrangements: in both the metal

atom centre is either honeycomb (or triagonal prismatic) 1H or centered honeycomb (or

octohedral) 1T structures; both can be viewed as positively charged plane of transition

metal atom sandwiched between two planes of negatively charged chalcogen atoms (At-

aca et al., 2012). The structural properties like lattice parameters, the difference of metal

atoms affects slightly for the same chalcogen atom. For example, in-sheet lattice constants
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of NbS2 and TaS2 sheets are only 0.15 Å longer than MoS2 and WS2 ones. However, dif-

ferent chalcogen atoms change the lattice parameters significantly. The diselenide and

ditelluride Mo sheets increase the thickness to 3.3 and 3.6 Å, respectively.

Although the difference of chalcogen atoms affects the structural properties, it has

little influence on the electronic properties. TMDs encompass a wide variety of electronic

properties including metals, semi-metals, insulators and semiconductors with direct and

indirect band gaps. For example, the mostly studied MoS2 has an indirect band gap of

0.9 eV in the bulk form, while at the monolayer limit it gradually shifts to direct band

gap with a value of 1.8 eV (Zhu et al., 2011; Mak et al., 2010), which agrees well with

the photoluminescence experiments (Splendiani et al., 2010; Eda et al., 2011). The other

most prominent TMDs are MoSe2, WS2 and WSe2 that have been widely studied for ap-

plications in electronics since they have analogous semiconducting properties. However,

both the NbX2 and TaX2 sheets become metals.

The band gap in most semiconducting TMDs, whether in bulk or monolayer, are

comparable to the 1.1 eV band gap in silicon, making them suitable for use as digital

transistors. The transition to direct band gap in the monolayer form has important impli-

cations for photonics, optoelectronics and sensing. One of the most important applica-

tions of semiconductors is for transistors in digital electronics. Radisavljevic et al. have

recently demonstrated that MoS2 can be used to fabricate transistors with high electron

mobility and high current on/off ratios (Radisavljevic et al., 2011; Miro et al., 2014).

As a result, the large band gaps seen in several members of TMDs family make

them attractive channel materials in electronics. And, while devices based on MoX2

(or WX2 where X=S, Se) materials are blooming (Radisavljevic and Kis, 2013; Lopez-

Sanchez et al., 2013), the properties and applications of other 2D transition metal chalco-

genides materials are relatively new but exciting and rapidly expanding area of research.

The goal of this thesis is to examine graphene and transition metal chalcogenide

two- and one-dimensional nanostructures using the ab initio calculation methods to cal-

culate the structural and electronic properties. The organization of this thesis as follows:

Chapter 2 briefly describes the theoretical background and approximations of the com-

putational methods. Chapter 3 is related with the adsorption of transition metal atoms

on graphene and graphene-like transition metal dichalcogenide nanostructures. Chapter

4 is related with the functionalization of 1T-TiSe2 monolayer with hydrogenation, while

in Chapter 5 we present the structural and electronic properties of zigzag and armchair

edged nanoribbons of this material. At the end of this chapter, very recently synthe-

sized 1T-PtSe2 electronic properties is also presented in one-dimensional (nanoribbon)
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form. Chapter 6 is related the entirely different crystal structure of TiS3 where the elec-

tronic properties, mobility and strain response of TiS3 nanoribbons are presented. Finally,

Chapter 7 is conclusions summarizing the results of our studies.
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CHAPTER 2

METHODOLOGY - DENSITY FUNCTIONAL

THEORY

In this chapter, we briefly discuss the fundamental aspects of Density Functional

Theory (DFT) such that the theoretical framework, computational methodologies and ap-

proximations of DFT which have been utilized in the following chapters on various sys-

tems. Instead of giving complete introduction to DFT calculations, a comprehension of

the theoretical basis is needed to understand the methods used in this study. In this regard,

this chapter provides aspects of the computational methodology of the simulations.

2.1. Schrödinger Equation and Density Functional Theory

In 1926, the Austrian physicist Erwin Schrödinger published his pioneering pa-

per which included his famous equation (Schrödinger equation) that describes the how

the wavefunction of a physical system evolves over time (Schrödinger, 1926). The quan-

tum mechanical wavefunction contains full information of a given system. In principle,

all information about a sytsem can be extracted by solving the many-body Schrödinger

equation in order to obtain that wave function.

Ĥψi(r, R) = Eiψi(r, R). (2.1)

Ĥ is the Hamiltonian operator and Ei is the energy eigenvalue corresponding to

many body time-independent wave function, Ψi(r, R).

Unfortunately, except for the simple systems (H or He) it is impossible to obtain

the exact solutions of many-body Schrödinger equation even with computational methods.

Evidently, some approximations must be involved to render the problem soluble with

some tricky. The first approximation to this kind of systems is to the electrons as moving

in the field of fixed nuclei. Due to the significant difference between nucleus and electron

masses, the nuclei move much slower than the electrons and so the nuclei can be treated

as stationary. This approach, which is known as the Born-Oppenheimer approximation
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(Born and Oppenheimer, 1927), the wave function can be factorized asΨtotal = Ψelectronic×
Ψnuclear. However, it is still very hard to solve an electronic problem and for this reason

more efficient approaches and valid approximations are implemented. DFT is developed

for this aim (Parr, 1980; Koch and Holthausen, 2015), and the simplest definition of DFT,

which is a method of obtaining an approximate solution to the Shrödinger equation of a

many-body system where the electron density is the central quantity.

Using this theory, the complicated many-body wave function is replaced with a

simpler quantity, the electron density n(r) for describing properties of the system. In

other words, the properties of a many-body system can be determined by using function-

als (name refers to functions of a function) and hence the name of the theory comes from

the use of functionals of the electron density. In the last forty years, DFT is the most

popular and versatile methods in condensed-matter and computational physics. The elec-

tronic structure, magnetic, mechanical and transport properties of various systems can be

investigated in practice by using the DFT based computational codes.

2.1.1. Thomas-Fermi Theory

Historically, it can be stated that DFT is loosely based on the Thomas-Fermi

model, since first attempts to use the electron density for the total energy, are based on

the early works of Thomas and Fermi (Thomas, 1927; Fermi, 1927). Indeed, this theory

is the boorish model of modern DFT, however it largely fails for neglect the exchange

and correlation effects. The kinetic energy term was proposed in their model with a very

simple way, which was based on the non-interacting electrons in homogenous electron

gas and in terms of electron density:

TT F[n(r)] =
3h2

10m
(

3
8π

)2/3
∫

n(r)5/3dr (2.2)

It is noted that the Fermi wave vector is related with the electron density as:

n(r) =
k3

F

3π2 (2.3)

Finally, the total energy is completely obtained in terms of electron density n(r) using the

9



classical expression for electron-electron and nucleus-nucleus potential.

ET F[n(r)] =
3h2

10m
(

3
8π

)2/3
∫

n(r)5/3dr − Z
∫

n(r)
r

dr +
∫

n(r)n(r′)
|r − r′ | drdr

′
(2.4)

They assumed that the ground state density that minimize the total energy is cal-

culated under the constraint of;

∫
n(r)dr = N (2.5)

However, the electronic structure so as the total energy calculations is not accurate enough

with Thomas-Fermi model, because exchange and correlation are totaly absent and so

the theory cannot predict shell structures of atoms or molecular bonding. Nevertheless,

Thomas-Fermi model is very important because it set up a basis for DFT.

2.1.2. The Hohenberg-Kohn Theorems

In 1964, Hohenberg and Kohn proved two fundamental theorems which intro-

duced the foundation of DFT (Hohenberg and Kohn, 1964). In this work they have shown

that the electron density as basic variable, and all information about electronic system can

be determined by using electron density in these theorems.

Theorem 1 : For any system of interacting particles in an external potential Vext(r),

the electron density is uniquely determined apart from a trivial additive constant. In other

words, all information about the ground state properties of a many-body system can be

described by the electron density.

The proof for the first part of the theorem can be considered as two different ex-

ternal potentials Vext and V
′
ext differing by more than a constant and which give the same

ground state density n(r). Obviously, they belong to distinct Hamiltonians H and H
′
, and

which have distinct ground state wave functions ψ and ψ
′
. Similarly, the ground state

energies are E0 and E
′

0 for H and H
′
, respectively. Taking the ψ

′
as a trial wave function
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for H since it is not ground state wave function of H, and calculating expectation values:

E0 <
⟨
ψ
′ ∣∣∣H∣∣∣ψ′⟩ = ⟨

ψ
′ ∣∣∣H∣∣∣ψ′⟩ + ⟨ψ′ ∣∣∣(H − H

′
)
∣∣∣ψ′⟩

= E
′

0 +

∫
n(r)[Vext(r) − V

′

ext(r)]dr (2.6)

Similarly,

E
′

0 < ⟨ψ|H
′ |ψ⟩ = ⟨ψ|H′ |ψ⟩ + ⟨ψ|(H − H

′
)|ψ⟩

= E0 +

∫
n(r)[Vext(r) − V

′

ext(r)]dr (2.7)

Adding equations 2.6 and 2.7 gives an inconsistent result,

E0 + E
′

0 < E
′

0 + E0 (2.8)

Thus, they have been showed that there cannot be any other external potential

giving the same ground state density n(r), which means that ground state density uniquely

determines (to within a constant) the external potential. In this way, the total energy can

be written as a functional for an arbitrary external potential in terms of electron density;

EV[n(r)] = F[n(r)] +
∫

n(r)V(r)dr (2.9)

where F[n(r)] is a universal Hohenberg-Kohn functional and it is completely in-

dependent from the system.

Theorem 2 : The total energy of the system can be expressed as a functional of

the electron density, and the global minimum value of this functional is the exact ground

state.

The proof for the second part of the theorem, let us assume that any other trial

electron density function n
′
(r) which determines its own properties V

′
ext, ψ

′
and H

′
and

such that giving an energy higher or equal to the ground state energy.
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E[n
′
(r)] ≥ E[n(r)] (2.10)

where E[n(r)] is evaluated total energy for the ground state electron density n(r).

⟨
ψ
′ ∣∣∣H∣∣∣ψ′⟩ = F[n

′
(r)] +

∫
n
′
(r)Vext(r)dr (2.11)

= E[n
′
(r)] ≥ E[n(r)]

E0 = ⟨ψ|H|ψ⟩

It follows that the total energy of the system can be minimized according to the

correct electron density instead of electronic wave functions. It means that all properties

of a system can be completely derived from the ground state density and it is much simpler

to deal with total electron density rather than full electronic wave function.

2.1.3. The Kohn-Sham Approach

After the idea of Hohenberg-Kohn theorems, in 1965 the idea was further devel-

oped by Kohn-Sham such that they provided applicability for modern DFT by publishing

a paper (Kohn and Sham, 1965). Since the explicit form of universal function F[n(r)] do

not known, they proposed an alternative approach for the kinetic energy functional. The

idea of the Kohn-Sham approach is replacing interacting system with non-interacting sys-

tem, in such a way, that the ground state of the interacting system is equal to the electronic

density of the fictious non-interacting system. With this assumption the total density of

the N electron system can be written as:

n(r) = 2
∑
i=1

|φi(r)|2 (2.12)
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where factor 2 comes from spin states and φi are the orbitals of non-interacting system.

With the kinetic term

T [n(r)] = −1
2

N∑
i=1

∫
φi∇2φ∗i dr (2.13)

The effective single-particle potential can be written in more detail and the single particle

Kohn-Sham equation is given as:

[−ℏ2

2m
+ Vext(r) + VH(r) + VXC(r)

]
φi = ϵiφi (2.14)

where VH is the Hartree potential

VH = e2
∫

n(r′)
|r − r′ |dr

′
(2.15)

and VXC is the exchange-correlation potential

VXC(r) =
δEXC[n(r)]
δn(r)

(2.16)

The universal density functional can be written in the following form by using the

new form of T[n(r)].

F[n(r)] = T [n(r)] +
e2

2

∫ ∫
n(r)n(r′)
|r − r′ | drdr

′
+ EXC (2.17)

Using this functional in the total energy functional in eqn. 2.9, the total energy

of a system can be expressed as a functional of the charge density which is known as

Kohn-Sham density functional:
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Figure 2.1. (Color online) How to employ DFT. General algorithm for self-consistent
DFT calculation.

EKS [n(r)] = T [n(r)] +
∫

n(r)Vext(r)dr +
e2

2

∫ ∫
n(r)n(r′)
|r − r′ | drdr

′
+ EXC (2.18)

As a result of Kohn-Sham density functional theory, the complicated many-body

problem can be solved by mapping exactly the set of self-consistent single-particle equa-

tions. Since the effective potential depends on the actual electron density n(r), the solu-

tions of Kohn-Sham equations can be obtained by an iterative self-consistent-field (SCF)

procedure. This can be achieved by constructing an initial guess of the electron density

for a given configuration of ionic positions, solving the equations, obtaining a new den-

sity and energy and repeating this process until convergence in both quantities is reached

which is shown in Fig. 2.1
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2.2. Exchange-Correlation Energy

In the previous sections, we briefly described the DFT theory, and saw that the

only missing ingredient is exchange-correlation term. EXC is very complex because it in-

cludes all the remaining complicated non-analytical electronic contributions and so some

approximations need to be made. In this reason, there are several approximations like

local density approximation (LDA) (Jones and Gunnarsson, 1989) and generalised gradi-

ent approximation (GGA) (Perdew et al., 1992) which are derived in order to deal with

exchange-correlation functional.

2.2.1. Local Density Approximation

LDA is a class of and simplest approximation to the exchange-correlation energy

functional in DFT, as suggested by Kohn-Sham (Jones and Gunnarsson, 1989) which is

based on the homogeneous electron gas such that the density can be treated locally as a

uniform electron gas. Using the LDA approach, the exchange-correlation energy at each

point in the system is the same as that of an uniform electron gas of the same density and

so the EXC for a density n(r) is given by

ELDA
XC [n(r)] =

∫
ϵXC(r)n(r)dr (2.19)

where the ϵXC(r) is exchange-correlation energy per electron at a point r in a uni-

form electron gas which has the same density as the electron at point r. For systems where

the density varies slowly, LDA works best and generally gives very good results for some

solids like nearly-free-electron metal. However, for in many simpler cases LDA finds

the wrong ground state. It gives higher binding energy for molecules and solids but the

chemical trends are usually well predicted. For the description of hydrogen-bonding, the

LDA approach tends to fail because it does not account for van der Waals bonding.
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2.2.2. Generalized Gradient Approximation

GGA (Perdew et al., 1992) is another functional like LDA, but the gradient of the

electron density at the same position is also included, because LDA fails in situations

where the density undergoes rapid changes such as in molecules. Therefore, exchange-

correlation energy is described in GGA

EGGA
XC [n(r)] =

∫
ϵXC(n(r),∇n(r))n(r)dr (2.20)

Since the electron density is not uniform, GGA often provides more accurate re-

sults by taking into account the inhomogeneous nature of the electron density. Especially

molecular geometries, binding energies and ground state energies are improved in GGA

when compared to the ones obtained by LDA. However, both of the approximations is

valid depending on the purpose and the system of interest. An improvement to these

functionals can be made by modifying to include van der Waals interactions. Among

physicists, probably the most widely used functionals proposed by Perdew, Burke, and

Ernzerhof (PBE)(Perdew et al., 1996) can be given.

2.3. The Plane-wave Basis Sets and Pseudopotential Approach

There are some difficulties arising when the many-body problem is mapped into

equivalent in an effective single-particle problem, because a very large number of ions and

non-interacting electrons moving in a crystal so that the wavefunction must be calculated

for very large number of electrons in the system. At the same time, since the every

wave function extends over the entire crystal, infinite number of basis set is necessary

in computational calculation. To overcome these difficulties, performing calculations on

periodic systems and Bloch’s theorem are used.

Bloch’s theorem states that in a periodic solid each electron wave function can be

written as the product of a periodic function and a plane wave:

ψi(r) = exp(ik.r) fi(r) (2.21)
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where fi(r) ( fi(r) = fi(r+T) is the lattice periodic part can be expanded using a basis set

in terms of discrete plane-waves with reciprocal lattice vectors G such that:

fi(r) =
∑

G

ci,Gexp(iG.r) (2.22)

Here, reciprocal lattice vector G are defined by using the fact that G.l = πm with l is a

lattice vector, m is an integer and ci,G are plane wave coefficient. Therefore wavefunction

for each electron can be written as a sum of plane-waves as:

ψi(r) =
∑

G

ci,k+Gexp(iK+G.r) (2.23)

By using the Bloch’s theorem we change the problem of calculating infinite number of

electronic wave functions to the one of calculating a finite number of electronic wave-

functions at an infinite number of k-points. Usually k-points in the Brillouin zone is

sampled such that electronic wave-functions in the k space is represented by the single

k-point (Payne et al., 1992). There are several important schemes for k point sampling

e.g Monkhorst-Pack. Furthermore the computed total energy will converge as the density

of k-points increases (Monkhorst and Pack, 1976). In principle, an infinite number of

plane-waves are required to expand the wavefunction at each k-point in above sum. How-

ever, only the small kinetic energy terms are important. For this reason, an energy cut-off

(Ecuto f f ) can be imposed on plane-waves such that |k+G|2 < Ecuto f f . Introduction of this

cutoff energy to the discrete plane-wave basis set produces a finite basis set. Moreover,

increase or decrease of Ecuto f f allow the control of accuracy in plane-wave calculations.

Although Bloch’s theorem states that every electronic wave functions can be ex-

pressed using a discrete plane-waves, sometimes it is very difficult to deal with highly lo-

calized states such as core electrons because an extremely large plane-wave basis set may

be necessary to include the all electrons of each atom in the unitcell. In order to avoid

this, pseudopotential approximation can be used in which allows the expansion of elec-

tronic wave functions using a much smaller plane-waves. Since the electronic properties

of solids depends on valance electrons rather than the core electrons, this approximation

removes the core electrons and consider the crystal as ions and valance electrons. There-

fore, only contribution comes from valance states. Several different schemes are devised

for pseudopotential approximation, this thesis we always use the Projector Augmented
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wave method (Blöchl, 1994).

2.4. Computational Package

Our calculations have been performed in this thesis are based on DFT in the frame-

work of the plane-wave projector-augmented wave (PAW) methodology implemented in

the Vienna ab-initio simulation package VASP (Kresse and Furthmüller, 1996; Kresse

and Joubert, 1999). VASP is a computer program for atomic scale materials modelling,

e.g electronic structure calculations and quantum-mechanical molecular dynamics, from

first principles. VASP computes an approximate solution to the many-body Schrödinger

equation that allows the electronic structure of systems with periodic boundary conditions

to be calculated. The input is a configuration of atoms with periodic boundary conditions

e.g crystal structure. The simplest output is the electronic structure and energy of that

configuration of atoms and the forces on atoms. More complex output can be obtained,

such as the electronic band structure and spin densities form spin polarized calculations.
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CHAPTER 3

PT CLUSTERS ON GRAPHENE, MOS2, TAS2

Many experiments have revealed that the surfaces of graphene and graphene-like

structures can play an active role as a host surface for clusterization of transition metal

atoms. In the literature, some works have concentrated on the absorption of alkali, no-

ble and transition metals on graphene (Sahin and Ciraci, 2012; Cabria et al., 2010; Ishii

et al., 2008; Uchoa et al., 2008; Chan et al., 2008). The attachment of metal nanopar-

ticles to graphene surfaces is a very challenging problem with possible application for

electro-catalysis. Regarding the growth of metal clusters on graphene, in particular the

formation of platinum nanoclusters is important due to their excellent catalytic behavior

(Błoński et al., 2011; Błoński and Hafner, 2011; Zhou et al., 2010). In addition, when Ptn

clusters are formed on graphene the equilibrium structure of the gas-phase of the clusters

is preserved (Błoński et al., 2011) and magnetic anisotropy energies (MAE) are strongly

reduced as compared to free clusters.(Błoński and Hafner, 2011) Theoretical studies have

also shown that depending on the growth conditions Ptn nanostructures with diverse struc-

tural symmetries can be formed on graphene (Błoński et al., 2011; Błoński and Hafner,

2011; Zhou et al., 2010; Huda et al., 2006).

Similar to graphene, TMDs form weakly bonded lamellar bulk structures and these

van der Waals layers can host intercalation of foreign atoms and the formation of various

clusters. Aydinol et al. investigated theoretically the intercalation properties of various

lithium-metal-oxides, sulfides, and selenides (Aydinol et al., 1997). Ramirez and Schkatte

performed a detailed study of the migration and energetics of Li adatoms on a TiSe2(0001)

surface and showed that notwithstanding the high energy barrier, direct intercalation can

be possible (Ramırez and Schattke, 2001). Jishi et al. showed that the electronic den-

sity of states in TiSe2 can be significantly enhanced upon copper intercalation (Jishi and

Alyahyaei, 2008). Furthermore, Meziane et al. calculated Li and Na intercalation in

dichalcogenides of Tantalum and found that they are promising candidates for thermo-

electric applications (Meziane et al., 2013). Experimentally, Kim et al. reported that

MoS2 and WS2 can be decorated with gold atoms and the resulting gold nanoparticles

tend to grow at defective sites and the resulting MoS2/Au and WS2/Au hybrid structures

show significant enhanced electro-catalytic performance towards hydrogen evolution re-

actions (Kim et al., 2013). Moreover, Sreeprasad et al. demonstrated the possibility of
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raising the effective gate-voltage of MoS2 devices by an order of magnitude through the

incorporation of highly capacitive gold nanoparticles onto the surface (Sreeprasad et al.,

2013). Very recently the successful functionalization of graphene membranes with plat-

inum nanoparticles that tend to exhibit a preferred orientation was reported by Xu et al

(Xu et al., 2014).

Although structural, electronic and magnetic properties of freestanding and

graphene-supported Ptn clusters were investigated before, only very few studies are avail-

able on cluster formation on surfaces of various TMDs having different crystal symmetry.

Motivated by these observations, in this chapter, we investigate theoretically the adsorp-

tion, diffusion and magnetic properties of platinum (Pt) clusters on three different two-

dimensional atomic crystals (graphene, molybdenum disulfide (1H-MoS2) and tantalum

disulfide (1T-TaS2)) (Ozaydin et al., 2014). We discuss:

• What are the migration characteristics of Pt atoms on different monolayer surfaces?

• How transition metal dichalcogenide (TMD) substrates having different crystal sym-

metries affect the formation of Ptn nanoclusters (n < 5)?

Therefore, in the following sections, we properly present adsorption and diffusion charac-

teristics of single Pt atom on monolayers of graphene, MoS2 and TaS2. Then, our results

on the binding energies and magnetic properties of Pt2, Pt3 and Pt4 nanostructures on three

different surfaces are given.

3.1. Computational Details

For Ptn clusters on graphene, MoS2 and TaS2 sheets, calculations were performed

using 5 × 5 × 1 supercells which are large enough to avoid interactions between neigh-

boring clusters. The Perdew-Burke-Ernzerhof (PBE)(Perdew et al., 1996) form of the

Generalized Gradient Approximation (GGA) are adopted to describe electron exchange

and correlation. The plane-wave cutoff energy is set to 500 eV in all calculations. The

Brillouin Zone is sampled using a Γ-centered k-point mesh and a Gaussian smearing of

0.01 eV is used for total energy calculations. Structural relaxations are performed using

a conjugate gradient method where total energy and atomic forces are minimized. The

convergence criteria for energy is chosen as 10−5 eV between two iteration steps, and the

maximum force allowed on each atom is less than 10−4 eV/Å. The pressure in the unit

cell is held below 1 kBar in the optimized structures. Spin-polarized calculations are per-
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Figure 3.1. (Color online) Top views of the atomic structures of (a) graphene, (b) 1H-
MoS2 and (c) 1T-TaS2 and possible adsorption sites: the hollow site (H),
the bridge site (B), the top-Mo site (Mo) and the top-Ta site (Ta). S1 and
S2 refer to the point on top of a S atom of upper and lower chalcogen layers
in 1T-TaS2, respectively.

formed in all cases and atomic charges are calculated by using the Bader method.Schmidt

et al. (1993); Henkelman et al. (2006).

For the determination of the most favorable adsorption sites calculations are per-

formed by placing Pt single atoms over various high symmetry lattice points. In Table

I, only the energetically most favorable sites are reported. The binding energies (per Pt

atom) are calculated according to the formula Eb= [E(Host) + n E(Pt) - E(Host+Ptn)]/n,

where E(Host) is the energy of the supporting monolayer sheet, E(Host+Ptn) is the total

energy of the monolayer with Pt atom(s), E(Pt) is the energy of an isolated Pt atom and n

is the number of Pt atoms in the cluster.

3.2. Adsorption and migration of single Pt atom

In this section, we present our results concerning favored adsorption sites, the

binding energies and magnetic ground states for a single Pt atom on monolayers of

graphene, MoS2 and TaS2. Just like graphene, MoS2 and TaS2 have hexagonal crystal

structure composed of layers of metal atoms (M) sandwiched between layers of chalco-

gen atoms (X) with stoichiometry MX2. As shown in Fig. 3.1, while MoS2 has trigonal

prismatic coordination, each Ta atom has octahedral coordination in monolayer TaS2. In

the following discussion, trigonal prismatic and octahedral phases are referred as 1H and

1T structures, respectively. In both H and T phases the trigonally arranged monolayer
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Graphene 1H-MoS2 1T-TaS2

S hape Mtotal Eb ∆ρ S hape Mtotal Eb ∆ρ S hape Mtotal Eb ∆ρ

(µB) (eV/atom) (e) (µB) (eV/atom) (e) (µB) (eV/atom) (e)

Pt1 - 0.0 1.70 0.02 - 0.0 2.89 -0.07 - 1.0 3.71 -0.10
Pt2 Dimer 0.0 2.25 -0.02 Dimer 0.0 3.03 -0.07 Dimer 0.1 3.68 -0.01
Pt3 Triangle 0.0 2.97 -0.03 Triangle 0.0 3.35 0.08 Triangle 1.0 3.87 0.16
Pt4 Bent Rhombus 2.0 3.15 -0.11 Tetrahedral 0.0 3.60 0.03 Tetrahedral 0.3 4.01 0.21

Table 3.1. Calculated parameters for Ptn clusters on graphene, 1H-MoS2 and 1T-TaS2

respectively; stable configurations for the Ptn-cluster/substrate systems, to-
tal magnetic moment of the cluster Mtotal (µB), binding energy per Pt atom
Eb (eV/atom) and the average charge transfered between the surface and
the Pt cluster ∆ρ. Positive values of ∆ρ correspond to charge donation to
the Pt cluster.

lattice of metal atoms is sandwiched between two chalcogen layers and hence each metal

atom is surrounded by six chalcogen atoms. In contrast to the weak inter-layer interaction,

metal and chalcogen atoms have strong intra-planar bonds that have a covalent character.

Due to different lattice symmetries of these monolayers one can expect different diffusion

characteristics for foreign atoms on these different surfaces. Our results are summarized

in Table I. Diffusion pathways (see Fig. 3.2) of a Pt atom on different supporting layers

were obtained by calculating the total energy on different adsorption sites along the high

symmetry points.

The calculated lattice constant of the primitive unitcell of graphene is a = 2.46 Å.

For adsorption calculations of a single platinum atom on a non-defective surface a 4 × 4

graphene supercell is used. As shown in Fig. 3.1(a) there are three favorable adsorption

sites on the surface of graphene: the hollow (H) site on the center of a hexagon, the

bridge (B) site on the midpoint of a C-C bond, and the top (T) site directly above a carbon

atom. In agreement with recent ab-initio calculations the bridge site is found to be the

energetically most favorable site. Each Pt atom is adsorbed at the B site with binding

energy of 1.70 eV. Although, an isolated platinum is in a magnetic ground state with 2

µB net moment, when it is adsorbed on graphene there exists no net magnetic moment.

This finding is consistent with the previously reported data.(Sahin and Ciraci, 2012) Our

analysis reveals that the nonmagnetic state is favored by 0.92 meV over the magnetic state

with 2 µB net moment.

Differing from the one-atom-thick crystal structure of graphene, MoS2 has a three-
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Figure 3.2. Variation of energy for a single Pt adatom along the symmetry points
(shown in Fig.3.1) of single layer graphene, MoS2 and TaS2. Zero of en-
ergy is set to the energy of the most favorable site.

layered structure made of trigonally arranged Mo atoms sandwiched by two S layers. The

point group of graphene is D6h, while the monolayer (1H) structure of MoS2 belongs to

the D3h symmetry group. We found that the optimized lattice constant of 1H-MoS2 is

3.18 Å and a 3×3 supercell is large enough to hinder the interaction between Pt atoms in

adjacent cells. For the adsorption of a single Pt atom on 1H-MoS2 there are four different

possible sites: on top of Mo (Mo), on top of S (S), on top of a Mo-S bond (B) and on top

of the hollow (H) sites (see Fig. 3.1(b)). When a Pt atom is adsorbed at the Mo site, the

largest binding energy (minimum total energy) is found. It is also seen that immersion of

a Pt atom to the Mo layer is not allowed at the hollow site by an energy barrier of 6.91 eV.

Therefore, the most stable site of Pt atom absorption occurs at the Mo site with a binding

energy of 2.89 eV.

Similar to MoS2, TaS2 monolayer contains 3 layers of octahedrally coordinated

S-Ta-S atoms. This monolayer (1T) structure belongs to the symmetry group of D3d.

However, differing from 1H-MoS2, 1T-TaS2 shows metallic behavior. The optimized lat-

tice constant of the 1T-TaS2 sheet is a = 3.74 Å and a 3×3 supercell is used. Calculations
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Figure 3.3. (Color online) Possible configurations of Ptn clusters on the surface of
monolayers of graphene, MoS2 and TaS2.

of adatom Pt and monolayer TaS2 system are carried out for the Pt atom located at the

four high symmetry sites, as indicated in Fig. 3.1(c): on bridge (B), on top of S (S1), on

top of Ta (Ta) and on top of lower layer S atom (S2). The most favorable site for Pt atom

adsorbed on TaS2 was found to be the Ta site with binding energy of Eb = 3.71 eV/atom.

Upon the adsorption of a Pt atom on Ta site TaS2 monolayer exhibits a spin polarized

ground state with net magnetic moment of 1 µB.

3.3. Ptn clusters on graphene and transition metal dichalcogenides

In this section the formation of Ptn clusters on various surfaces were investigated

via total energy calculations. In order to accurately simulate the step-by-step nucleation of

each Ptn cluster, various configurations of Ptn−1+Pt systems were considered. As shown

in Fig. 3.3 there are several possible configurations for each Ptn cluster. Although all

the possible configurations of n Pt atoms that correspond to a minimum on the Born-

Oppenheimer surface were considered in our calculations, only the atomic structures that

correspond to the ground state geometry are presented in Fig. 3.4 for the sake of clarity.
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3.3.1. Pt2 Clusters

As shown in Fig. 3.4(a) when a Pt atom is adsorbed on the surface of graphene the

most favorable adsorption site for the next Pt atom is found to be a second nearest bridge

site. Due to the larger atomic radius of Pt atoms adsorption on the first nearest bridge site

is not allowed. For this Pt2 dimer the Pt-Pt bond length is 2.60 Å and the average Pt-C

bond length is 2.15 Å. The binding energy of a Pt2 dimer is calculated to be 2.25 eV/atom

and therefore the formation of each dimer occurs with an energy benefit of 0.55 eV/atom.

It is also found that the Pt2+graphene structure does not exhibit any spin polarization in

its ground state.

As depicted in Fig. 3.4(b), when a Pt atom is adsorbed on MoS2, neither nearest

top-sulfur nor nearest hollow site is the preferential site for the next Pt atom. Differing

from the graphene surface, MoS2 allows dimer formation on nearest top-Mo sites. There-

fore a full coverage of the MoS2 surface by a trigonally arranged one-atom-thick layer

of Pt atoms may be possible under suitable conditions. Here the calculated binding en-

ergy of a dimer is 3.03 eV/atom and therefore the 0.14 eV/atom energy benefit shows the

preferability of clusterization on the MoS2 substrate. Here the Pt2+MoS2 structure has

a nonmagnetic ground state. In addition, our charge analysis showed that 0.07 of elec-

trons are transfered from the Pt atoms to the surface whereas charge transfer from the Pt2

clusters to the graphene surface is 0.02 electrons.

However changing the substrate to TaS2 results in some differences in energetics

and electronic properties of Pt2 clusters. When Pt2 clusters are formed on the TaS2 sheet

the distance between Pt-Pt is 2.85 Å and the Pt-S distance is 2.32 Å. The binding energy

is Eb=3.68 eV/atom and Pt atoms are both located on top of the Ta sites (see Fig. 3.4(c)).

Although the most favorable configuration of two Pt atoms is a dimer as on the MoS2

surface, the ground state is spin polarized with a net magnetic moment of 0.1 µB. Another

significant difference between the two TMDs, MoS2 and TaS2, is that the formation of

Pt2-dimers is not energetically favorable on TaS2. It appears that the decoration of TaS2

by Pt atoms may provide quite stable surface structures with new functionalities.

3.3.2. Pt3 Clusters

For a Pt3 cluster supported by single layer graphene, the energetically most sta-

ble form is a triangle-shaped cluster perpendicular to the surface. In this configuration
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two Pt atoms sit on opposite B sites and the other Pt is located at the hollow site (see

Fig. 3.4(d)). We have also considered flat-lying triangle and linear chain configurations

which turned out to have higher energy. Since these two structures are not energetically

favorable, thermal effects immediately drive the atoms to form a triangle-shaped Pt3 struc-

ture perpendicular to the surface. Consequently, clustering is favored since the binding

energy is Eb=2.97 eV/atom. The Pt atoms, which are located at the C-C bridge sites, have

bonding length 2.46 Å , and the Pt-C bond length is 2.24 Å. Due to the weak interaction

between them, it is nonmagnetic and 0.03 electrons are transfered from the surface to the

Pt cluster.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.4. (Color online) Most stable configurations for Ptn-clusters on three different
substrates, graphene (left column), MoS2 (middle column) and TaS2 (right
column). The red balls denote Pt atoms.

As discussed above for graphene, we treated both linear chain and triangular

shapes for Pt3 clusters on MoS2 layer. The same behavior is shown by the Pt3-cluster
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adsorbed on MoS2. The system is inclined to form a nearly perpendicular triangle with

binding energy of 3.35 eV/atom, which is depicted in Fig. 3.4(e). No significant magnetic

moments are induced on the 5 × 5 MoS2 layer. The average bond length of the Pt atoms

is about 2.67 Å, and the length of the nearest Pt-S bond is 2.26 Å. The system is nonmag-

netic and charge transfer occurs from the surface to the Pt3 clusters (0.08 electrons).

On the other hand, three Pt atoms on a TaS2 layer appear magnetic with a net

magnetic moment of 1 µB. The configuration shown in Fig. 3.4(f) displays a triangular

shaped Pt3 on graphene or MoS2, but the distance between the Pt-Pt atoms located on the

Ta site is much longer and therefore the Pt-Pt interaction is weak. However the interaction

between the cluster and the TaS2 layer is quite strong. The two platinum atoms which sit

on top of the Ta atoms have a bond length of 3.31 Å, and the distance to the other Pt

atom is 2.51 Å, however the bond length with the surface is about 2.37 Å. From the Bader

analysis, it appears that 0.16 electrons are given from the surface to the Pt3 cluster.

3.3.3. Pt4 Clusters

For the case of Pt4, there are three typical structures that can be formed on a

surface; planar, bent rhombus or tetrahedral as shown in Fig. 3.3. The bent rhombus

cluster on graphene (see Fig. 3.4(g)) is more favorable than the flat one with an energy

difference of 66 meV/atom. In this configuration the length of the shortest Pt-Pt bond is

2.52 Å, and the Pt-C bond is about 2.23 Å. While the single Pt atom, the most stable Pt2

and Pt3 clusters on graphene are nonmagnetic, Pt4 has a ferromagnetic ground state with

a net magnetic moment of 2 µB. It appears that 0.11 of electron charge are transported

from the Pt atoms to the surface.

For four Pt atoms adsorbed on the MoS2 surface, the most favored configuration

state consists of a three dimensional tetrahedral shape where three Pt atoms are located on

top of Mo, and the fourth Pt atom is bonded to the other three Pt atoms only (Fig. 3.4(h)).

The average distance between the edge platinum atoms and sulfur atoms is 2.35 Å and

the binding energy of the cluster is Eb= 3.60 eV/atom. The plane configuration of Pt4

is not a stable state. The Pt4-cluster adsorbed on the MoS2 structure has a nonmagnetic

ground state and the charge transfer from the surface to the adatom Pt is 0.03 electrons.

Finally, we analyzed the structural and magnetic properties of Pt4 clusters on a

TaS2 sheet. We have compared the adsorption energies of a planar and a tetrahedron

structure. Not surprisingly as shown in Fig. 3.4(i), after relaxation the Pt4 clusters exhibit

a tetrahedral shape on TaS2 because it is 0.7 eV more favorable than the planar shape. The
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Pt-Pt bond length of the edge atoms is 3.54 Å while the average distance to the S atoms

is 2.37 Å. For the system of Pt4+TaS2, the magnetic properties are also investigated, and

it has a degenerate ground state consisting of nonmagnetic and magnetic cases with 2 µB.

Moreover, charge transfer from the TaS2 to Pt4 cluster is 0.21 electrons.

As a result, we investigated the adsorption properties, the diffusion pathways and

clustering of Pt atoms on graphene, 1H-MoS2 and 1T-TaS2 by means of density functional

theory. While a single Pt atom is adsorbed on the bridge site of graphene, the top of the

transition metal atom is the most favorable site on TMD substrates. It is also seen that

the binding energies on TMDs are larger on 1H-MoS2 and 1T-TaS2. Our total energy cal-

culations also revealed that the formation of Ptn clusters is favorable on graphene, MoS2

and TaS2 substrates. We found that these substrates, with their different crystal symme-

tries, exhibit different absorption and diffusion characteristics. While graphene hosts an

easy clusterization of Pt atoms, nucleation of Pt clusters on the surface of transition metal

dichalcogenides, regardless of the 1H or 1T phase, is more difficult and can take place

at higher temperatures. Due to the larger atomic separation on 1T-TaS2 one can expect a

smaller mobility of the clusters.
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CHAPTER 4

TUNING ELECTRONIC AND MAGNETIC

PROPERTIES OF TISE2 MONOLAYER

Despite the comprehensive research on graphene and single layer TMDs, studies

on the electronic properties of the group IVB TMDs in the T phase, namely the two-

dimensional 1T-MX2 structures, are sparse. Nevertheless, 1T-TiSe2 (titanium diselenide)

(Di Salvo et al., 1976; Fang et al., 1997; Li et al., 2007; Kusmartseva et al., 2009) is an

extensively studied quasi-2D TMD, which has a charge density wave (CDW) state and

in condensed matter physics transitions from superconductivity to charge density wave

phases has been shown to be very important (Bovet et al., 2004; Morosan et al., 2006).

However, whether 1T-TiSe2 is a semimetal or a semiconductor is still an open question

(Rasch et al., 2008). Since TiTe2 is a semi-metal with overlapping valence and conduc-

tion bands (De Boer et al., 1984; Claessen et al., 1996) and TiS2 is a semiconductor with

an indirect gap (Chen et al., 1980; Samuelsen et al., 1992), it can be expected that the

band gap of TiSe2 is smaller or even nonexistent. Note that in the periodic table selenium

is in between sulfur and tellurium, and also selenium is less electronegative than sul-

fur. Therefore, both experimental and theoretical techniques have been used to identify

the semiconducting or semimetallic nature of 1T-TiSe2 (Pillo et al., 2000; Calandra and

Mauri, 2011; Hildebrand et al., 2014; Rösner et al., 2014). Two-dimensional TiSe2 mono-

layer which is a recently sythesized member of transition metal dichalgonedies (TMDs)

has metallic ground state. Peng et al. (Peng et al., 2015) grew TiSe2 ultrathin films on a

graphitized SiC(0001) substrate by using molecular beam epitaxy (MBE). Their findings

offer important insights into the nature of the charge density wave in TiSe2, and paved the

way for potential applications based on its collective electronic states.

In order to achieve different applications, modifications of 2D materials intrinsic

properties are often required. Taking a graphene for example, a sizable band gap is indis-

pensable for electronic devices. To do so, several methods, such as cutting graphene into

nanoribbons, or chemically functionalizing graphene by hydrogen, flour etc. have been

proposed (Li et al., 2008; Elias et al., 2009; Zhou et al., 2009; Han et al., 2007)

Additionally, several theoretical and experimental studies have revealed that func-

tionalization of monolayers with hydrogen, fluor, and other adsorbands can not only mod-
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ify the electronic properties of the structures, but can also induce magnetism. Sahin et al.

(Şahin et al., 2011) have studied fluorinated graphene and they found that fluorographene

(CF) display crucial features, such as high mechanical strength, charged surfaces, local

magnetic moments and a wide band gap rapidly decreasing with uniform strain. Very re-

cently, intrinsic ferromagnetism has been achieved through a new effective strategy of flu-

orine adsorption on MoS2 nanosheets, where the fluorinated MoS2 nanosheets exhibit sta-

ble ferromagnetic hysteresis at room temperature.(Gao et al., 2015) Accordingly, tuning

of magnetic properties of hydrogenated MoS2 monolayer from nonmagnetic to ferromag-

netic, and further to nonmagnetic with the increase of tension has been reported by Shi et

al.(Shi et al., 2013) Pan (Pan, 2014) has shown that the metallic and magnetic vanadium

dichalcogenides monolayers can be made semiconducting, nonmagnetic, or antiferromag-

netic by hydrogen functionalization. Similarly, Tantalium based dichalcogenides (TaX2;

X= S, Se,Te) have been investigated by Manchanda et al. (Manchanda et al., 2015), and

they showed that isotropic strain and hydrogenation yield a variety of phase transitions

among magnetic and nonmagnetic states. Moreover, Cong et al. (Cong et al., 2015) have

performed first-principles calculations to explore a variety of TMDs and the hydrogena-

tion strategy has been applied for a part of TMDs with poor conductivity to have insight

into hydrogen influence and improvement of pseudo-capacitance performance.

In particular, these both experimental and theoretical hydrogenation studies to

functionalize physical properties of 2D materials have revealed some important results

such as tunable band gap opening in graphene and magnetic futures in TMDs. As a result,

in this chapter, we have performed first principles calculations based on denstiy functional

theory to reveal the effects of hydrogenation on two-dimensional TiSe2 monolayer which

is a recently sythesized member of TMDs. The structural, electronic and magnetic proper-

ties of one- and two-side hydrogenated TiSe2 monolayers are systematically investigated.

4.1. Computational Details

The generalized gradient approximation of Perdew-Burke-Ernzerhof (GGA-PBE)

is chosen as the exchange-correlation functional (including van der Waals correction

(Grimme, 2006)). Energy cutoff for plane-wave expansion is set to 500 eV. For Brillouin

zone integration, a 15×15×1 Γ-centered Monkhorst-Pack k-points grid is used. A vacuum

region of at least 20 Å is added in the direction normal to the nanosheet plane to prevent

interactions. All the atomic positions and lattice constants are optimized where the total
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energy and atomic forces are minimized. The convergence threshold for energy is chosen

as 10−5 eV and 10−4 eV/Å for the force. The Bader analysis is used for calculating the

charges on atoms.

For the determination of the stable adsorption site for hydrogen atoms on TiSe2

monolayer surface, a 4×4×1 supercell is used and the binding energy, using the energy of

the hydrogen molecule as reference, is calculated according to the formula: Eb= E(TiSe2)

+ 1/2E(H2) - E(TiSe2+H); where E(TiSe2) and E(TiSe2+H) are the energies of the TiSe2

supercell with and without hydrogen atom, respectively. E(H2) is the energy of an isolated

H2. Likewise, the binding energies of one- or two-side hydrogenated TiSe2 monolayers

on HfX2 (X=S, Se) is calculated as; Eb= E(TiSe2 + nH) +E(HfX2) -E(hetero.) where

E(hetero) is the total energy of the heterostructure, E(TiSe2 + nH) and E(HfX2) are the

total energies of the isolated monolayers.

4.2. TiSe2 Monolayer

Firstly, the structural form, electronic band dispersion, and the partial density

of states (PDOS) of bare TiSe2 monolayer is calculated which are summarized in Fig.

4.1. Typical TMDs have two different structural phases depending on the coordination of

chalcogen atoms, where one of the trigonal prismatic (2H) or octahedral (1T) phases is

thermodynamically preferred (Chhowalla et al., 2013b). TiSe2 monolayer prefers the 1T

phase as its ground state with a lattice constant of 3.50 Å and the corresponding Ti-Se

bond length of 2.55 Å. Ti atom donates 0.7 e to each Se atom which indicates that the

Ti-Se bonds have ionic character. According to our calculated PBE results in Fig. 4.1,

1T-TiSe2 has a nonmagnetic metallic ground state, and d orbitals of Ti atoms (dxy, dyz, dxz)

dominate near the Fermi level (EF), while contributions from the Se orbitals are almost

negligible in that region.

4.3. Adsorption of Single Hydrogen Atom

For hydrogenation of monolayer TiSe2, we first investigate the most stable adsorp-

tion site for a single H atom. Previous studies showed that the hydrogen adsorption on the

MoS2 monolayer in which the hydrogen atom prefers to bond to the S atom (S-H bond

length is 1.41) (Koh et al., 2012). Similar to hydrogen adsorption, it has been theoretically

predicted that N, O, and F favor the position of top of S atom for the MoS2 monolayer
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Figure 4.1. (Color online) Top and side views of 1T-TiSe2 monolayer with its band
structure (left-panel) and corresponding partial density of states. The
dashed red vectors show the unitcell of the structure.

(He et al., 2010). Different from MoS2, while top of Ti is the most stable position to be

adsorbed for F and N. However for the case of hydrogen adsorption, the calculated total

energies indicate that when a hydrogen atom is adsorbed at the top of Se site which the

Se-H bond length is 1.48 Å, the highest binding energy with a value of 1.70 eV (minimum

total energy) is found. The total magnetic moment of the structure 1 µB is found. Due

to small electro-negativity of H atom, 0.02 e is depleted from monolayer to hydrogen-

adatom. Therefore, in the present study H atom is only adsorbed on TiSe2 monolayer

onto Se atom, and for fully-hydrogenation onto the both Se atoms which is leading to the

formation of a chemical bonding of Se-H. It is noted that the situation in which H atom

is only chemically bonding onto the Se atom from one-side of TiSe2 monolayer can be

carried out putting this monolayer on a substrate.
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a c dTi−S e dS e−H EC Mtotal

(Å) (Å) (Å) (Å) (µB)
TiSe2 3.50 3.12 2.55 - Metal 0

TiSe2-1H 3.69 2.93 2.59 1.50 Half-Metal 1
TiSe2-2H 3.64 2.97 2.57 1.52 Metal 0

Table 4.1. The optimized lattice parameters of bare TiSe2, TiSe2-1H (with one-side
hydrogenation) and TiSe2-2H (both sides hydrogenated), c is the Se-Se
distance in the vertical direction, dTi−S e is the Ti-Se bond length, dS e−H is
the Se-H bond length, EC denotes electronic character of the structures
and Mtotal is the total magnetic moment per supercell.

4.4. The Effects of Full One- and Two-Side Hydrogenation

After finding the most stable site for a single H, we study the optimized lattice

constants for TiSe2 monolayer in which one-side (Fig. 4.2a) or both of the sides (Fig.

4.2b) are fully covered by hydrogen atoms. For a convenient notation, one- and two-side

hydrogenated TiSe2 monolayers are denoted as TiSe2-1H and TiSe2-2H which are shown

in Fig. 4.2 and also whose geometric and electronic details are listed in Table I.

The optimized lattice constant of bare TiSe2 monolayer is 3.50 Å, which is ex-

tended upon hydrogenation. The structure of TiSe2-1H has a lattice constant of 3.69 Å.

Compared with the bare TiSe2 monolayer, the lattice constant increases by 4% (3.64 Å)

for the TiSe2-2H. The vertical Se-Se distance effective width of the monolayer gets longer

with H coverage on its surface(s). The Se-H bond length is 1.50 and 1.52 Å for the TiSe2-

1H and TiSe2-2H monolayers, respectively.

After optimizing the lattice constants, we next investigate the electronic and mag-

netic properties of these structures. The results indicate that the TiSe2 monolayer is qual-

itatively affected by hydrogenation. Fig. 4.3(a)-(b) show the calculated spin-polarized

band structures of TiSe2-1H and TiSe2-2H monolayers, respectively. As we discussed

in the previous subsection, bare TiSe2 monolayer has metallic ground state, in contrast

TiSe2-1H exhibit half-metallic property, i.e. the monolayer behaves like a metal with

respect to the electrons of majority spin and like a semiconductor with respect to the elec-

trons of minority spin. Such spin-dependent asymmetric electronic states can be utilized

in spintronics applications. On the other hands, similar to its bare form TiSe2-2H is also

metallic (Fig. 4.3(b)).

Besides that, it can be seen in Fig. 4.3(a), the band dispersion of the minority spin
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Figure 4.2. Top and side views of (a) TiSe2 monolayer with one-side fully covered by
hydrogen atoms (TiSe2-1H), and (b) TiSe2 monolayer with both sides fully
covered by hydrogen atoms (TiSe2-2H), with the dashed white area is for
the unitcell of the structures.

(blue dashed curve) shows different parabolic curvature at the conduction band minimum

around the M-point. More clearly, the curvature in the K-M direction is sharper than

the Γ-M direction which leads to highly anisotropic electron effective masses along the

zigzag (K-M) and armchair (Γ-M) directions. Therefore, we extracted electron effective

masses in two directions Γ-M and K-M by parabolic fitting of the band structure. The

result demonstrate that a very heavy effective mass me
∗/me=3.37 in the Γ-M direction,

while light one has me
∗/me=0.39 in the K-M direction.

In addition, as shown in Fig. 4.3(a) significant splitting between the spin-up and

spin-down states near the EF suggests the intrinsic ferromagnetism of an TiSe2-1H mono-

layer. In spin-polarized calculations, for the TiSe2-1H structure, hydrogen donates an

electron into TiSe2 monolayer, and these donated electron improves the magnetic moment

of the bare structure, as a result the magnetic moments 1.0 µB is found for the TiSe2-1H.

The spin charge density difference is shown in Fig. for the ferromagnetic case, the metal

atom Ti is carried local magnetic moments which are contributed mainly by d orbitals,

while the contributions from other atoms are rather small. The calculated magnetic mo-

ments of Ti atom is 0.86 µB whereas, the H-bonded Se and H atoms have nearly 0.02 µB

magnetic moments, and the uncovered Se atom has negative magnetic moment which is

less than 0.01 µB. Therefore, the analysis demonstrate that Ti 3d orbitals mainly dominate
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Figure 4.3. (Color online) The spin-polarized band structures of (a) TiSe2-1H and (b)
TiSe2-2H monolayers. The EF is at 0. The red and blue dashed curves
represent spin-up and spin-down bands, respectively.

for the spin-polarized state, while contributions from Se 4p and H 1s orbitals are negli-

gible. The variation of charge transfer between different atoms can be also important for

the magnetism in the TiSe2-1H structure. According to Bader charge analysis, Ti atom

loses 1.3 e, while H gains 0.1 e; as for Se, the one with H bonding gains about 0.5 e,

while the one without H bonding gains about 0.7 e. Similarly, for the case of TiSe2-2H,

Ti atom loses 1.2 e, while H atoms gain 0.1 e, and every H-bonded Se atoms gain 0.5 e.

Moreover, a stable ferromagnetic state with high Curie temperature (Tc) is necessary for

the real full potential of spintronic devices. To this end, we further examine the preferred

magnetic coupling of the TiSe2-1H monolayer. We use the 2 × 2 cell as shown in Fig.

for two different magnetic configurations. The energy difference between the antiferro-

magnetic (AFM) and ferromagnetic (FM) states which give the exchange energy (Eex), is

calculated as Eex=(EAFM-EFM)/4. The calculated Exc value is positive and found to be 32

meV, which satisfies the TiSe2-1H has FM ground state because the FM state has lower

energy than the AFM state. In particular, Ising theory and Heisenberg model can be ap-

proximated Curie temperature of the materials. Based on the Ising model, the magnetic

coupling of Hamiltonian can be written as; H = −Σi, j Ji j m̂i m̂ j, where J is the Heisenberg

exchange parameter and m̂i/m̂ j represent the magnetic moment of the nearest neighbor-
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AFM FM

Figure 4.4. (Color online) The spin charge density difference of TiSe2-1H structures
top and side views, for the antiferromagnetic (AFM) and ferromagnetic
(FM) states where yellow (blue) colors represent the majority (minority)
spin states. The spin charge density difference is plotted at same isosurface
value of 0.003 e/Å3.

unitcells. Details of the method (Kudrnovskỳ et al., 2004) and different methodologies

can be found previous studies (Torun et al., 2015; Kan et al., 2013) After all, using the

mean field theory and the Heisenberg model to estimate the Tc from kB Tc=(2/3) Eex ,

which gives 248 K. The result reveal that TiSe2-1H can be new magnetic materials to

used in spintronics.

4.5. Hydrogenated TiSe2 Monolayers on HfX2

Finally, we also perform an analysis of the electronic and magnetic properties for

the one-side and both of its sides hydrogenated TiSe2 monolayers on different substrates.

Among the possible choices, the HfSe2 and HfS2 which have semiconducting property,

are chosen. The reason is that HfX2 monolayers have several characteristics in common

hydrogenated TiSe2. Furthermore, Hf-based TMDs have predicted that large work func-

tions and reasonable mobilities, making them suitable for a range of nanoelectronic and

optoelectronic device applications (Yue et al., 2014). Both HfSe2 and HfS2 monolayers

are in 1T phase likewise TiSe2 and the optimizing lattice constants are 3.72 and 3.63 Å,

which are very close to that of TiSe2-1H and TiSe2-2H structures. As shown in Fig. 4.5,
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Figure 4.5. (Color online) The PBE band structures of (a) HfSe2, and (b) HfS2 mono-
layers, where red curves are for spin-up while dashed blue curves are spin
down. The EF level is set to the valence band maximum.

the band-gap of the structures are found 0.47 and 1.26 eV for HfX2 (X=Se, S), respec-

tively. The band dispersions indicate that both monolayers are indirect band gaps and the

electron effective masses are highly anisotropic similar to TiSe2-1H.

Since hydrogenated TiSe2 monolayers have different lattice constants, we put

TiSe2-1H on HfSe2 and TiSe2-2H on HfS2 monolayers. The heterosturtures of them give

the minimum total energy for TiSe2-1H on top of HfSe2 monolayer (Fig. 4.6(a)), while

for TiSe2-2H are shifted on HfS2 monolayer such as the metal Ti atom is aligned on the

top of sulfur atom, and the bottom H atom is on the metal atom Hf which is shown in Fig.

4.6(b).

The calculated lattice constant of TiSe2-1H/HfSe2 heterostructure is found to be

3.70 Å and the layer-layer distance is 2.94 Å, with a binding energy is found to be 0.28

eV. The total magnetic moment of the system is 1.0 µB. Similarly, for the case of TiSe2-

2H/HfS2, the lattice constant of the system is found to be 3.62 Å, and the layer-layer

distance is 1.67 Å with the binding energy is about 0.40 eV, and zero net magnetic moment

is found. The net magnetic moments of the hydrogenated structures in hetero form with

HfX2 are even same.

In addition, the electronic band structures of the systems are shown in Fig. 4.6.
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Figure 4.6. (Color online) Top and side views of hydrogenated monolayers on HfX2

(X=Se, S). Their band structures are shown at the bottom of the figure,
where the red and blue (dashed) curves represent spin-up and spin-down
bands, respectively. The EF is set 0 eV.
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As in the case of TiSe2-1H structure, semi hydrogenated monolayer preserve its half-

metallicity behavior when it is on top of the HfSe2 monolayer. The only difference is that

the spin-up and spin-down bands are shifted upward direction. Whereas, for the TiSe2-

2H structures on HfS2 monolayer, the electronic band property has minor changes. The

metallic property is conserved, where the extra band cuts the Fermi level at very close to

the M-point. This contribution comes from Hf atom due to the strong interaction between

the TiSe2-2H and HfS2 monolayers.

Our results demonstrate that the antiferromagnetic metallic ground state of TiSe2

can be tuned to become ferromagnetic and half-metallic by one-side hydrogenation, on the

other hand, two-side hydrogenated TiSe2 exhibits antiferromagnetic metallic properties as

its bare form. We have predicted that the ferromagnetic one-side hydrogenated TiSe2 has

a Curie temperature Tc of 248 K. Its electronic band dispersion reveals that electron ef-

fective masses are highly anisotropic along the high-symmetry directions. Additionally,

the structural and electronic properties of the hydrogenated monolayers on different sub-

strates have also been investigated. The chosen HfX2 (X=S, Se) substrates, which have

semiconducting property and high electron mobilities so they are suitable for a range of

nano-electronic and opto-electronic device applications, are well adapted to hydogenated

monolayers.
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CHAPTER 5

ELECTRONIC AND MAGNETIC PROPERTIES OF

ZIGZAG AND ARMCHAIR EDGED TISE2 AND

PTSE2 NANORIBBONS

The presence of exotic properties in 2D materials, that stemmed from increas-

ing quantum confinement effects, has also motivated researchers to further reduce their

dimension and to investigate one-dimensional (1D) nanoribbons (NRs). Commonly, one-

dimensional nanostructures have been of both fundamental and technological interest due

to interesting electronic and physical properties are intrinsically associated with their low

dimensionality and quantum confinement effects. Therefore, the electronic and magnetic

properties of graphene nanoribbons (GNRs) have been intensively studied (Son et al.,

2006a; Han et al., 2007).

Motivated by the recent synthesis of single layer TiSe2, in this chapter we inves-

tigate the structural and electronic properties of zigzag and armchair-edged nanoribbons

of this material (Ozaydin et al., 2015). Similar to 1T-TiSe2, the epitaxial growth of high-

quality single-crystal, monolayer platinum diselenide (PtSe2), a new member of TMDs

family, by a single-step of a direct selenization of Pt(111) substrate is demonstrated (Wang

et al., 2015). In addition, we also analyze the electronic properties of 1T phase of PtSe2

nanoribbons.

5.1. Computational Details

The PBE form of the GGA are adopted to describe the electron exchange and cor-

relation for both spin-polarized and spin-unpolarized cases. In order to correct the PBE

band structure for a monolayer of TiSe2 (also for PtSe2), we also use the Heyd-Scuseria-

Ernzerhof 06 (HSE06) functional(Heyd et al., 2003, 2006) which is known to give better

electronic structure description that is close to experiments and produce accurate band

gaps. Since it improves the accuracy of standard band gaps, we determined HSE06 func-

tional parameters as an enhanced fraction of the Hartree-Fock exchange α = 0.25 and

screening 0.2 Å−1. The kinetic energy cutoff for the plane-wave expansion is set to 500

40



eV where the Brillouin Zone (BZ) was sampled with Monkhorst Pack (MP) by 7×1×1

k-point grids. For all band structure calculations, we use a 75×1×1 Γ-centered k-point

mesh. To avoid the interaction between periodic images, we ensured a sufficient large

supercell which is 20Å long perpendicular to the nanoribbon plane and with an edge-to-

edge distance of at least 13 Å. At the same time, all the atoms in the supercell are fully

relaxed during the geometry optimization. The convergence threshold for energy is cho-

sen as 10−5 eV and 10−4 eV/Å for the force. The charge distribution on the atoms are

calculated by using the Bader analysis.

Moreover, we investigate hydrogen saturated nanoribbons in order to study the

edge stability. The hydrogen saturation is realized by adding one hydrogen atom to

the edge of Ti (Pt) and Se atoms for the zigzag nanoribbons, however for the armchair

nanoribbons one hydrogen atom is added to the edge of Se atoms and two hydrogen atoms

are added to the Ti (Pt) atom. For the determination of the most favorable structure (for the

case of TiSe2 NRs) which means the structure after hydrogenation, the binding energies

are estimated from: EB=ET [NR]+nET [H]-ET [NR+nH] where ET [NR] is the total energy

of the TiSe2 nanoribbon, ET [H] is the energy of the free hydrogen atom, ET [NR+nH] is

the total energy of the TiSe2 nanoribbon saturated by hydrogen atoms, and n is the total

number of saturated hydrogen atoms.

5.2. Two-Dimensional Monolayer TiSe2

Before a comprehensive investigation of TiSe2 nanoribbons, we first present the

atomic, electronic and magnetic properties of the TiSe2 monolayer. Principally, layered

structures of TMDs can form several different phases, e.g. H and T, that result in di-

verse electronic properties. Monolayer TiSe2 has a hexagonal crystal structure composed

of three atom layers with a metal atom Ti layer sandwiched between two chalcogen Se

layers. Here octahedral coordination of the metal atoms results in the 1T structure as

shown in Fig. 5.1(a). Similar to graphite and graphene, in bulk TiSe2 the monolayers are

bound together through the interlayer van der Waals (vdW) interaction. The bond lengths

are uniformly dTi−S e=2.56Å, dS e−S e=3.72Å, where the angle between the Ti-Se bonds is

θS e−Ti−S e=93.12◦ and the optimized lattice constant is 3.52Å from PBE calculation.

The PBE electronic band dispersion, shown in Fig. 5.1(b), shows that single layer

TiSe2 is a metal with a nonmagnetic ground state. In addition, the partial density of states

(PDOS) reveals that while there is negligible contribution from the Se orbitals around

the Fermi level (EF), those bands are mainly composed of Ti-3d orbitals (dz2 , dxy, dyz).
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Figure 5.1. (Color online) (a) Atomic structure of monolayer 1T-TiSe2 with top and
side views where the dashed yellow area denotes the unitcell of the mono-
layer, and (b) the band structure calculated with PBE and HSE06, (c) par-
tial density of states as calculated with PBE. Labels M1 and M2 are dis-
cussed in Fig. 5.6.

At the same time, a Bader analysis indicates that each Ti atom gives 1.4 electrons to the

Se atoms which means that 0.7 electrons are taken by one Se atom, hence this situation

shows that the character of the bonding is ionic. In contrast, the band structure of 1T

TiS2 is semiconducting. Usually the difference in chalcogen atoms affects the structural

properties, but has little influence on the electronic properties. For instance single layers

of MoSe2 and MoS2 are both direct band gap semiconductors. However, a TiSe2 sheet

exhibits a metallic behavior with a low band crossing of the Fermi level, which is different

from TiS2.

To further examine the electronic properties of 1T-TiSe2, we also calculated the

band structure with the HSE06 method which is shown in Fig. 5.1(b). As can be seen the

calculated bands below the Fermi level are shifted upward while above the Fermi level

they are slightly shifted downward. At the same time, below the Fermi level the bands

are decomposed but the bands above the Fermi level almost overlap with those of the

PBE result. Consequently, from both the PBE and HSE06 methods we may conclude that

TiSe2 is metallic.

In general, relative to the experimental values, band gaps of semiconducting mate-
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Figure 5.2. (Color online) Top view of (a) zigzag and (b) armchair TiSe2 nanoribbons.
The unitcell is indicated by the dashed box.

rials are underestimated by PBE, but they are overestimated when HSE06 corrections are

added. However, PBE+HSE06 provides better aggrement with the experimental values.

Applying HSE06 corrections to metallic systems is not very common due to its compu-

tational cost, and no expected qualitative change in the band structures. Its effect is to

introduce some shifts to the bands but the metallic character is preserved. For instance,

single-layered VS2 and T-MoS2 are still found metallic with HSE06 correction.

5.3. Nanoribbons of 1T-TiSe2

The TiSe2 nanoribbons (TiSe2-NRs) are obtained by cutting the 2D-TiSe2 mono-

layer. According to the different directions of termination, there are two kinds of nanorib-

bons: zigzag (TiSe2-ZNR), and armchair (TiSe2-ANR). Apart from the termination, TiSe2-

NRs are defined by their widths. The width of the zigzag nanoribbon is denoted as Nz

(TiSe2-NzZNR) and for armchair nanoribbon, the width is denoted by Na (TiSe2-NaANR).

In Fig. 5.2 the lattice structure of TiSe2-8ZNR and TiSe2-5ANR are presented. In our cal-

culations, we consider width Nz from 2 to 10 and Na from 2 to 8.

The fully optimized NRs exhibit structural deviation at the edges. For example

TiSe2-ANRs are strongly distorted after relaxation, compared to TiSe2-ZNRs. In the triple

layer networks, the edge selenium atoms shift their position from the Se layers to the Ti
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layer for both zigzag and armchair nanoribbons whereas the Ti atoms at the edges shift

their position from the Ti layer to the Se layers for only zigzag nanoribbons. At one

of the edges the Ti atom is closer to the lower Se layer, and the Ti atom at the other

edge is closer to the upper Se layer. As seen in Fig. 5.2(b) for armchair nanoribbons

reconstruction takes place, as the Ti atoms at the edges moved towards the ribbon’s center

and the Se atoms tend to shift slightly outward. For TiSe2-8ZNR, shown in Fig. 5.2(a),

the Ti atoms moved slightly out of the plane, leading to a change of the Ti-Se bond length

along the ribbon-axis. Nevertheless, the triple-layer networks are well kept intact for both

ribbons. For instance, the average Ti-Se bond lengths for TiSe2-7ZNR are 2.56Å in the

inner site, and 2.44Å at the two edges. The angle between Se-Ti-Se bond is 6.22◦ between

the center and edge of the Nz=7 zigzag nanoribbon. For the TiSe2-8ANR, coordination of

atoms are different so that the Ti-Se bond length is different with values of 2.50, 2.57, and

2.64 Å in the inner site, at the edges it decreases to 2.38Å. All of the nanoribbons display

the same structural property, and the only difference is that the bond lengths between the

edge Ti-Se atoms are longer in ZNRs than those in ANRs. Similar to the case of MoS2

nanoribbons(Li et al., 2008), at the edges the Ti-Se bond lengths decrease because of the

irregular force on the edge atoms. Also, a Bader charge analysis tells us that charges on

both Ti and Se atoms are equally distributed along the ribbon axis, since all of the Ti

atoms lose the same amount of electron charge which is taken by the Se atoms. Likewise

in the 2D-TiSe2 layer, every Ti atom loses 1.4 electrons to the Se atoms which gain 0.7

electrons along the ribbon axis.

5.3.1. Electronic Properties

During the geometry optimization, we first carried out both spin-polarized and

spin-unpolarized total energy calculations in order to determine the ground state of the dif-

ferent TiSe2-NzZNR (TiSe2-NaANR). There is no energy difference between spin-polarized

and spin-unpolarized calculations which indicates that zigzag and armchair TiSe2 nanorib-

bons have a nonmagnetic ground state. To be more confident about the magnetization

of the edges, we also performed calculations for four different magnetic orderings for

TiSe2-4ZNR and also TiSe2-5ZNR by taking a double unitcell, such as antiferromagnetic

(AFM), ferromagnetic (FM) (where, the atoms are located at different edges are AFM

coupled, and at the same edge are FM coupled) (see Fig. 5.4(a)). We take the case of a

TiSe2-5ZNR as an example. Calculations starting from the four magnetic states, namely

AFM-AFM, AFM-FM, FM-AFM, and FM-FM, and results in the same total energy. The
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Figure 5.3. (Color online) Energy gap of zigzag (2 ≤ Nz ≤ 10) and armchair (2 ≤ Na ≤
10) 1T-TiSe2 nanoribbons as function of the ribbon width. Dashed curves
are exponential fits.

same magnetic test is also applied to armchair nanoribbons (see Fig. 5.4(b)). All the

test results gave the same total energy and zero net magnetic moment. As a result, TiSe2

armchair nanoribbons have a nonmagnetic ground state like MoS2-ANRs(Li et al., 2008).

Thus, our calculation demonstrates that TiSe2-ZNRs and TiSe2-ANRs are not magnetic

and the edge states do not effect the magnetization of the structures.

After analyzing the structural and magnetic properties, we investigated the band

dispersion of the TiSe2-NRs. Electronic structures of TiSe2-NRs show similar behavior

like the single-layer 1T-TiSe2. In fact, we found that reducing the dimensionality from

2D to 1D, at a certain ribbon width a metal to semiconductor transition is found for both

zigzag and armchair nanoribbons as seen in Fig. 5.3. The band gap decays monotonically

with the ribbon width for armchair nanoribbons, however for zigzag nanoribbons the

rapid band gap decrease is superposed with an even-odd oscillation with increasing Nz

and finally both structures switches to the zero energy gap of monolayer TiSe2 (for Nz

≥ 7, and Na ≥ 6). Similar oscillatory behavior is also observed in the equilibrium lattice

constant for TiSe2-NzZNRs, when we increase the ribbon width Nz, the lattice constant

approached slowly the value 3.52Å which is the same as that calculated for the 2D-TiSe2.

The edge reconstructions are more effective in changing the equilibrium lattice constant

of ultra narrow ribbons.

As illustrated in Fig. 5.3, the band gaps as a function of ribbon width for both
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Figure 5.4. (Color online) Different magnetic interaction cases for (a) TiSe2-5ZNR and
(b) TiSe2-5ANR.

zigzag and armchair-edged nanoribbons decay very rapidly, except for a small superposed

oscillation observed in ultranarrow zigzag nanoribbons. Similar band gap oscillations as a

function of ribbon width were also predicted for other semiconducting nanoribbons(Son

et al., 2006b). Nevertheless, due to the rapid decay in both types of nanoribbons, to

provide a quantitative measure for these decays the band gap variations are fitted to the

exponential functions, Egap(N)= α exp(-Nβ), where N is the width of the nanoribbon (for

ZNRs N=Nz and for ANRs N=Na), and α and β are fitting parameters. For armchair and

zigzag nanoribbons, the values of the fitting parameters are found to be α=5.06, β=0.89

eV and α=6.17, β=1.08 eV, respectively. For N ≥ 7, the band gaps of both types of

nanoribbons are vanished.

Spin-unpolarized band structures of TiSe2-NzZNRs are presented in Fig. 5.5. No-

tice that the band structures show similar property at the X-point for odd and even numbers

of ribbon width. For the ribbon width of Nz=2 a large gap of about 0.786 eV is found.

Among the four ZNRs in Fig. 5.5, TiSe2-4ZNR has the largest band gap of 0.201 eV,

TiSe2-3ZNR has a medium band gap of 0.165 eV, TiSe2-5ZNR and TiSe2-6ZNR have

the smallest band gaps of 12 meV and 5 meV, respectively. Both the direct band gap of

zigzag-edged and the indirect band gap of armchair-edged ultranarrow nanoribbons de-

crease with increasing ribbon width and eventually vanish for Nz ≥ 7, and Na ≥ 6. The

conduction band minimum (CBM) and the valance band maximum (VBM) cross resulting
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Figure 5.5. (Color online) Electronic band structure of a series of zigzag and armchair
nanoribbons of 1T-TiSe2 by using the PBE method.

in a semimetallic band structure with overlapping bands.

In order to investigate this width-dependent transition in the band structure, as well

as the odd-even variations observed in the narrowest ZNRs, we have considered partial

charge density (PCD) profiles corresponding to VBM and CBM, or for some specific pair

of points in the band structures. These pair of points are M1 and M2 for 2D-TiSe2 (Fig.

5.1), Z1 and Z2 for ZNRs, and A1 and A2 for ANRs (Fig. 5.5). The PCD plots of the

VBM and the CBM as shown in Fig. 5.6 indicate the electronic states around the Fermi

level. For TiSe2-3ZNR (TiSe2-4ZNR), the VBM and the CBM originate from a hybridized

mixture of 3d electrons of Ti and 4p electrons of Se atoms with the hybridization being

stronger in the VBM than that in the CBM. A comparison of the VBM states of TiSe2-

3ZNR and TiSe2-4ZNR indicate that they are localized more at the edges for odd Nz,
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Figure 5.6. (Color online) Band decomposed charge density plots of monolayer and
Nz=3,4,7,8 nanoribbons of TiSe2 where Z1 and Z2 are shown in the band-
structures (see Fig. 5.5). Inset shows the Γ-point charge densities of M1
and M2 band edges (shown in Fig. 5.1) of 2D TiSe2.

whereas they are more uniform distributed for even Nz ribbons. For wider ribbons (Nz >

4), both the VBM and CBM states tend to delocalize and the metallic character is attained

(this is evident for Nz=7 and Nz=8 in Fig. 5.6). With increasing Nz, the PCD plots at the

Z1 and Z2 points tend to converge to those at the M1 and M2 pair for 2D-TiSe2, where

the corresponding states are localized on the Se and Ti atoms, respectively. The opening

of a band gap in very narrow ribbons can be attributed to quantum size effects.

Typical band structures for a series of armchair TiSe2 nanoribbons are also shown

in Fig. 5.5. Unlike zigzag nanoribbons, the electronic structure of the armchair ribbons

exhibit an indirect band gap for Na ≤6. The gap decreases exponentially with the ribbon

width. The band gap is almost halved when the ribbon width is increased from Na=2 to

Na=4. TiSe2-5ANR still has a band gap of about 5.2 meV. Starting with Na=6, the CBM

dips into the Fermi level, so that the armchair nanoribbons become metallic for wider

widths. Some partial charge density plots for TiSe2-NaANRs are also illustrated in Fig.

5.7. Similarly, the VBM and CBM states are composed of a hybridized mixture of Ti-3d

and Se-4p orbitals for small nanoribbons, however for the ribbon width larger than four,

the hybridization becomes lost.
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Figure 5.7. (Color online) TiSe2-3ANR band structure and band decomposed charge
densities of Na=3,4,7,8 nanoribbons of TiSe2 where the A1 and A2 refer
to the states indicated in Fig. 5.5.

5.4. Hydrogen Termination of Edges

In order to investigate the effect of dangling states present at the edges of the

nanoribbons, we have passivated the edge atoms by hydrogen atoms. These unsaturated

bonds influence the electronic properties of the ribbons. Naturally these states do not

exist in the infinite TiSe2 single layer, therefore reducing dimensionality from 2D to 1D

it will be of importance control the dangling bonds. Earlier, it was shown for graphene

nanoribbons that when the dangling bonds at the edges are passivated with hydrogen

atoms the electronic and magnetic properties of the ribbons are modified.(Barone et al.,

2006) Unlike graphene, the TiSe2-NRs have two types of atoms at the edges so that both

Ti and Se atoms have to be passivated by hydrogen atoms to compensate the edge states.

Among possible configurations for the edge termination with hydrogen atoms,

the most energetically favorable structure is shown for the TiSe2-4ZNR in Fig. 5.8. As

seen in the figure where the edge atoms are passivated by hydrogen atoms symmetrically,

hydrogenation of the nanoribbons also enhances the stability of the structures. After hy-

drogenation the ground state energies is lowered, and the binding energy is found to be

11.7 eV for the case of TiSe2-4ZNR. The band structures for several hydrogenated ZNRs

are shown in Fig. 5.9. The TiSe2-NzZNRs are all metallic except for Nz=4.

We performed a analysis for the armchair nanoribbons. In TiSe2-3ANR, as an
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Figure 5.8. (Color online) Passivation of the edge states with hydrogen atoms (blue
colored) for the zigzag and armchair nanoribbons.

example shown in Fig. 5.8, the edge Se and Ti atoms are passivated by one and two

hydrogen atoms, respectively. The binding energy of the TiSe2-3ANR is 23.4 eV. After

the hydogenation, TiSe2-3ANR and TiSe2-4ANR are semiconductors with an increasing

band gap. Also, the VBM state moves a little away from the Γ-point in case of Na=3.

TiSe2-7ANR and TiSe2-8ANR are still metallic after hydrogenation, however the overlap

of the conduction and valance bands is reduced.

5.5. Pristine Single Layer and Nanoribbons of 1T-PtSe2

On the contrary the traditional sythesis method of MX2 through exfolation or

chemical vapor deposition, Wang et al. (Wang et al., 2015) reported that the synthesis

of PtSe2 can be achieved via the direct deposition of Se atoms on a Pt substrate. Through

angle-resolved photoemission spectroscopy (ARPES) measurements and band structure

calculations confirm for the first time the semiconducting electronic structure of mono-

layer PtSe2, contrary to the semimetal properties of its bulk counterpart.

Our systematic study begins with calculating the electronic properties of PtSe2 in

its monolayer form. The optimized lattice constant is a=b= 3.696 Å (GGA+vdW), while

the Se-Pt-Se bond angle is 85.71◦. These values are in good agreement with previous

theoretical calculations (Li et al., 2016) and also with the experimental ones of a=b= 3.70
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Figure 5.9. (Color online) Band structures for zigzag and armchair nanoribbons where
the edge atoms are passivated by hydrogen atoms.

Å (Wang et al., 2015). As shown in Fig.5.10, monolayer PtSe2 is a semiconductor with

an indirect bandgap of 1.38 eV between the Γ point and a point half way along the Γ-M

line. Our calculated bandgap is slightly smaller than previously predicted one of 1.41 eV

(Zhuang and Hennig, 2013). Band structure for monolayer PtSe2 calculated by HSE06

hybrid functional, shows the semiconductor nature of PtSe2 monolayer with a value of

1.91 eV. At the same time, DOS reveals that valance band maksimum (VBM) (Γ-point)

is mainly contributed by Se p orbitals and the coupling between the Pt d orbitals (mainly

dxy+dx2) and Se p orbitals. Yet the conduction band minimum (CBM) (between Γ-M

point) is mainly contributed by Pt dyz+dxz orbitals and, to less extent, by Se p orbitals

and Pt dxy+dx2 orbitals. It is useful to say that, when increasing the thickness, bilayer

PtSe2 remains a semiconductor, but the energy gap decreases to 0.21 eV. Starting from a
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Figure 5.10. (Color online) Band structure and density of states (DOS) of monolayer
PtSe2.

trilayer, PtSe2 becomes semimetallic, therefore only monolayer PtSe2 is a semiconductor

with a sizable bandgap (Wang et al., 2015). The opening of a sizable bandgap within the

range of visible light makes monolayer PtSe2 potentially suitable for opto-electronics and

photo-catalysis.

After we optimized the structure of a single PtSe2 layer, two kinds of PtSe2 nanorib-

bons can be distinguished according to the different directions of termination: zigzag and

armchair. Following the previous convention used for TiSe2 nanoribbons with armchair

and zigzag shaped edges are classified by the number of Pt atoms across the ribbon width

for the case of PtSe2 NRs. After full relaxation, the triple-layer networks are well kept at

both ribbons, only small structural deviations occur at the edges like TiSe2 NRs as shown

in Fig.5.2.

During the structure optimization, we have carried out both spin-unpolarized and

spin-polarized computations to determine the ground state of PtSe2 NRs. For both PtSe2

ribbons, spin-polarized total energies are less favorable than spin-unpolarized ones, indi-

cating that armchair and zigzag nanoribbons have a nonmagnetic ground states.

Fig.5.11 represents band structures for both armchair and zigzag nanoribbons of

PtSe2 in which the ribbon width changes 4≤ Na(or Nz) ≤9. The calculated band structures

of the armchair and zigzag NRs clearly show that they are direct band gap semiconductors

with band gaps of about 120 meV (about 80 meV for PtSe2-NzZNRs). The gap are really
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Figure 5.11. (Color online) Band structures for zigzag and armchair edged PtSe2

nanoribbons.

small and almost width independent, because as it can be seen from Fig.5.11 increasing

the ribbon width does not change the gap so much for both type of NRs. However, it is

surprising that the both nanoribbons return to metallic when their width decrease to Na=4

for armchair and Nz=5 for zigzag ribbon. When the edges of these ribbons are passivated

by hydrogen atom, the ribbons return to semiconductor. Therefore, the hydrogenation

process not only changes the magnetic property but also modulates the electronic property

of the nanoribbons.

Generally, the introduction of hydrogen atoms to saturate the dangling states at

the edges can improve the stabilities of the NRs and also can modulate the electronic

and magnetic properties. Fig.5.12, represent typical band structure for PtSe2-7ZNR and

PtSe2-7ANR, respectively. These band structures are all representative for the other hy-

drogenated zigzag and armchair PtSe2 NRs.

The zigzag nanoribbons without hydrogen saturation have a small band gap. How-

ever, after hydrogenation of the edge atoms, it was found that PtSe2-7ZNR has an indirect

band gap of about 1.17 eV. The minority and majority spin band are fully degenerate and
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nanoribbons.
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therefore the system is nonmagetic. The partial charge density of states (as shown in

Fig.5.13) reveals that the valance band top states are dominated by the p electrons of Se

atoms at the edges and the small contribution from Pt-d electrons, while the d electrons

from the Pt atoms at the edges mainly contribute to the conduction band bottom. Further-

more, the state below the valance band top is mainly located at the edges, but the the state

above the conduction band bottom is uniformly disturbuted along the ribbon side. Since

hydrogenation removes the effect of dangling bonds at the edges and the states around the

fermi level are disappeared and the band gaps of the zigzag nanoribbons are increased.

Similar to zigzag NRs, the dispersion relation for the case of armchair nanoribbons show

that (Fig.5.13) semiconducting property. The only difference is that the majority and mi-

nority spin channels are split and the structure become ferromagnetic. For example, the

total magnetic moment of PtSe2-7ANR increases from 0 µB to 1 µB due to the hydrogen

termination. Hydrogen termination induce the magnetism of armchair PtSe2 nanoribbons

since the edge atoms do not recover the same state as that of inner atoms due to the H

termination. As shown in Fig.5.14 for the case of PtSe2-6ANR is representative for all

bare PtSe2-ANRs, the states around the fermi level are both dominated by the Pt-d and

Se-p orbitals. However, their conduction band bottoms are shifted upward and valance

band top are shifted downward directions due to the termination of the dangling states at

the edges, resulting in an increase of their band gaps.
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Figure 5.14. (Color online) Band structures for zigzag and armchair edged PtSe2

nanoribbons.

55



Our analysis reveals that, differing from ribbons of other ultra-thin materials such

as graphene, TiSe2 nanoribbons have some distinctive properties. The electronic band gap

of the nanoribbons decreases exponentially with the width and vanishes for ribbons wider

than 20 Angstroms. For ultranarrow zigzag-edged nanoribbons we find odd-even oscilla-

tions in the band gap width, although their band structures show similar features. More-

over, our detailed magnetic-ground-state analysis reveals that zigzag and armchair edged

ribbons have nonmagnetic ground states. Passivating the dangling bonds with hydrogen

at the edges of the structures influences the band dispersion. For the PtSe2 NRs, we found

that both armchair and zigzag-edged nanoribbons have almost width-independent ultra-

narrow band gap. Furthermore, the PtSe2 NRs have either armchair and zigzag shaped

edges on both sides with hydrogen passivation. Both varieties of ribbons are shown to

have band gaps. This differs from the results of bare PtSe2 and TiSe2 nanoribbons. Our

results shed light on the characteristic properties of T phase nanoribbons of similar crystal

structures.
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CHAPTER 6

WIDTH-INDEPENDENT BAND-GAP: TIS3

NANORIBBONS

Similar to previous chapter, in this chapter we focus on nanoribbons form of tran-

sition metal chalcogenide that we investigate the electronic properties, mobility and strain

response of transition metal tri-chalcogenide TiS3 (titanium tri-sulfide) nanoribbons from

first-principles calculations (Kang et al., 2015). Several recent works have reported the

sythnesis of thin TiS3 films and few-layer of TiS3 nanoribbons which show a direct band

gap of ∼1.1 eV (Ferrer et al., 2012, 2013). More importantly, the fabricated TiS3 NRs

show ultrahigh photoresponse and fast switching times (Island et al., 2014). Most re-

cently, 2D TiS3 nanosheets have been exfoliated its bulk crystal and implemented into

field-effecct transistors (Island et al., 2015). The electronic structure of single layer TiS3

was computed and indirect to direct band gap transition from bulk to monolayer was found

(Dai and Zeng, 2015). The properties of defective monolayer TiS3 have also been stud-

ied (Iyikanat et al., 2015). Before further applying these materials in nanoelectronic and

optical devices, a more comprehensive study from theoretical aspect is needed (Jin et al.,

2015). Although there are a few theoretical investigations on the electronic properties of

two-dimensional TiS3, (Dai and Zeng, 2015; Jin et al., 2015) the characteristic proper-

ties of one-dimensional nanoscale structures of TiS3 (TiS3 NRs) have not been explored.

Therefore, our study addresses some important questions on this novel material:

(i) Do TiS3 NRs show chirality-dependent electronic and magnetic properties like

graphene (Son et al., 2006a) and MoS2 NRs (Li et al., 2008)?

(ii) Does quantum confinement in one-dimension result in a width-dependent electronic

band gap of TiS3 NRs as in NRs of graphene (Son et al., 2006a), graphane (Şahin

et al., 2010), silicene (Kim et al., 2012), and phosphorene (Tran and Yang, 2014)?

(iii) What is the role of applied strain, which was shown to tune the electronic properties

of chalcogenides (He et al., 2013; Johari and Shenoy, 2012), in the the properties

of TiS3 NRs?

(iv) Can the high electron mobility predicted for TiS3 (Dai and Zeng, 2015) be preserved

in the NRs?
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(v) How are the properties of TiS3 NRs affected by edge passivation?

The above-mentioned questions are answered in this chapter by using the state-of-the-art

ab-initio calculations.

6.1. Computational Details

The generalized gradient approximation of Perdew-Burke-Ernzerhof (GGA-PBE)

is adopted. The wavefunctions are expanded by plane-wave basis sets with a cutoff of

400 eV. Part of the calculations are also performed using the Heyd-Scuseria-Ernzerhof

(HSE06) hybrid functional to get better band gap values. By mixing up the PBE and

Hatree-Fock exchange functionals together, the HSE06 method reduces the localization

and delocalization errors(Mori-Sánchez et al., 2008) of those functions, thus describe

the band gap much better. The screen length of HSE06 is 0.2 Å−1 and the mixing rate

of Hatree-Fock (HF) exchange potential is 0.25. Brillouin zone sampling is performed

with Monkhorst-Pack (MP) special k-point meshes including Γ-point. The k-grids for

nanoribbons is either 7×1×1 or 1×11×1, depending on the ribbon orientation, and for

monolayer a 7×11×1 grid is used. The vacuum layer is larger than 10 Å between two

adjacent images. The convergence threshold for structure relaxation is 0.01 eV/Å. The

vacuum level is taken as zero reference to calculate the deformation potential.

6.2. Structural Properties and Edge Energetics

The monolayer of TiS3 has a rectangle unit cell which is composed of 2 Ti and 6 S

atoms, with two lattice vectors a and b. Our optimized values for a and b are 3.41 Å and

5.02 Å, respectively, which are very close to the experimental bulk values (3.40 Å and

4.96 Å) (Brattas and Kjekshus, 1972) and other theoretical results (3.39 Å and 4.98 Å)

(Jin et al., 2015). In the present work, two types of ribbons are studied, with their ribbon

axis along a and b axis. The nanoribbons are indicated as N-a-TiS3NR and N-b-TiS3NR,

where N stands for the number of Ti atoms in the unitcell of the ribbon, and a-TiS3NR and

b-TiS3NR are along the a and b lattice vectors, respectively. Here we consider N=6-12

for a-TiS3NR and N=4-10 for b-TiS3NR. Figs. 6.1(a) and (c) show the structure of 8-a-

TiS3NR and 6-b-TiS3NR. In Figs. 6.1(b) and (d) variation of the edge energy with ribbon

width is shown. The edge energy of a N-TiS3 NR is defined as (ENR − N
2 E2D)/(2L), where

ENR is the total energy of the ribbon unit cell, E2D is the total energy of a primitive unit
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Bond index 1 2 3 4 5
8-a-TiS3 NR

Bond length in ribbon (Å) 2.62 2.57 2.38 2.23 2.43
Bond length in monolayer (Å) 2.46 2.67 2.50 2.46 2.50

6-b-TiS3 NR
Bond length in ribbon (Å) 2.40 2.52 2.51 2.50 2.61

Bond length in monolayer (Å) 2.46 2.50 2.50 2.67 2.67

Table 6.1. The lengths of the edge bonds of a 8-a-TiS3 NR and an 6-b-TiS3 NR, and
the corresponding values in a TiS3 monolayer. The labels of bonds are
shown in Fig. 6.1

cell of TiS3 monolayer, and L is the lattice constant along the axis of the ribbon. The edge

energy describes the energy cost to create a new edge from a monolayer. The edge energy

of a-TiS3NRs oscillates with different ribbon width, and ranges from 454 meV/Å to 475

meV/Å. This is close to the values of many other TMC nanoribbons such as ribbons of

MoS2, WS2 and ZrS2 (Güller et al., 2015). The situation in b-TiS3NRs is however much

different, the edge energy is typically around 60 meV/Å, and slightly decreases as the

ribbon width increases. Compared with the edge energies of graphene and many other

TMC nanoribbons, which are in the order of 1 eV/Å,(Jun, 2008; Güller et al., 2015) b-

TiS3NRs have much smaller edge energy, suggesting that formation of b-TiS3NRs from

2D TiS3 can be much easier. In fact, the experimentally reported TiS3 NRs are along the

b direction (Island et al., 2014). The small edge energy of b-TiS3NRs can be attributed to

the fact that the bonds along the a direction in 2D TiS3 is much weaker than those along

b, in accordance with the low in-plane stiffness (5.225 eV/Å2) along this direction.

In the TiS3 NRs, there is no remarkable structural reconstruction, and the overall

geometry of the monolayer is maintained. Due to the dangling bonds at the edge, the edge

atoms undergo a structural relaxation. The lengths of the different bonds at the edges

for the 8-a-TiS3NR and 6-b-TiS3NR are listed in Table 6.1. Compared with the case

of monolayer, in 8-a-TiS3NR the length of bond 1 becomes larger, but the other bonds

become shorter. In 6-b-TiS3NR, the length of bond 2 and 3 slightly increases, whereas

the length of bond 1, 4, and 5 decreases significantly. Therefore, in general the bonds

at the edge exhibit a contractive behavior. Apparently the dangling bonds that originate

from the edge atoms result in compressive edge stress. For further understanding the

reorganization of edge atoms we also calculate the edge stress of different TiS3 NRs using

the method in Ref. Jun, 2008. For a-TiS3NRs, the edge stress is in the range of 3.19-5.07
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(c)                                                  (d)

(a)                                                  (b)

Figure 6.1. (Color online) (a) Top view and side view of an 8-a-TiS3NR. a and b are
the lattice vectors of the 2D TiS3. The dashed lines indicate the unitcell
of the 8-a-TiS3NR. The bonds at the edge are labeled by 1-5. (b) The
lattice constant and edge energy of different a-TiS3NRs. The red dashed
line indicates the lattice constant along a of the 2D TiS3. (c) The same as
(a) but for a 6-b-TiS3NR. (d) The same as (b) but for 6-b-TiS3NRs.

eV/Å. For b-TiS3NRs, when N goes from 4 to 10, the edge stress decreases from 0.19

eV/Å to 0.17 eV/Å. The edge stress of a-TiS3NRs is much larger than that of b-TiS3NRs,

which can be attributed to the larger bond contraction at the edges of a-TiS3NR. The

compressive edge stress also reduces the lattice constants of the TiS3 NRs. As seen in

Figs. 6.1(b) and 6.1(d), the lattice constants of TiS3 NRs are smaller than the value of

the 2D monolayer. This behavior is more significant in a-TiS3NRs because of their larger

edge stress. As the width of the ribbon increases, the lattice constant becomes closer to

the one of 2D.
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6.3. Width-Dependent Electronic Structure

We next study the electronic structure and width-dependent characteristics of a-

and b-TiS3NRs. Our calculations reveal that all the a-TiS3NRs have metallic characters

with non-zero density of states at the Fermi level. The electronic band dispersion of 10-a-

TiS3NR, which is representative for all a-TiS3NRs, is shown in Fig. 6.2(a). It is seen from

the figure that the metallic property stems from multiple up and down bands crossing the

Fermi level at different points of the Brillouin Zone. Another feature of a-TiS3NRs is their

magnetic ground state. We see that for various ribbon widths spin-polarization results in

a net magnetic moment varying between 0.2 µB to 0.8 µB per unit cell. To get further

insight on the spin-polarization in a-TiS3NR, we also calculate the spin density, which

is the difference between up and down spin channels, for the 10-a-TiS3NR. As shown in

Fig. 6.2(b), while the spin-polarized state mainly originates from the unpaired electrons

of edge atoms, there is a small (ignorable) contribution from the Ti (S) atoms inside the

ribbon.

(a) (b)

Figure 6.2. (Color online) (a) The band structures of a 10-a-TiS3NR obtained by GGA-
PBE. Spin-up and spin-down channels are presented by red solid and blue
dashed curves, respectively. The Fermi level is set to zero. (b) The magne-
tization charge density of the 10-a-TiS3NR.

In contrast to the a-TiS3NRs, all b-TiS3NRs are found to have a direct band gap

located at the Γ point. In addition, magnetic structure analysis reveals that the b-TiS3NRs
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(a)

(b)

Figure 6.3. (Color online) (a) The band structures of an 8-b-TiS3NR obtained by
GGA-PBE and HSE06, and the charge density of its CBM and VBM states.
(b) The band gap as a function of the b-TiS3NR width N. Both GGA-PBE
and HSE06 results are given. The dashed lines are the values for the 2D
case.

have no ferromagnetic or anti-ferromagnetic order in their ground state and therefore they

are non-magnetic semiconductors. In Fig. 6.3(a) a representative band structure of b-

TiS3NRs (for 8-b-TiS3NR) is presented. It is seen that 8-b-TiS3NR have a band gap of

0.32 eV. However, the HSE06-approximated band gap value is 1.22 eV. It is well-known

that although the band dispersions are almost the same in bare-GGA and HSE06 calcu-

lations, band gap values are underestimated by GGA exchange-correlation functionals.

Therefore, we show band gap values of HSE06 together with GGA-PBE in Fig. 6.3. If

not specified, the results in the following are from GGA-PBE. In Fig. 6.3(a), the charge

densities of CBM and VBM states are plotted. The VBM state is localized at the edges,

and mainly composed of S-py orbital, together with some contribution from Ti dxy and

dyz orbitals (x and y are along the transverse and axial directions of b-TiS3 NRs, respec-

tively, and z is perpendicular to the ribbon plane). On the other hand, the CBM state is

distributed inside the ribbon and it mainly originates from Ti dx2−y2 and dz2 orbitals.
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Unique width dependence of the band gap values of b-TiS3NRs is illustrated in

Fig. 6.3(b). Usually, due to the quantum confinement effect, the band gap of nanoribbons

is strongly width dependent (Son et al., 2006a; Şahin et al., 2010; Kim et al., 2012; Tran

and Yang, 2014). As the width W of the ribbon increases, the band gap will decrease

and gradually approach the monolayer limit, and the typical decay behavior is 1/Wα.

However, for b-TiS3NRs, it is interesting to note that the band gap is almost independent

of the ribbon width. All b-TiS3NRs exhibit direct gaps around 0.32 eV (GGA-PBE) or

1.22 eV (HSE06). Furthermore, for N > 5, the positions of CBM and VBM states in

different b-TiS3NRs are nearly the same, the difference is only a few meV. Therefore the

band offset between ribbons of different widths is almost zero.

The reason for the width independent band gap can be explored by further analyz-

ing the character of the VBM and CBM states. As shown in Fig. 6.3(a), the VBM states

of b-TiS3NRs originate from the edge states and charge carriers are negligibly confined

along the a direction, and hence the VBM energy has a weak width dependence. On the

other hand, the CBM states are mainly composed of the inner region, hence are more

"bulk-like" than the VBM states and can be affected by the quantum confinement effect.

The strength of quantum confinement is inversely proportional to the effective mass.? The

electron effective mass of 2D TiS3 along the a direction is quite large (1.52 m0, see Table

6.2), indicating a quite flat conductive band along this direction. As a result, the confine-

ment along the a direction only introduces minor changes of the CBM states. Therefore,

both the position of VBM and CBM are not significantly affected by the confinement

along a, leading to a width-independent band gap.

Synthesis of ribbons in laboratory conditions is always realized together with the

formation of edge roughnesses which lead to undesired fluctuations in electronic proper-

ties of the structure. We see that for b-TiS3NRs, for a wide range of ribbon width, the band

gap is almost constant and the band offset is negligible. Even with rough edges, the band

gap of b-TiS3NR shows no spatial variation, also there is no transport barrier induced by

a band offset. Such a property can facilitate the easy-integration of b-TiS3NRs in elec-

tronic devices. In addition, compared with monolayer case, the gaps of b-TiS3NRs are

slightly larger. The gap value of 1.22 eV predicted by HSE06 is also good for adsorption

of visible light, making b-TiS3NRs promising candidates for optoelectronic applications.
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Figure 6.4. The calculated 1D elastic modulus for a-TiS3NRs and b-TiS3NRs, as func-
tion of the NR width.

6.3.1. Mechanical Properties and Response to Strain

The mechanical properties for 2D and 1D materials can be characterized by their

elastic modulus C2D and C1D. For 2D system, C2D = (1/S 0)(∂2E/∂ε2), where E is the total

energy, and S 0 is the equilibrium area. For 1D system, C1D = (1/L)(∂2E/∂ε2), where L is

the lattice constant. The calculated results for different TiS3 NRs are shown in Fig. 6.4.

The elastic modulus is found to scale linearly with the width. Moreover, with the same

N, the width of an a-TiS3NR is larger than that of a b-TiS3NR, but the elastic modulus of

the former is much smaller. Therefore, the strength of a-TiS3NRs is smaller than that of

b-TiS3NRs. This is consistent with the smaller in-plane stiffness along the a direction in

the TiS3 monolayer (see Table 6.2).

Then we investigate the band structure response of b-TiS3NRs to strain ε by ap-

plying uniaxial tensile strain up to 10%. The variation of the band gap with strain is

plotted in Fig. 6.5(a). Notice that the band gap of b-TiS3NRs monotonously increases

with increasing strain. The response of b-TiS3NRs with different width is quite similar.

The band gaps increase from ∼0.3 eV at ε = 0 to ∼0.9 eV at ε = 10%. Within the range of

0 < ε < 4%, the changes in the band gap of different ribbons are almost identical. Even
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(a)                                             (b)                                     (c)

Figure 6.5. (Color online) (a) The band gap of b-TiS3NRs as function of tensile strain
ε. (b) The band structure of an 8-b-TiS3NR with ε=0, 4% and 8%. The
dots indicate the CBM and VBM states. (c) The CBM and VBM charge
density of a 4-b-TiS3NR which is locally strained with 8%.

for ε up to 10%, at each strain value, the maximum difference in band gap is less than

90 meV for N=4−10. The band gap of 4-b-TiS3NR is still direct at Γ in the strain range

considered. In other b-TiS3NRs, a direct-to-indirect band gap transition is observed when

strain is sufficiently large. The threshold strain value such a transition changes with the

width of the ribbon. It is smaller in a wider ribbon. For example, the transition occurs at

10%, 6% and 4% for N=6, 8 and 10, respectively. Fig. 6.5(b) shows the band structure

of an 8-b-TiS3NR with different strain. At ε=4%, the band gap is direct. When ε is 8%,

the VBM state moves a little away from the Γ point, while the CBM state remains at Γ,

resulting in an indirect band gap. However, the direct gap at the Γ point is only 14 meV

larger than the indirect gap. This is similar for other b-TiS3NRs. The difference between

the direct and indirect gaps is very small, in the order of 10 meV. Also, the VBM state is

still very close to the Γ point after the direct-indirect-band gap transition. Hence, all the

b-TiS3NRs can be considered to have direct or quasi-direct band gap when tensile strain

is applied.

The increase in band gap with increasing tensile strain is also consistent with the

calculated deformation potential constant listed in Table 6.2. The deformation potential

constant, which is the measure of the energy shift of the band edge states with respect

to strain, is defined by dEedge/dε, where Eedge is the band edge energy and ε is the ap-

plied strain. For b-TiS3NRs, the deformation potential is positive for CBM, and negative

for VBM. As a result, when tensile strain is applied, the CBM shifts upwards (energy

increases), and the VBM shifts downwards (energy decreases), leading to a larger band

gap. The calculated deformation potential also implies that the band alignment between

unstrained and stretched b-TiS3NRs is type-I. When tensile strain is applied to a segment
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m∗h m∗e Ev Ec C1D C2D µh µe

(m0) (m0) (eV) (eV) (eV/Å) (eV/Å2) (103 cm2V−1s−1) (103 cm2V−1s−1)
monolayer (along a) 0.308 1.523 3.882 0.740 - 5.225 0.831 0.935
monolayer (along b) 0.998 0.381 -4.443 0.780 - 8.373 0.097 21.611

N=4 0.160 0.361 -7.969 1.339 85.788 - 0.168 1.751
N=5 0.163 0.362 -8.107 1.437 106.955 - 0.196 1.885
N=6 0.165 0.369 -8.134 1.485 128.059 - 0.229 2.057
N=7 0.204 0.370 -8.046 1.533 148.375 - 0.197 2.228
N=8 0.202 0.374 -8.224 1.386 170.233 - 0.219 3.092
N=9 0.204 0.373 -8.112 1.362 190.133 - 0.248 3.576

N=10 0.206 0.374 -8.200 1.311 209.585 - 0.264 4.222

Table 6.2. Calculated effective mass of hole (m∗h) and electron (m∗e), deformation po-
tential constants for VBM (Ev) and CBM (Ec), elastic modulus (C1D and
C2D), and carrier mobility for hole and electron (µh and µe) at 300 K for
TiS3 monolayer and the b-TiS3 NRs. m0 is the mass of a free electron.

of a b-TiS3NR, a type-I band offset can be formed. The CBM (VBM) of the strained

region will be higher (lower) than that of the unstrained region. Consequently, electrons

and holes will localize in the unstrained region. The localization enhances the combina-

tion rate of electron and hole, and thus can lead to a stronger photoluminescence. The

calculated charge densities of the CBM and VBM states of 4-b-TiS3NR, shown in Fig.

6.5(c), with a local strain of 8% (a part of the ribbon is strained and the other part is

unstrained), show that both the CBM and VBM are mainly localized in the unstrained

region. Except for carrier localization, local strain can also affect the charge transport

properties of b-TiS3NRs. Enlargement of the band gap in the strained region induces

energy barriers for electrons and holes in the ribbon, which can reduce the conductivity.

Hence, the b-TiS3NRs can be potentially important as strain sensor.

6.3.2. Carrier Mobility

Carrier mobility is a critical property of semiconductors. High mobility leads to a

high response of carriers to an external field, and therefore is feasible for high speed field-

effect devices. In this part we discuss the carrier mobility of b-TiS3NRs. A recent theo-

retical study reported that the carrier mobility in 2D monolayer TiS3 is highly anisotropic,

and the electron mobility along the b direction is of the order of 104 cm2V−1s−1 (Dai and

Zeng, 2015). Experimentally reported mobility of TiS3 are of the order of 102 cm2V−1s−1

for sheets and 100 cm2V−1s−1 for ribbons (Island et al., 2014, 2015). The deviation be-

tween theoretical and experimental values stems from the fact that the TiS3 in experiment

are multi-layers rather than a monolayer, and that the presence of defects and a substrate
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in the experiment can affect the mobility to a large extent. Nevertheless, predicting mo-

bility from theory provides valuable insight to the fundamental properties of materials.

Recently the anisotropic character of the carrier mobility in TiS3 was also observed in the

experimental study (Island et al., 2015).

In inorganic semiconductors, one dominant mechanism of scattering of carriers at

low energy is the electron-acoustic phonon coupling, which can be well described by a

deformation potential theory proposed by Bardeen and Shockly (Bardeen and Shockley,

1950). In combination with the effective mass approximation, the carrier mobility in 2D

and 1D systems can be calculated by the following formulas (Beleznay et al., 2003; Long

et al., 2009, 2011; Cai et al., 2014):

µ2D =
2eℏ3C2D

3kBT |m∗|2|E1|2
(6.1)

µ1D =
eℏ2C1D

(2πkBT )1/2|m∗|3/2|E1|2
(6.2)

Here kB is the Boltzmann constant, T is the temperature, and m∗ is the carrier effective

mass. E1 is the deformation potential constant. C1D and C2D are the elastic modulus for

1D and 2D systems, respectively.

It was demonstrated that polar scattering can be an important factor in limiting the

carrier mobility at high temperatures (Ma and Jena, 2014). Neglecting polar scattering

overestimates the carrier mobility. According to a recent work (Kaasbjerg et al., 2012),

the carrier mobility is overestimated by 100% for MoS2 if only acoustic scattering is

considered. In the present study, we limit ourselves to an order of magnitude estimate

and to the trend of the mobility rather than providing precise values. By neglecting polar

scattering we cannot provide very accurate results for the mobility, however it can still

give qualitatively satisfied results for orders of magnitude. For example, a previous study

showed that the magnitude of mobility (∼100 cm2V−1s−1) of MoS2 could be deduced by

using Eqns. 6.1 (Cai et al., 2014).

The calculated mobility for different b-TiS3NRs, as well as those for 2D mono-

layer, are listed in Table 6.2. We show the trend of the mobility with the ribbon width

in Fig. 6.6. For 2D TiS3 sheet, our results is in good agreement with previous theoreti-

cal findings (Dai and Zeng, 2015). The electron (hole) mobility along the b direction is

one order higher (lower) than that along the a direction. Moreover, the electron mobil-

ity along the b direction is as high as 2.16×104 cm2V−1s−1, two orders higher than that

of holes. This results from the larger effective mass and deformation potential of holes
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than of electrons. The b-TiS3NRs are all along the b direction. Table 6.2 shows that

the discrepancy in electron/hole mobility of 2D monolayer also appears in these ribbons.

For N=4-10, the mobility of electrons in the ribbons varies from 1.751×103 cm2V−1s−1

to 4.222×103 cm2V−1s−1. The hole mobility is in the range of 1.68×102 cm2V−1s−1 to

2.64×102 cm2V−1s−1, one order lower than that of electrons. The effective mass of holes

is about half of that of electrons, but holes have a much larger deformation potential, lead-

ing to their low mobility. As discussed above, the charge density of the VBM state has

more components along the axial (y) direction than the CBM does, therefore it is more

sensitive to axial strain, and the deformation potential of holes is larger.
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Figure 6.6. Carrier mobility for b-TiS3NRs. The inset shows the calculated effective
mass m* of electrons and holes for different ribbon widths. m0 is the mass
of a free electron.

As shown in Fig. 6.6, generally the mobility increases with the width of the rib-

bon. Compared with the infinite 2D sheet, the electron mobility in b-TiS3NRs is smaller.

From monolayer to nanoribbon, the electron effective mass is almost unchanged, but there

is a large increase (70%−100%) in the deformation potential. This explains the reduction

of the electron mobility. Nevertheless, the electron mobility of ∼103 cm2V−1s−1 in b-

TiS3NRs is still considerable for TMCs. In contrast, the mobility of MoS2 nanoribbons

is only around 200 cm2V−1s−1 (Cai et al., 2014). Therefore, devices fabricated with b-

TiS3NRs are expected to perform much better than those with MoS2 nanoribbons. The

presence of an edge reduces the electron mobility, but enhances the hole mobility. The
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hole mobility in b-TiS3NRs is 2 to 3 times larger than that in a monolayer. Due to the

strong edge effect, from monolayer to nanoribbon, the effective mass of the hole signifi-

cantly reduces, which compensates the increase in deformation potential and leads to the

higher mobility. In addition, from N=6 to N=7 there is a sudden decrease in hole mo-

bility, which is mainly caused by the change in hole effective mass. As seen in the inset

of Fig. 6.6, the hole effective mass is around 0.16 m0 for N ≤ 6 and around 0.20 m0 for

N > 6. A larger effective mass leads to a smaller mobility.

It should be noted that Eqns. 6.1 assume an ideal parabolic band dispersion. It can

be seen from Fig. 6.3a that the band dispersion of TiS3NRs around the CBM and VBM

are close to parabolic dispersion. To further see whether such an approximation is valid,

we did test calculations for 6-b-TiS3NR following the method of Long et al. (Long et al.,

2011) who used the full band dispersion instead of the effective mass approximation. The

calculated mobility for electrons and holes were 3.708×103 cm2V−1s−1 and 0.352×103

cm2V−1s−1, respectively. On the other hand, using the effective mass approximation re-

sults in an electron mobility of 2.057×103 cm2V−1s−1 and a hole mobility of 0.229×103

cm2V−1s−1 as listed in Table 6.2. Thus both methods lead to the same conclusion that

the magnitude of electron and hole mobility is 103 cm2V−1s−1 and 102 cm2V−1s−1, re-

spectively. Our main concern was to provide an order of magnitude and the trend in

the mobility rather than precise values, and therefore the effective mass approximation is

sufficient for the systems studied in the present work.

6.4. Edge Termination

Formation of one-dimensional structures of single layer crystals results in the

emergence of additional features such as edge states. It has been shown for many materials

that termination of dangling bond states located at the edges can change the characteristics

of the material drastically. In this section we investigate the effect of edge termination on

the electronic and magnetic properties of a- and b-TiS3NRs. For the termination of rib-

bon edges we make use of hydrogenation. Compared to graphene nanoribbons, TiS3 NRs

are quite different due to their edge morphology. At each ribbon edge, while a-TiS3NRs

have four edge atoms in its unitcell, b-TiS3NRs have two edge atoms. Among the various

possible hydrogenation scenarios we employ single hydrogen termination of each edge

atom.

Our calculations reveal that upon hydrogenation of a-TiS3NR edges, metallic be-

havior of bare a-edged ribbons is still preserved. As shown in Fig. 6.7(a), compared with
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Figure 6.7. (Color online) Band dispersions of a (a) 8-a-TiS3NR and (b) 8-b-TiS3NR
in which the edge atoms are passivated by hydrogen (red colored) atoms.
The solid and dashed curves are spin-up and spin-down components. In-
sets: side view of edge structure.

the bare edge case the overall electronic band dispersion of 8-a-TiS3NR is not affected

significantly. However, the magnetic ground state of the structure is modified upon edge

termination. As can be deduced from the enhanced splitting in spin up (solid curves)

and spin down (dashed curves) bands, hydrogenated ribbons possess larger net magnetic

moment in their ground state. For instance, in the case of 8-a-TiS3NR the total magnetic

moment increases from 0.3 to 1.1 µB per unit cell. The robust metallic and ferromagnetic

nature of a-TiS3NRs is an essential feature for spintronic device applications.

On the other hand, the situation is entirely different for b-TiS3NRs. Comparing

Fig. 6.7(b) and Fig. 6.3(a), the band gap of 8-b-TiS3NR enlarges due to edge termination.

It increased from 0.32 to 0.51 eV. Moreover, although the VBM and the CBM points

are still located at the Γ point, the band dispersion is significantly affected by the edge

termination. It is also seen that similar to bare ribbons hydrogen terminated b-TiS3NRs

are nonmagnetic. The presence of a band gap in the electronic structure of b-TiS3NRs is

important for their potential use in optoelectronic device applications.
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In summary, we investigated the electronic properties, mobility and strain re-

sponse of TiS3 NRs by first-principles calculations. Two types of ribbons with different

orientations are studied, labeled as a-TiS3 NRs and b-TiS3 NRs. The a-TiS3 NRs have

large edge energy ranging from 450 to 480 meV/Å. On the other hand, the b-TiS3 NRs

are found to have small edge energy around 60 meV/Å, suggesting that their isolation

from 2D monolayer is not difficult. All the a-TiS3 NRs are metallic, and exhibit non-zero

magnetic moment. The spin density is contributed mostly by edge atoms. On the contrast,

all the b-TiS3 NRs have direct band gaps at the Γ point. Interestingly, the gap value and

the band edge position are almost independent of the ribbon width, indicating strong edge

effects. This feature promises a constant band gap in a b-TiS3 NR with rough edge, where

the ribbon width differs in different regions. The mobility of b-TiS3 NRs is calculated

by using the deformation potential theory in combine with the effect mass approxima-

tion. The b-TiS3 NRs exhibit high electron mobility in the order of 103 cm2V−1s−1. The

hole mobility of the b-TiS3 NRs is one order lower, but it is enhanced compared with the

monolayer case, due to a reduction in hole effective mass. The band gap of b-TiS3 NRs

is strain tunable. It increases with increasing tensile strain, and a direct-to-indirect band

gap transition can be triggered by strain. Moreover, local strain in a b-TiS3 NR creates a

type-I band offset, which can induce carrier localization and charge transport barrier.
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CHAPTER 7

CONCLUSION

The main goal of this thesis was to investigate the electronic and structural prop-

erties of graphene and graphene-like free standing nanostructures such as transition metal

chalcogenides by using first-principles calculations based on density functional theory.

We have presented the extensive ab-initio investigation for characteristic properties of

two- and one-dimensional different nanoscale structures.

First we have studied the adsorption, diffusion and magnetic properties of Pt clus-

ters on three different two-dimensional atomic crystals. We have been able to understand

graphene, 1H-MoS2 1T-TaS2 provide different nucleation characteristics for Pt cluster

formation. At low temperatures, while the bridge site is the most favorable site where

the growth of a Pt cluster starts on graphene, top-Mo and top-Ta sites are preferred on

1H-MoS2 and 1T-TaS2, respectively. We found that the formation of Pt2 dimer and a

triangle-shaped Pt3 cluster perpendicular to the surface are favored over the three different

surfaces. While bent rhombus shaped Pt4 is formed on graphene, the formation of tetra-

hedral shaped clusters are more favorable on 1H-MoS2 and 1T-TaS2. We can conclude

that the formation of Ptn clusters is favorable on graphene, MoS2 and TaS2 substrates.

Next, we have predicted that the electronic and magnetic properties of TiSe2

monolayer can be tuned by hydrogenation. The results demonstrate that non-metal hy-

drogen atom can be chemically adsorbed on the surface of 2D-TiSe2 substrate where the

most stable configuration is the top of Se atom. Differing from bare TiSe2, electronic band

structure calculations indicate that one-side hydrogenation of TiSe2 has half-metallic char-

acteristic in its ground state. However, two-side is fully covered with hydrogen atom, the

ground state is still metallic like bare form. Moreover, we can conclude that only one-side

hydrogenated structure can introduce magnetism with the total magnetic moment is found

to be 1.0 µB. The spin-polarized state is dominated by 3d orbitals of Ti atom, while con-

tributions from other atoms are relatively small. Due to the exceptional electronic band

dispersion, in which the metallic behavior in one spin-direction, while semiconducting

behavior in the another spin direction, we have obtained the estimated Tc value of 248 K.

In addition, the electronic band dispersion is also revealed that electron effective masses

are highly anisotropic around the M-point. Moreover, the hetero form of hydrogenated

monolayers on HfX2 (X=S,Se) is also investigated. The PBE results demonstrate that the
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structural and electronic properties of heterostructure indicate some differences. One-side

hydrogenated TiSe2 monolayer has still half-metallic electronic band character on HfSe2,

whereas the metallicity of the two-side hydrogenated structure undergoes a minor change

on HfS2 monolayer but the metallic characteristic is still preserved. Finally, the intrinsic

ferromagnetic property and the different electronic band dispersions are achieved through

the hydrogenated TiSe2 monolayer. As a result, the functionalization of TiSe2 monolayer

surfaces with hydrogen could be opened a new path to explore spintronics.

Lastly, we have performed electronic and magnetic properties of two different

types materials in the nanoribbon form; TiSe2 (and PtSe2) and TiS3. Overall, our results

demonstrate that TMD nanoribbons which are in 1T phase have quite different charac-

teristics from nanoribbons of other widely studied materials such as graphene or MoS2.

Our calculations revealed that only ultranarrow zigzag and armchair nanoribbons exhibit

semiconducting behavior and their band gap rapidly decreases to zero with increasing rib-

bon width. Na ≥ 6 and Nz ≥ 7 nanoribbons exhibit metallic behavior like two-dimensional

TiSe2. The width dependency of the band gap can be fairly represented by an exponen-

tial decay function. Both zigzag and armchair ribbons have nonmagnetic ground states.

In addition, the robust metallic behavior of both zigzag and armchair TiSe2 nanoribbons

remains unaltered even after passivation of the edges by hydrogen atoms. The metallic

character of the wider ribbons of TiSe2 regardless of their edge symmetry is an advanta-

geous property for utilizing them as one-dimensional interconnects of nanoscale circuits.

In contrast to TiSe2 NRs, the electronic structures show ultranarrow and almost width

independent band gap for both zigzag and armchair edged PtSe2 NRs. Both types of rib-

bons have non-magnetic ground states similar to TiSe2 NRs. However, the bad gaps of

PtSe22 NRs increase due to the edge termination. Upon hydrogenation of zigzag PtSe2

NRs, the non-magnetic behaivor is still preserved. While for armchair edged PtSe2 NRs

are magnetic after hydrogen passivation.

Different from 1T phase of nanoribbons, transition metal tri-chalcogenide TiS3

NRs exhibit entirely different structural and electronic characteristics. Instead of zigzag

and armchair edged NRs, the a- and b-edged TiS3 NRs are labeled because of the rect-

angular unitcell of the TiS3 monolayer. The a-TiS3 NRs and b-TiS3 NRs show very

different properties. The a-TiS3 NRs have large edge energy ranging from 450 to 480

meV/Å. On the other hand, the b-TiS3 NRs are found to have small edge energy around

60 meV/Å, suggesting that the isolation of b-TiS3 NRs from 2D monolayer is not diffi-

cult. All the a-TiS3 NRs are metallic, and exhibit non-zero magnetic moment. The spin

density is contributed mostly by edge atoms. All the TiS3 NRs have direct band gaps
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at the Γ point. Interestingly, the gap value is almost independent of the ribbon width,

indicating strong edge effects. From monolayer to nanoribbon, the electron mobility of

TiS3 is reduced. Nevertheless, the b-TiS3 NRs still have high electron mobility, in the

order of 103 cm2V−1s−1. The hole mobility of the b-TiS3 NRs is one order lower, but it

is enhanced compared with the monolayer case, due to a reduction in hole effective mass.

When tensile strain is applied, the band gap of b-TiS3 NRs increases, and a direct-to-

indirect band gap transition occurs. Moreover, local strain in a bTiS3 NR creates a type-I

band offset, which can induce carrier localization and a charge transport barrier. The di-

rect, width-independent and strain tunable band gap, as well as the high carrier mobility,

promise b-TiS3 NRs great application potentials in many fields nanoelectronics, such as

field-effect devices, opto-electronic applications and strain sensor.

Consequently, the discovery of 2D materials has started a new era of materials

science. New materials, atomically thin and mechanically, thermally and electronically

stable, with a large variety of electronic properties are available and they can assembled

in ultrathin flexible devices. The manufacturing of new devices requires the detailed

understanding of the properties of two- and one-dimensional materials, which is supported

by structural and electronic properties presented in this thesis.
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PUBLICATIONS

Sözüer H. S. and Özaydin H. D., 2011: "Photonic crystal assisted 900 waveguide

bend", International Journal of Modern Physics B, Volume 25, Number 16,

Pp. 2167-2182.
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