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able discussions and sharing of his experiences. He has always been a brother to me with

his tremendous support. I am also grateful to his beloved wife, Bahar Baştürk, for her
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ABSTRACT

INTERFERENCE ALIGNMENT TECHNIQUES FOR
HETEROGENEOUS WIRELESS NETWORKS

In this thesis, we study the stream selection based interference alignment (IA)

algorithms, which can provide large multiplexing gain, to deal with the interference in

the heterogeneous networks. Firstly, different deployment scenarios for the pico cells are

investigated assuming perfect channel state information (CSI) at the transmitters. Two

different stream selection IA algorithms are proposed for fully and partially connected

interference networks and selecting at least one stream is guaranteed for each user. A

stream sequence is selected among a predetermined set of sequences that mostly con-

tribute to the sum-rate while performing an exhaustive search. In the proposed algorithms,

the complexity of the exhaustive search is significantly decreased while keeping the per-

formance relatively close. After selecting a stream, the interference generated between

the selected and the unselected streams is aligned by orthogonal projections. Then, the

influence of the imperfect CSI on the proposed algorithms is analyzed and it is observed

that the intra-stream interference causes a significant degradation in the performance due

to the quantization error. Therefore, we propose an algorithm for the limited feedback

scheme. Finally, adaptive bit allocation schemes are presented to maximize the overall

capacity for all the proposed algorithms. The performance evaluations are carried out

considering different scenarios with different number and placements of pico cells. It is

shown that the proposed algorithm for the limited feedback is more robust to channel im-

perfections compared to the existing IA algorithms. The presented bit allocation schemes

improve the performances of the algorithms compared to the equal bit allocation.
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ÖZET

KARIŞIK KABLOSUZ AĞLAR İÇİN GİRİŞİM HİZALAMA
TEKNİKLERİ

Bu tezde, heterojen ağlarda oluşan girişim için yüksek çoklama kazancı

sağlayabilen veri katarı seçimi tabanlı girişim hizalama algoritmaları üzerine

çalışılmaktadır. İlk olarak, vericiler tarafında mükemmel kanal durum bilgisinin var

olduğu kabul edilerek piko hücreler için farklı senaryolar incelenmektedir. Tam ve kısmi

bağlı girişim ağları için iki farklı girişim algoritması önerilmektedir ve her bir kullanıcı

için en az bir veri katarı seçimi garantilenmektedir. Önerilen algoritmalar arasında tam

kapsamlı arama yapıldığında veri hızı yüksek olan veri katarı dizinlerini içeren ve önce-

den belirlenen küme içerisinden en yüksek veri hızına sahip veri katarı dizini seçilir. Tam

kapsamlı aramanın karmaşıklığı ciddi bir şekilde düşürülürken performans da kapsamlı

aramaya yakındır. Her bir veri katarı seçiminden sonra seçilen veri katarı ile diğerleri

arasında oluşan girişimler dikey izdüşümlerle hizalanmaktadır. Daha sonra, önerilen al-

goritmalar üzerinde mükemmel olmayan kanal durum bilgisinin etkisi analiz edilmektedir

ve bir kullanıcının veri katarları arasındaki girişimin kuantalama hatalarından dolayı per-

formansta önemli bir azalma olduğu gözlenmektedir. Bu yüzden, kısıtlı geri besleme

yöntemleri için başka bir algoritma önermekteyiz. Son olarak, toplam kapasiteyi artırmak

için tüm önerilen algoritmalarda uyarlanır bit paylaşımı yöntemleri sunulmaktadır. Farklı

sayılarda ve farklı konumlarda olan piko hücreli senaryolar ele alınarak performans

değerlendirilmeleri yapılmaktadır. Sınırlı geri beslemeli durum için önerilen algoritmanın

mükemmel olmayan kanal durum bilgisine var olan girişim hizalama algoritmalarına

kıyasla daha dayanıklı olduğu gösterilmektedir. Sunulan bit paylaşımı yöntemleri, al-

goritmaların performanlarını eşit bit paylaşımına kıyasla geliştirmektedir.
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CHAPTER 1

INTRODUCTION

1.1 Motivation of the Thesis

As the demand of higher data rates and the quality of service are increasing in

wireless communication, innovative approaches and solutions have been investigated to

increase the spectral efficiency. Drastic changes are required in wireless communication

systems to maintain the quality of service (QoS) in a heavy loaded network. In order to

provide the necessary capacities to support high data rate services, novel wireless sys-

tem architectures will be utilized. Therefore, heterogeneous networks are considered as

a promising technique for cellular networks since they provide a deployment of large

number of smaller cells with different transmit power levels under the coverage of the

conventional macro cell. Even if this overlaying cellular network provides a coverage

extension and a capacity increase, the network topology brings up the technical challenge

of the interference management. Therefore, several interference management approaches

have been developed.

Interference alignment (IA) is one of the techniques to effectively mitigate the

interference in wireless networks (Jafar (2011)). It has been introduced as a linear pre-

coding technique that aligns the interfering signals in time, frequency, or space. The key

idea is to align the interfering signals into one dimensional subspace at each receiver by

designing precoding and postcoding vectors so that the desired signal can be obtained in

the interference-free signal subspaces. In the study of Cadambe and Jafar (2008b), it has

been shown that all the interference can be concentrated on one half of the signal space at

each receiver, leaving the other half available to the desired signal and free of interference.

However, there are some problems due to the nature of interference alignment methods.

For instance, the number of alignment constraints grows very rapidly as the number of the

users increases in the network, so larger signal space is required for each user to recover

nearly half of it.
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Closed form solutions for the IA problem are difficult to obtain for large scale

networks; therefore, iterative and distributed IA approaches have been intensively studied

in the literature (Gomadam et al. (2008a)). Multiple input multiple output (MIMO) IA

precoders and postcoders are iteratively designed in the distributed IA solutions under the

assumption of the channel state information (CSI) availability at the transmitters. One of

the studied iterative IA algorithm is called the minimum interference leakage (min-Leak)

algorithm in which the users reduce the interference leakage in the received signal at each

iteration. Another iterative IA algorithm has been examined that maximizes the signal-

to-interference-plus-noise ratio (SINR) per stream and it is called max-SINR algorithm.

Only the local channel knowledge at each node is required for both iterative algorithms.

In the study of Schreck and Wunder (2011), max-SINR algorithm has been adapted for

the cellular networks by considering the intracell interference only at the receivers. An-

other iterative IA approach has been studied based on an alternating minimization method

(Peters and Jr. (2009)). In the study of Schmidt et al. (2009), an algorithm similar to max-

SINR which iteratively minimizes the sum mean square error (MSE) of all the receivers

has been studied. The disadvantage of the iterative approaches is that they generally re-

quire too many iterations. Another problem in such iterative algorithms is that converging

to an optimal solution has not been proven. In the study of Wilson and Veeravalli (2013),

max-SINR algorithm has been modified by adding a power control step performed at each

iteration to balance the received SINR at both forward and reverse direction of communi-

cation and it has been shown the algorithm converges to a local maximum.

All the aforementioned studies are based on a transmission with a fixed number

of streams that depends on the feasibility conditions. It has been shown that the IA is

achievable if and only if (NTk + NRk
) ≥ qk(K + 1) where K is the number of user and

the base station pair,NTk andNRk
are the number of transmit and receive antennas of each

user, respectively, and qk is the number of data streams (Yetis et al. (2010)). Stream selec-

tion algorithms are able to select different number of streams for each user (Amara et al.

(2011), Sun and Jorswieck (2016)). Stream selection based IA approaches are inspired

from user selection problems (Yoo and Goldsmith (2006), Sun and McKay (2010)). The

idea is to mitigate the interference between the selected streams by performing orthogonal

projections after selecting each stream (Amara et al. (2011), Amara et al. (2012a), Amara

et al. (2012b)).
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Since the stream selection based IA approaches are not iterative and they can

dynamically select streams for each user, they are promising techniques. Therefore, in this

thesis, we study on the stream selection based IA algorithms for heterogeneous networks.

The proposed selection algorithms are based on constructing sets of stream sequences

derived according to the heterogeneous network characteristics.

The most challenging drawback of the IA approach is the requirement of the CSI

at the transmitters. Most of the IA algorithms are based on the perfect CSI at the trans-

mitters and/or receivers, however this assumption is not realistic. Therefore, there are

many studies that focus on CSI in IA methods and techniques to increase the accuracy

of the channel (Kim et al. (2012)), (de Kerret and Gesbert (2012)), (Rao et al. (2013)),

(Schreck et al. (2015)). In addition, obtaining CSI in heterogeneous networks has been

investigated considering the distinctive features of the heterogeneous networks, such as

the unequal number of transmit antennas and transmit power levels (Niu et al. (2014)),

(Rihan et al. (2015)). Therefore, we propose stream selection based IA algorithms for the

limited feedback schemes in heterogeneous networks in this thesis. Adaptive feedback bit

allocation schemes are presented to improve the performance of the proposed algorithms

with the imperfect CSI.

1.2 Organization of the Thesis

The organization of the thesis is given as follows.

Chapter 2 gives background knowledge for the following chapters. We first define

the wireless interference channels and the concept of the interference alignment. Next, we

briefly review the wireless channel models. Since CSI is very important for interference

alignment, we explain the quantization procedure and CSI feedback topologies. Finally,

we introduce the concept of the heterogeneous networks.

In Chapter 3, the IA algorithms that have been addressed in the thesis are presented

in detail. The existing IA algorithms, including iterative and stream selection based IA,

are explained and their performances are compared for K pair interference channel as-

suming each transmitter has equal transmit power and each user has the same location in

the cell.

In Chapter 4, interference in the heterogeneous networks is handled assuming the
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perfect CSI is available at the transmitters. Two stream selection based IA algorithms are

proposed for two different deployments of pico cells named partially connected and fully

connected networks. The networks in which the interference between the pico cells can

be negligible are referred as partially connected networks. To obtain a partially connected

network, a scenario in which the pico cells are separately deployed is considered, so that

they do not generate any interference to each other. They only receive interference from

macro cell. For this kind of scenarios, the improved successive null space stream selection

(ISNSSS) algorithm is proposed for the heterogeneous networks with one pico cell (Aycan

et al. (2014)), two pico cells (Aycan Beyazit et al. (2015)) and three pico cells where the

initial streams of the constructed stream sequences are selected among the pico streams.

The networks in which the interference generated to a pico user from other pico BSs is

very dominant are referred as fully connected networks. In the fully connected network

scenario, pico cells are deployed closer to each other and each pico cell receives the

interference generated from both the macro BS and other pico BSs. For this scenario, the

advanced successive null space stream selection (ASNSSS) algorithm is proposed where

the selection of a stream sequence is performed among a predetermined set of sequences

(Aycan Beyazit et al. (2016)). For the ISNSSS and the ASNSSS algorithms proposed for

partially and fully connected networks, respectively, the aim is to increase the overall rate

of the system while mitigating the interference and assigning at least one stream per each

user.

In Chapter 5, the proposed ISNSSS and ASNSSS stream selection based IA algo-

rithms are studied with imperfect CSI. For the partially connected interference networks,

the performance of the ISNSSS algorithm is evaluated with the imperfect CSI (Aycan

et al. (2015)). For the fully connected interference networks, the ASNSSS algorithm is

modified for the case of limited feedback and it is called restricted ASNSSS (RASNSSS).

RASNSSS does not continue to select more streams after the stream sequence selection

from a predetermined set of sequences, because continuing to select more streams gener-

ally causes a degradation in the achievable sum rate due to the quantization. In addition,

a novel stream selection based IA algorithm is proposed called as K-stream selection

(KSS) algorithm where the stream sequences are constructed by different stream combi-

nations of the best streams from each user for both the partially and the fully connected

interference networks. Similarly to the other proposed algorithms, stream sequences are
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initialized with the streams of pico users. In all cases, a centralized feedback topology is

considered, because the proposed stream selection based IA algorithms require all CSI to

compute all precoding and postcoding vectors. The macro BS collects all the CSIs from

pico BSs through the delay free backhaul links. Different adaptive feedback bit alloca-

tion schemes are presented for the ISNSSS (Aycan Beyazit et al. (2016a)), the RASNSSS

(Aycan Beyazit et al. (2016b)) and the KSS (Aycan Beyazit et al. (2016)) algorithms in

order to increase the system capacity for a fixed feedback load per user.

Finally, the major contributions are summarized and the perspectives to further de-

velop the proposed approaches for next generation wireless networks are given in Chapter

6.

In Appendix A, the justification for the initialization of stream sequences with

pico streams is given and statistical analysis of the exhaustive search are provided for the

scenarios of the partially and the fully connected interference networks in Appendix B.
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CHAPTER 2

PRELIMINARIES

In this chapter, we provide a technical background which is necessary for the fol-

lowing chapters. Firstly, interference channels (ICs) are described to give fundamental

insights on the interference alignment (IA) method since IC is a good model for commu-

nication in cellular networks. Secondly, we introduce the wireless channel model that we

use for the rest of the thesis. Then, the techniques to obtain CSI are explained, because

IA algorithms require CSI to be available at the transmitters and/or the receivers to design

precoding and postcoding vectors. For this purpose, feedback topologies and quantization

techniques are discussed in detail. Finally, heterogeneous networks are introduced since

the main objective of this thesis is to mitigate the interference in the wireless heteroge-

neous networks.

2.1 Interference Channels

The K user interference channel is a simple network composed of K transmitters

with NTk antennas and K receivers with NRk
antennas, where each transmitter has a

message for only one of the receivers, as shown in Figure 2.1. Each transmitter-receiver

pair causes interference to the other pairs. Hence, if one of the pair achieves higher rate by

increasing its signal-to-noise ratio (SNR), the link quality of the other pairs is decreased

by the strong interference coming from the corresponding pair.

For the K user IC, the received signal can be described as follows (Cadambe and

Jafar (2008b)):

yk = Hk1x1 + Hk2x2 + ...+ HkKxK + nk (2.1)

where k ∈ {1, 2, ..., K} is the user index, yk is the output signal of the kth receiver with

dimension NRk
× 1, xk is the transmitted signal from the kth transmitter with dimension

NTk×1, Hkj is the channel fading coefficient with dimensionNRk
×NTk from transmitter
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Figure 2.1. K user network interference network
(Source: Cadambe and Jafar (2008a)).

j to receiver k and nk is the NRk
× 1 additive white Gaussian noise (AWGN) term. In this

system model, each noise term is independent identically distributed (i.i.d.) zero-mean

complex Gaussian with variance of σ2, and channel knowledge is available at both the

transmitters and the receivers.

Degrees of freedom (DoF) is the multiplexing gain and it characterizes how the

achievable rate scales with transmit power as the SNR goes to infinity. In general, the

spatial degrees of freedom can be considered as the number of non-interfering paths that

can be obtained in an interference channel.

In a K user IC, each user can communicate with a fraction of 1/K DoF which is

also known as a ”cake-cutting” approach while IA can achieve K/2 DoF at each receiver.

In other words, each user gets half of the cake.

IA is a linear precoding technique that aligns interfering signals in time, frequency,

or space. In MIMO networks, IA uses the spatial dimension offered by multiple antennas

for alignment. The key idea is that users coordinate their transmissions by using linear

precoding, such that the interference signal lies in a reduced dimensional subspace at each

receiver.

The IA can be illustrated in Figure 2.2. There are three transmitter-receiver pairs.

At each receiver, the undesired signals received from other transmitters are aligned onto

7



one dimension, so that the desired signal is left out in an interference free space. For

instance, H12t2 and H13t3 are aligned at the first receiver, H21t1 and H23t3 are aligned at

the second receiver, and H31t1 and H23t3 are aligned at the third receiver. In this way,

H11t1, H22t2 and H33t3 are obtained in an interference free space at each receiver where

t1, t2 and t3 are the precoder vectors of transmitter 1, transmitter 2 and transmitter 3,

respectively.

Figure 2.2. Illustration of IA for K = 3 with NTk = NRk
= 2 case.

Therefore, IA can increase the DoF, which is also known as the multiplexing gain

of the channel, so the sum rates provided by IA can approach the theoretical maximum

sum capacity. Since IA can achieve maximum DoF by efficiently mitigating interference,

most of the studies have been mainly focused on maximizing the sum rate of the overall

system by designing and optimizing the precoders and postcoders, (Jafar and Shamai

(2008)), (Cadambe and Jafar (2008b)), (Gomadam et al. (2008a)), (Zhao et al. (2012)),

(Fadlallah et al. (2012)), (Shi et al. (2011)), (Westreicher and Guillaud (2012)), (Amara

et al. (2012a)), (Tang and Lambotharan (2013)).

The benefit of IA can be exemplified as follows. In the study of Jafar and Shamai

8



(2008), the DoF region D of the K user is defined as

D =
{

(d1, d2, ..., dk) ∈ RK
+ : ∀(w1, w2, ..., wk) ∈ RK

+ ,

w1d1 + w2d2 + ...+ wkdk ≤ lim sup
ρ→∞

[
sup

R(ρ)∈C(ρ)

[w1R1(ρ) + ...+ wkRk(ρ)]

log(ρ)

]} (2.2)

C(ρ) is the capacity region of the K-user IC, composed of the set of all achievable rate-

tuples R(ρ) = {R1(ρ), ..., RK(ρ)}, i.e. the sets of rate tuples for which each transmitter-

receiver pair is able to reliably communicate (Jafar and Shamai (2008)) and ρ defines the

SNR. If the receiver is able to suppress all undesired interference, the kth transmitter-

receiver pair will be able to achieve dk DoF. Finally, the number of DoF for the K user IC

can be expressed as follows (Cadambe and Jafar (2008b)):

(d1 + d2 + ...+ dk) ≥
1

2

K∑
i=1

min(NRk
, NTk)

Figure 2.3 illustrates the DoF region of the 3-user IC shown in Figure 2.2. It is

seen that points A, B and C are achieved by allocating all the resources to any of the 3

users. As a result, segments AB, AC and BC can be achieved by time-sharing between

any two users. However, point D can only be achieved by using IA, where each user is

able to achieve 1/2 DoF, therefore maximizing the sum-rate capacity to 3/2 for the 3-user

IC.

The closed form solutions to IA for both SISO and MIMO interference channels

are given in the following sections.

2.1.1 K User SISO Interference Channels

For SISO channels, interference signals cannot be aligned in the space domain.

However, IA is still possible in time-varying or frequency-selective fading environments.

The IA problem for the K user SISO IC can be explained by the following exam-

ple. Let us consider a K = 3 user IC. The system model at time slot t ∈ N can be given
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Figure 2.3. DoF region for the 3-user IC
(Source: Jafar and Shamai (2008)).

as follows.

y1(t) = h11(t)x1(t) + h12(t)x2(t) + h13(t)x3(t) + n1(t)

y2(t) = h21(t)x1(t) + h22(t)x2(t) + h23(t)x3(t) + n2(t)

y3(t) = h31(t)x1(t) + h32(t)x2(t) + h33(t)x3(t) + n3(t)

(2.3)

In the study of Cadambe and Jafar (2008b), since each terminal has only one

antenna and there is not enough space dimension to separate interference subspace with

desired signal subspace, time extension method over τ time slots is used to achieve the IA

as follows.

y′1(t) = H′11(t)x′1(t) + H′12(t)x′2(t) + H′13(t)x′3(t) + n′1(t) (2.4)

y′2(t) = H′21(t)x′1(t) + H′22(t)x′2(t) + H′23(t)x′3(t) + n′2(t) (2.5)

y′3(t) = H′31(t)x′1(t) + H′32(t)x′2(t) + H′33(t)x′3(t) + n′3(t) (2.6)

where x′k(t) is a column vector with dimension τ × 1 representing the τ symbol exten-
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sion of the input signal xk(t) and y′k(t) represents the τ symbol extension of the output

signal yk(t). n′k(t) represents the τ symbol extension of nk(t). H′kj(t) is the τ × τ dimen-

sional diagonal extended channel matrix of the channel hkj(t) between the receiver k and

transmitter j over the time slot t such that

H′kj(t) =


hkj(τ(t− 1) + 1) 0 · · · 0

0 hkj(τ(t− 1) + 2) · · · 0
...

... . . . ...

0 0 . . . hkj(τt)


τ×τ

(2.7)

This model is the so called extended IC model where each destination has a τ dimen-

sional received signal and only the channel gain remains constant within one time slot but

changes independently across different time slots.

Let τ = 2n + 1, where n is a positive constant. At transmitter 1, the message

is encoded into n + 1 independent data streams s1,i(t); i = 1, ..., n + 1. Each s1,i(t) is

transmitted by a precoding vector ti1 with dimension τ × 1 so that the x1(t) is given as

follows.

x1(t) =
n+1∑
i=1

s1,i(t)t
i
1 = T′1s1 (2.8)

where s1 = [s1,i(t), ..., s1,n+1(t)]T with dimension (n + 1) × 1 and T′1 is the precoding

matrix as T′1 = [t11, ..., t
n+1
1 ] with dimension (2n + 1)× (n + 1). Similarly, transmitter 2

and transmitter 3 encode their messages to n independent data streams.

Since IA method aligns all the interference signals at each receiver within one

half of the total received signal space and separates the desired signal to the other half

interference free signal space, interference should occupy a subspace with less dimensions

than the total signal space dimensions.

Thus, in order to obtain the (n + 1) dimensional interference-free signal, the di-

mension of the interference subspace should be less than or equal to n. This condition can

be achieved at transmitter 1 by aligning the interference signals received from transmitter

2 and transmitter 3 as follows:

(H′12(t)T′2) = (H′13(t)T′3) (2.9)
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In addition, it should be guaranteed that the subspace spanned by the interference

from transmitter 1 contains all the interference generated from the other transmitters.

Therefore, to have n dimensional interference-free subspaces at receiver 2 and receiver 3,

the interference signals must be aligned as:

span(H′23(t)T′3) ⊂ span(H′21(t)T′1) (2.10)

span(H′32(t)T′2) ⊂ span(H′31(t)T′1) (2.11)

where span(A) represents the space spanned by the column vectors of matrix A. By satis-

fying these conditions, 3n+1
2n+1

DoF is achieved, which converges to 3/2 as n→∞.

Different precoding matrices can be constructed using the conditions above; one

set of solutions that meets these conditions are given as follows (Cadambe and Jafar

(2008b)):

T′1 = [u′,L′u′, . . . ,L′nu′] (2.12)

T′2 = H′−1
32 (t)H′31(t)[u′,L′u′, . . . ,L′n−1u′] (2.13)

T′3 = H′−1
23 (t)H′21(t)[L′u′,L′2u′, . . . ,L′nu′] (2.14)

where L′ = H′12(t)H′−1
21 (t)H′23(t)H−1

32 (t)H′31(t)H′−1
13 (t) and u′ = [1 . . . 1]T is a column

vector with dimension (2n+ 1)× 1.

In case of K > 3, the signals from transmitter 1 should be aligned at receivers

2, . . . , K. As the alignment restrictions increase, the number of constraints on T′1 increase.

This situation can be generalized as follows.

IA problem is transformed to a problem of finding common non-trivial invariant

subspaces of all L′(i) with the above deductions. However finding common non-trivial

invariant subspaces is an infeasible approach due to the following reasons:

• L′(i)’s are determined by the channel coefficients, therefore there is no control over

their construction.

• Generic linear transformations do not have non-trivial common invariant subspaces.

The solution given in the study of Cadambe and Jafar (2008b) is based on the

assumption that the linear transformations L′(i) are commutative with respect to multipli-
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cation. This assumption is valid for the channel matrices that have a diagonal structure,

such as those that are obtained by time extension over time varying channels. However,

the desired signals must be aligned separately from the interference signals at each re-

ceiver. Therefore, the trivial common invariant subspaces of diagonal matrices can not

solve the IA problem.

As a conclusion, IA solutions based on symbol extensions are necessary when we

are dealing with SISO networks.

2.1.2 K User MIMO Interference Channels

In the previous section, symbol extension has been explained to increase the di-

mensionality of the vector space in K user SISO IC since the number of antennas is

insufficient to achieve IA. In this section, we assume that there are multiple antennas at

both transmitters and receivers, so that the spatial domain can be used to perform IA. If

the SISO is expanded toNTk > 1,NRk
> 1 case with the assumption ofNTk = NRk

= M

(when all nodes have the same number of antennas), total DoF will become KM/2, be-

cause it can be simply thought as splitting each node into M separate nodes. Then, K

user M ×M MIMO IC is transformed into the KM user 1× 1 IC.

In this section, the precoding matrix Tk of the kth transmitter is obtained for K =

3 MIMO IC case where NTk = NRk
= M to show that the dimension of interference is

equal to M/2 at all the receivers without symbol extension (Cadambe and Jafar (2008b)).

In order to obtain M/2 data streams, the interference at each receiver should have

at maximumM/2 dimensions inM dimensional signal space. The interference alignment

constraints that should be satisfied by designing Tk, ∀k can be expressed as follows.

At receiver 1: span(H12T2) = span(H13T3) (2.15)

At receiver 2: span(H21T1) = span(H23T3) (2.16)

At receiver 3: span(H31T1) = span(H32T2) (2.17)

As a consequence, the interference signals only occupy an M/2-dimensional sub-

space (Cadambe and Jafar (2008b)). The above equations can be rewritten by substituting
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T2 and T3 into the first equation as follows.

span(T1) = span(ET1) (2.18)

span(T2) = span(H−1
32 H31T1) (2.19)

span(T3) = span(H−1
23 H21T1) (2.20)

where E = (H31)−1H32(H12)−1H13(H23)−1H21. Let us define the eigenvectors of E as

e1 . . . eM , then T1 = [e1 . . . eM/2]. So that T2 and T3 can be solved as follows.

T2 = (H32)−1H31[e1 . . . eM/2] (2.21)

T3 = (H23)−1H21[e1 . . . eM/2] (2.22)

In this example, each transmitter can transmit a single stream by performing IA

and the receivers can retrieve the desired message from the received signal by designing

postcoding matrices with zero forcing. If the IA conditions given above are fulfilled, then

the precoding and the postcoding matrices satisfy the following conditions.

DH
k HkjTj = 0, ∀j 6= k (2.23)

rank(DH
k HkkTk) = M/2, ∀k

where Dk is the postcoding matrix of the kth receiver.

It is clear that the explained closed form solutions are difficult to find for the large

scale networks. Therefore, different IA solutions have been investigated in the literature

(Gomadam et al. (2008b)), (Aycan et al. (2014)), (Akitaya and Saba (2013)),(Westreicher

and Guillaud (2012)).

Furthermore, the CSI must be available at the transmitters and/or receivers to com-

pute the closed form expressions. We will discuss methods for obtaining CSI in the next

sections.
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2.2 Wireless Channel Models

The characteristic of a wireless channel model can be defined depending on the

factors that affect the received signal power. Main factors are explained as follows.

Path Loss:

The path loss depends on the distance between the transmitter and the receiver. If

the signal travels along a straight line where there is no obstacle between the transmitter

and the receiver, then the received signal is called a line-of-sight (LOS) signal. The power

loss in the received signal is inversely proportional to the square of the distance between

the transmitter and receiver which is also known as free-space path loss. Path loss is

usually represented by traveling distance and path loss exponent which depends on the

signal propagation environment (Goldsmith (2005)).

Since the path loss increases with the distance between the transmitter and the

receiver, the path loss experienced by a small cell user is comparatively smaller than the

macro user.

Shadowing:

The reason for shadowing is the presence of obstacles between the transmitter

and the receiver that attenuate signal power through absorption, reflection, scattering, and

diffraction. The variation is referred as large-scale propagation effects since the varia-

tion due to the shadowing occurs over large distances. The most common model for the

shadowing effect is log-normal shadowing (Goldsmith (2005)).

Fading:

The reason of the fading is the multi-path propagation due to the scattered, re-

flected and diffracted components of the received signal. The variation caused by the fast

fading is referred as small-scale propagation effects since the variation due to the mul-

tipath occurs over short distances. Multipath fading effect can make the received signal

either stronger or weaker due to the different phases of the received rays, and is modeled

as Rayleigh or Rician distribution. Different power delay profiles are standardized for

pedestrian or vehicular to characterize different environment for multipath fading (Gold-

smith (2005)).
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2.3 Channel State Information

IA methods can achieve high number of DoF by designing the precoding and

postcoding vectors to align the interfering terms on the same signal space at each receiver.

However, IA algorithms require CSI to be available at the transmitters and/or receivers to

calculate precoders and postcoders to align the interference generated by each transmitter.

This assumption is problematic for practical systems; therefore, two methods are used to

obtain CSI, which are reciprocity and feedback.

In time division duplexed systems (TDD), forward and reverse transmission share

the same frequency spectrum, but they are separated in time. The channels are reciprocal

in such systems, so that the channel responses are the same in both directions. Uplink

channel measurements are used to obtain precoders with the reciprocity property of the

networks. However, this technique has a number of potential drawbacks. The reciprocity

requires tightly calibrated RF devices in TDD systems (Love et al. (2008)). On the other

hand, exploiting reciprocity of the channel in frequency division duplexed (FDD) system

is not possible, since the uplink and the downlink channels are separated in frequency.

Therefore, the feedback schemes have been implemented for FDD systems.

CSI feedback methods are based on sending the CSI to the transmitters through

feedback channels (Özbek and Le Ruyet (2014b)). In these systems, receivers estimate

the forward channels by using the training sequences. After the estimation of the for-

ward channels, receivers quantize the CSI, and feedback it to the transmitters, so that the

precoders and postcoders can be calculated to align the interference. However, quanti-

zation procedure introduces some distortion on the CSI. Therefore, there are studies that

have focused on designing quantized feedback strategies with low distortion in CSI for

IA (de Kerret et al. (2013)), (Rao et al. (2013)), (Chen and Yuen (2014)).

2.3.1 Quantization

The fundamental idea behind the limited feedback is to quantize the normalized

channel which is also known as channel direction information (CDI) and channel qual-

ity indicator (CQI) at each receiver due to the limited bandwidth of the feedback chan-
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nel. The CDI is obtained by normalizing the channel matrix using its Frobenius norm

as H̄kj =
Hkj

‖Hkj‖
F

, ∀k, ∀j, where ‖Hkj‖F is the channel gain which is assumed to be

perfectly known at all transmitters and all receivers. The quantized CDI is fed back to the

corresponding transmitters. However, quantization process introduces some distortion on

the CSI.

There are different channel quantization methods implemented in the literature

related with limited feedback approaches for IA, such as Grassmannian line packing (Kr-

ishnamachari and Varanasi (2010)) and random vector quantization (RVQ) (Chen and

Yuen (2014)). Although RVQ is not a practical solution, it is generally used for the ana-

lytical approaches. It has been shown to be asymptotically optimal for the point-to-point

MIMO link as the number of antennas tends to infinity both at the transmitter and the

receiver sides (Santipach and Honig (2009)).

In case of RVQ, codewords in codebook are randomly generated for a given num-

ber of feedback bits and the CDI is quantized by selecting the codeword with the minimum

distance. The distance metric used in the quantization of the CDI is an indicator of the

quantization error, because distortion is caused when the CDI is replaced by the selected

codeword. Chordal distance is the most utilized distance metric to obtain the quantized

CDI (Rao et al. (2013), Chen and Yuen (2014)). Different channel quantization strategies

have been studied to design the feedback channels for IA (Aycan et al. (2015)).

As the size of the codebook increases, the distortion caused by the limited feed-

back decreases, but the feedback overhead increases in the network. Therefore, the num-

ber of bits should be optimized depending on the channel conditions.

Codebook Design:

For RVQ, each codebook contains 2Bkj codewords which are randomly genera-

ted, where Bkj is the number of quantization bits to quantize the channel between the

jth transmitter and the kth receiver. The codewords are independent and isotropically

distributed over the unit sphere.

Quantization Metrics:

First, the CDI is obtained by normalizing the channel matrix using its Frobe-

nius norm as H̄kj =
Hkj

‖Hkj‖
F

, ∀k, ∀j, where ‖Hkj‖F is the channel gain which is
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perfectly known at all transmitters and all receivers. Afterwards, H̄kj is vectorized as

h̄kj = vec(H̄kj) by stacking the columns of H̄kj where h̄kj ∈ CNTk
NRk

×1.

Then, the codebook for each transmitter and receiver pair is generated using RVQ

as Wkj =
{

c1
kj . . . cikj . . . c2

Bkj

kj

}
where

∥∥cikj
∥∥ = 1, ∀i and cikj ∈ CNTk

NRk
×1. The

codeword ci∗kj that minimizes the given distance metric is selected as the quantized CDI,
˜̄hkj = ci∗kj . Then, ci∗kj is reshaped to a matrix form as Ci∗

kj ∈ CNRk
×NTk . Accordingly, the

quantized channel H̃kj is calculated as H̃kj = Ci∗
kj × ‖Hkj‖F .

Chordal distance and the Euclidean distance metrics are explained as follows.

1. Chordal Distance Metric (M1): The codeword ci∗kj that minimizes the Chordal

distance metric is chosen by

ci∗kj = min dc(h̄kj, cikj) (2.24)

where dc(h̄kj, cikj) =

√
1−

∣∣∣h̄Hkjcikj∣∣∣2.

2. Euclidean Distance Metric (M2): The codeword ci∗kj that minimizes the Eu-

clidean distance metric is chosen by

ci∗kj = min de(h̄kj, cikj) (2.25)

where de(h̄kj, cikj) =
∥∥h̄kj − cikj

∥∥.

The quantization error caused by RVQ can be modeled as follows (Cho et al.

(2012), Ravindran and Jindal (2008)).

˜̄hkk = cos θkkh̄kk + sin θkk zkk (2.26)

=
√

1− ekkh̄kk +
√
ekkzkk

where θkk is the angle between h̄kk and ˜̄hkk and ekk , sin2 θkk. zkk is the unit vector

representing the direction of the quantization error vector and it is isotropically distributed

in the null space of h̄kk. ekk is the minimum of 2Bkk independent β((NtkNrk − 1), 1)

random variables (Jindal (2006)). Accordingly, Eq. (2.26) can be expressed in matrix
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form using the channel matrix as follows.

˜̄Hkk = cos θkkH̄kk + sin θkk Zkk (2.27)

=
√

1− ekkH̄kk +
√
ekkZkk

where Zkk ∈ CNRk
×NTk is reshaped as matrix using the vector zkk ∈ CNRk

NTk
×1.

In order to generate values for Z = ekk, the following cumulative distribution

function (CDF) can be used in inverse transform sampling (Jindal (2006)).

FZ(z) = P (Z ≤ z) = 1− (1− zNRk
NTk
−1)2Bkk (2.28)

2.3.2 Feedback Topologies

CSI can be shared using centralized or distributed feedback topologies. In the

centralized topologies, IA precoding and postcoding vectors are computed in a central unit

and then, these vectors are transmitted to the related nodes. In the distributed topologies,

on the other hand, IA precoding and postcoding vectors are computed locally at each

transmitter or receiver.

There are advantages and disadvantages of both centralized and distributed CSI

feedback topologies. For instance, centralized topologies can cause feedback delay. On

the other hand, in the distributed feedback systems, the precoding and postcoding vec-

tors are separately calculated at each related terminals. However, designing an efficient

exchange mechanism between transmitters and receivers is still an open issue.

Centralized Feedback Topologies:

There are different kinds of centralized topologies depending on the network struc-

ture. For example, an additional central unit is introduced to the network or one particular

transmitter can be selected as a central unit with backhaul connections only to the trans-

mitters (Cho et al. (2012)).

An example for a centralized topology can be shown in Figure 2.4 (Rao et al.

(2013)).

This feedback scheme adapting IA can be explained as follows.
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Figure 2.4. Centralized Feedback Topology
(Source: Rao et al. (2013))

• Each receiver quantizes all the CSI belonging to all transmitters.

• The codeword indices are fed back to the associated transmitters using feedback

link.

• Transmitters forward the indices to the centralized unit through the backhaul link.

• Based on the collected information from all transmitters, centralized unit computes

all the precoding and postcoding vectors.

• Centralized unit distributes the precoding and the postcoding vectors to the trans-

mitters.

• Each transmitter forwards the postcoding vectors to its receiver using the forward

control link.

The feedback overhead in Figure 2.4 can be calculated as K ×K ×Bkj︸ ︷︷ ︸
from receivers
to transmitters

.

Another centralized feedback topology is based on selecting one particular trans-

mitter as a central unit that collects all the codeword indices from all other transmitters

through the backhaul as shown in Figure 2.5 (Rao and Lau (2014)).
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Figure 2.5. Centralized Feedback Topology
(Source: Rao and Lau (2014))

Distributed Feedback Topologies:

In the distributed CSI feedback topologies, receivers broadcast their quantized

codeword indices (for the CSI), so that all the transmitters can have all the indices from

all the receivers. Then the transmitters can locally calculate their own precoders and

postcoders.

In comparison to the centralized feedback topology, the adaptation of the dis-

tributed feedback topology eliminates the information exchange step between the trans-

mitters and the centralized unit. The feedback scheme illustrated in Figure 2.6 can be

summarized as follows.

• Each receiver sends its codeword indices for the quantized CSI through the feed-

back channels.

• All the transmitters compute the precoding and postcoding vectors in a distributed

manner.

• The transmitters transmit the postcoding vectors to the corresponding receivers.
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Figure 2.6. Distributed Feedback Strategy
(Source: Kim et al. (2012))

Another distributed feedback topology has been studied using transmitter cooper-

ation in the study of de Kerret et al. (2013). In this topology, each transmitter receives its

own CSI and then all the transmitters cooperatively share their received information.

In addition, there are studies to decrease the feedback overhead for the distributed

feedback topology. In case of having incomplete knowledge of the CSI at the transmitters,

the problem of robust precoding and poscoding schemes with the partial CSI has been

investigated in the literature (de Kerret and Gesbert (2012), de Kerret et al. (2013)).

2.4 Heterogeneous Networks

Heterogeneous networks are one of the next generation network structures since

they provide coverage extension and spectral efficiency (Sambo et al. (2014), Han et al.

(2015)). There is a large number of base station deployment of small cells with different

power levels (micro, pico or femto cells) in the coverage of the conventional macro cell

using the same spectrum. These small cells are categorized according to their transmit

powers, antenna sizes, access types, and the backhaul connection to the existing cells.

The goal of using low power nodes is to offload the traffic from macro cells, enhance

indoor coverage, and increase the spectral efficiency in the cell edges (Zou et al. (2015)).

In addition, the cost of deploying small cells is lower than the conventional macro cell.
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A heterogeneous cellular network composed of micro, pico, femto and macro cell

is illustrated in Figure 2.7. Solid green lines show useful signals and red dashed lines

show interference signals.

Figure 2.7. Heterogeneous network architecture.

The evaluation of the heterogeneous network technology started in the beginning

of 4th generation mobile communication system that offers different services in differ-

ent radio environments. The number of studies on this type of network is increasing to

achieve the network densification without any wireless communication limitations, i.e.

limited spectrum, limited power. Network densification is composed of dense deploy-

ment of small cells and dense radio spectrum in diverse frequency bands. This wireless

evolution is called 5th generation where many different radio access technologies have

the interoperability mechanisms.
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DEPLOYMENT SCENARIOS

There are different types of small cells that are targeted at different types of envi-

ronments and traffic. These small cells are classified as follows.

• Pico cells: They are low power cells deployed indoors or outdoors often in a

planned manner in hot-spots or cell-edge areas of the macrocells. Their transmit

power ranges between 23dBm and 30dBm and they can cover 300m or less (Lopez-

Perez et al. (2011)). Pico cells serve an Open Subscriber Group (OSG) and can be

accessed by any user.

• Femto cells: They can be also called as home base station (BS). Their transmit

power is less than 23dBm and they can cover at most 50m (Lopez-Perez et al.

(2011)). They can serve a Closed Subscriber Group (CSG) or OSG.

Since there are many ways to build a heterogeneous network, some important points about

small cells must be considered while planning the deployment of pico or macro BSs.

These points can be listed as follows:

• Transmit power: It should be chosen considering the requirement of both signal

quality and interference management.

• Location: The distance between the small cells and the macro cell should be prop-

erly chosen.

• Deployment density: Since the amount of interference coming from other small

cells is an important factor in the signal quality of the users, the distance between

small cells and their densities should be carefully planned.

The answers of where and how many nodes should be deployed play an impor-

tant role in increasing the system throughput (Tian et al. (2012)). On the other hand,

the unplanned deployment of femto cells increases the interference in the heterogeneous

cellular networks (Zhang et al. (2015)). These problems have been investigated in the

study of Obaid and Czylwik (2013) by implementing an adaptive power control among

the macro and the pico cells.

Another critical challenge is the offloading from the macro cell to the small cells.

Many metrics such as signal strength, distance, SNR, bit error rate (BER), traffic load,
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quality indicator and some combination of these indicators can be used in order to decide

offloading. In addition, a balanced user association can reduce the load on the macrocell

to provide better services to the macro users.

User association to the cells increases the Quality of Service (QoS) for users and

balances the system load (Park et al. (2013)). Existing cell selection schemes have been

mainly based on the received signal strength interference (RSSI), signal-to-interference-

plus-noise ratio (SINR) or the distance from the nearby BSs to achieve a successful cell

association for each user (Yang et al. (2015)).

In general, pico cells are aimed to be deployed in areas where macro signal is

weak. Therefore, it is more efficient to place the pico cells at the cell edge zones rather

than to place in the cell center of the macro cell (Landstrom et al. (2011)). However, even

if there are small nodes at the cell edges, most users in the network continue to receive

the strongest signal from the macrocell BSs.

In order to overcome the disparity between the transmit power levels of macro and

small cell BSs, and make a fairer cell association, users can be shifted to the lightly loaded

small cells by cell range expansion (CRE) techniques (Okino et al. (2011)), (X.Chu and

Gunnarsson (2013)). The traffic of the macro cell is offloaded to pico cells by adding a

bias to the pico received powers, so that the network capacity is increased by achieving

a fairer user association among the cells. However, shifting macro users to the pico cells

increases the inter-cell interference, since the shifted users still receive strong signal from

the macro BS.

Accordingly, in the context of heterogeneous networks, interference management

has become more critical to overcome the inter-cell interference problem.

INTERFERENCE MANAGEMENT

There are two types of interference in HetNets as follows:

• Co-layer Interference: Co-layer interference is the interference generated from a

node to another node which belongs to the same type of cell in the downlink or

uplink (Lopez-Perez et al. (2009)). For instance, a pico BS generates co-layer in-

terference to other pico users that are in other pico cells.

• Cross-layer Interference: Cross-layer interference is the interference generated
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from a node to another node which belongs to a different type of cell in the downlink

or uplink (Lopez-Perez et al. (2009)). For instance, a pico BS generates cross-layer

interference to a macro user.

So far there are different kinds of interference mitigation approaches which are

investigated in a multi cell environment. These mitigation approaches are classified into

two major categories:

• Interference Cancellation: It is based on receiver processing. The main aim is to

minimize the effects of interference at the receiver part. Interfering signal char-

acteristics are estimated, such as phase, amplitude, angle of arrival. After these

estimations, interference can be canceled at the receiving system by using antenna

arrays (Rahman et al. (2009), Osman et al. (2010)).

• Interference Avoidance: It is based on resource usage in terms of resource partition-

ing and power allocation (Bernardo et al. (2010)). In general interference avoidance

techniques are based on resource allocation methods such as frequency allocation

(Tan et al. (2011), Cao et al. (2010)), sub-channel allocation (Jung and Lee (2011,

2010), Cao et al. (2011)), spectrum allocation and frequency reuse methods (Rah-

man and Yanikomeroglu (2010), Lee et al. (2010), Akoum et al. (2010)). These

techniques also can be implemented as a combination.

In addition, self configuration and self-adaptation techniques give promising and

effective results in the absence of the synchronization mechanisms among small cells

(X.Chu and Gunnarsson (2013)). Power control approach is one of these methods that

small cells can dynamically adapt their transmission power according to the network situ-

ation. Moreover, resource allocation can also improve the power efficiency of the network

and perform the interference control keeping the interference in an acceptable level in the

heterogeneous networks (Bu et al. (2015)).

Interference alignment is also interference mitigation technique that has been im-

plemented for heterogeneous networks to handle the problems caused by the coexistence

of macro and small cells. In the study of Lv et al. (2010), a spectral transmission scheme

for femtocell networks, which includes an adaptive subband partition method and an adap-

tive IA transceiver has been introduced. Another IA approach on femtocellular networks

26



has been given in the studies of Guler and Yener (2011) and Guler and Yener (2014) where

the uplink interference is aligned caused by the macro cell users to the closest femtocell

by satisfying the required QoS. Clustering the pico cells based on the strength of inter-

pico interference has been studied to eliminate the interference in the clusters (Seno et al.

(2015)). In the study of Shin et al. (2012), beamforming matrices have been sequentially

determined for small cells and macro cells in order to mitigate interference in the hetero-

geneous networks. Beamforming vectors are designed based on the number of antennas

in each base station and it is assumed that the number of antennas of macro base station

is higher than those of pico cells. The transmit beamforming matrices are successively

constructed according to the ascending order of the number of transmit antennas in order

to align the interference vectors in a small dimensional space. However, this method has

been implemented for 2 pico cells, which is a problem in dense deployment of small cells.

This problem has been handled and hierarchical IA has been extended to more than 2 pico

cells by multi stage alignment process with a decrease in per user capacity performance

(Akitaya and Saba (2013)).

In addition, resource allocation and IA methods have been compared for a femto

cellular network (Lertwiram et al. (2012)). Limited spectrum resources are divided into

two groups for each method. The results indicate that the highest sum-rate can be achieved

by performing resource allocation in low SNR regions. On the other hand, performing IA

maximizes the sum-rate in the high SNR regions.

Furthermore, partial and fully connected interference networks have been investi-

gated for IA approach to increase the performance of heterogeneous networks due to the

random and distributed deployment of femto cells (Liu et al. (2015)).

In Chapter 4 and Chapter 5, we study stream selection based IA algorithms for the

heterogeneous networks for the perfect and the imperfect CSI cases.
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CHAPTER 3

INTERFERENCE ALIGNMENT ALGORITHMS

3.1 Introduction

Interference alignment is an interference mitigation technique that aligns the in-

terfering signals by exploiting the available signaling dimensions provided by time slots,

frequency blocks, or antennas. In MIMO networks, IA uses the spatial dimension offered

by multiple antennas for alignment. The key idea is that users coordinate their trans-

missions by using linear precoding, such that the interference signal lies in a reduced

dimensional subspace at each receiver.

Since finding the closed form IA solutions can be difficult for large networks,

distributed IA approaches based on iterative schemes in which MIMO IA precoders and

postcoders are iteratively designed have been studied (Gomadam et al. (2008a), Gomadam

et al. (2011), Schreck and Wunder (2011), Zhao et al. (2012)). However, the convergence

to the global minimum is not always guaranteed and these algorithms generally require

too many iterations in high SNR regions. In addition, these algorithms can allocate a fixed

number of streams to each user.

In order to overcome the disadvantages of the iterative algorithms, different IA

solutions based on stream selection have been presented in the studies of Amara et al.

(2011), Amara et al. (2012a) and Amara et al. (2012b). IA is achieved by performing suc-

cessive orthogonal projections after the stream selection. Hence, as the stream selection

continues, the channel of each selected stream is guaranteed to become orthogonal to the

channels of the previously selected streams.

In this chapter, the iterative IA algorithms and stream selection based IA algo-

rithms that have been addressed in this thesis are presented in detail. First, the system

model is specified for K-pair MIMO interference network. Then, the existing iterative

and the stream selection based IA algorithms are explained. The chapter is concluded by

comparing the performances of the presented IA algorithms.
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3.2 System Model

In this chapter, a K-pair interference channel is considered with NTk transmit and

NRk
receive antennas as illustrated in Figure 3.1. In this chapter, it is assumed that perfect

CSI is available at all transmitters and receivers.

Figure 3.1. System Model for K-pair IC.

The output signal at user k is defined as follows.

yk = αkkHkkxk +
K∑

j=1,
j 6=k

αkjHkjxj + nk (3.1)

where, αkjHkj is the channel matrix between transmitter j and receiver k with dimension

NRk
×NTj . Each element of Hkj includes fading which is modeled as an independent and

identically distributed complex Gaussian random variable with CN (0, 1). αkj denotes the

pathloss and shadowing. For each receiver k, nk is a NRk
× 1 vector. Each element of

nk represents additive white Gaussian noise with zero mean and variance of σ2. xk is the

transmitted signal from the kth transmitter with dimension NTk × 1 and it is calculated as
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follows.

xk =
√
PkTksk (3.2)

where Pk is the transmit power of BS k. Tk is the unitary precoding matrix of transmitter

k with dimension NTk × qk, and transmitter k can transmit qk independent streams with

qk ≤ dk where dk = min(NRk
, NTk). sk is the symbol vector with dimension of qk × 1

and denoted as sk = [sk,1 ... sk,qk ]T where E
[
‖sk‖2] = 1, and it is assumed that the

transmit power is equally shared between the symbols, E
[
|sk,n|2

]
= 1/qk, n = 1, ..., qk.

In addition, the maximum total number of streams in the network is calculated as follows.

r =
K∑
k=1

dk (3.3)

Desired signals are obtained by multiplying yk with the postcoding vector, Dk

with a size of NRk
× qk. The obtained decoded data symbols can be written as

ŷk = DH
k yk (3.4)

The data rate for the ith stream of the kth user can be expressed as follows.

Rki = log2(1 + γki) (3.5)

where γki is the SINR for the ith stream of the kth user and it is calculated as

γki =
(Pk/qk)α

2
kkd

iH
k HkktiktiHk HH

kkd
i
k

diHk Bkidik
(3.6)

∀k = 1, ..., K, ∀i = 1, ..., qk

where tik is the ith column vector of the precoding matrix Tk with dimension NTk × 1, and

dik is the ith column vector of postcoding matrix Dk with dimensionNRk
×1. Furthermore,

Bki is defined as the interference plus noise covariance matrix for the ith stream of the kth
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receiver and it is given by

Bki =

qk∑
l=1,
l 6=i

Pk
qk
α2
kkHkktlk(tlk)

HHH
kk +

K∑
j=1
j 6=k

qj∑
q=1

Pj
qj
α2
kjHkjtqj(tqj)

HHH
kj + σ2INRk

(3.7)

∀k = 1, ..., K, ∀i = 1, ..., qk

Accordingly, the sum rate (SR) is calculated as follows.

SR =
K∑
k=1

qk∑
i=1

log2(1 + γki) (3.8)

3.3 Iterative IA Algorithms

The study of Gomadam et al. (2008b) has presented the first distributed solution

exploiting channel reciprocity to find MIMO IA precoders and postcoders. The idea of

designing the precoding and postcoding matrices to achieve IA is that at each iteration,

the users minimize the interference leakage which their signal leaks into the desired sig-

nal subspaces of the other users. After the algorithm converges, the IA condition that

is defined as DH
k HkjTj = 0, ∀j, k and j 6= k should be satisfied and the desired signal

spaces should be free of interference. While the algorithm performs well at high SNR,

it can be far from optimal at low SNR values. This algorithm is also known as mini-

mum interference leakage (min-Leak) in the literature. Since this algorithm deals with

only minimizing the interference, another algorithm has been studied that iteratively ma-

ximizes the per stream SINR. In the proposed algorithm, perfect alignment conditions are

relaxed by eliminating the assumption that all the precoders are orthogonal to each other.

By this relaxation max-SINR algorithm performs better at moderate SNR levels.

Many IA algorithms in the literature are based on the iterative IA approaches.

However, the disadvantage of the iterative approaches is that they generally require many

iterations in high SNR regimes. Besides, the assumption that the wireless channel remains

unchanged during the data exchange between the transmitters and receivers is unrealistic.

The mentioned iterative algorithms are described in detail in the following sec-

tions. The notation
←
x indicates the value of vector x in the reciprocal channel.
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3.3.1 Min-Interference Leakage Algorithm

The minimum interference leakage algorithm iteratively reduces interference by

designing the postcoding vectors to minimize the remaining interference in the desired

signal subspace at each receiver within each network. While the algorithm exploits chan-

nel reciprocity to perform the iteration, it can also be performed in a centralized node

using a centralized topology explained in Section 2.3.2. This iterative procedure is given

in Alg. 1.

Alg. 1 Min-Leak Algorithm

Input: αkj , Hkj ∀k, j
Step 1. Start with arbitrary precoding matrices Tj , ∀j = 1, ..., K, with the constraint
that the column vectors of each precoding matrices are orthonormal to each other.

Step 2. Compute the interference covariance matrix Qk (Eq. (3.11)), ∀k = 1, ..., K at
each receiver.

Step 3. Compute the postcoding matrix Dk column by column (Eq. (3.13)), ∀k =
1, ..., K at each receiver.

Step 4. Reverse the communication direction, passing to the reciprocal network and

set
←
Tk= Dk, ∀k = 1, ..., K at each receiver.

Step 5. In the reciprocal network, compute the interference covariance matrix
←
Qj

(Eq. (3.12)), ∀j = 1, ..., K at each transmitter which becomes receiver of the recip-
rocal channel.

Step 6. In the reciprocal network, compute the interference suppression matrix column

by column
←
Dj (Eq.( 3.14)), ∀j = 1, ..., K at each transmitter which becomes receiver

of the reciprocal channel.

Step 7. Reverse the communication direction, returning to the original network, and

set Tj =
←
Dj , ∀j = 1, ..., K at each transmitter.

Step 8. Repeat from Step 2 until convergence.

Output: Tk, Dk ∀k
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The main aim is to minimize the total interference leakage at each receiver and

can be expressed as follows.

min Ik
Dk

(3.9)

where Ik is the total interference leakage at receiver k due to all undesired transmitters

(j 6= k) is expressed as follow.

Ik = Tr[DH
k QkDk] (3.10)

Qk is the interference covariance matrix at receiver k

Qk =
K∑

j=1,j 6=k

Pjα
2
kjHkjTjTH

j HH
kj (3.11)

For the reciprocal network,

←
Qj=

K∑
k=1,k 6=j

←
P k α

2
jk

←
Hjk

←
Tk

←
T
H

k

←
H
H

jk (3.12)

where
←
Hjk= HH

kj .

dik = νi[Qk] ∀i = 1, ..., qk (3.13)

where νi[A] denotes the eigenvector corresponding to the ith smallest eigenvalue of the

matrix A. For the reciprocal network,

←
d
i

j= νi[
←
Qj] ∀i = 1, ..., qj (3.14)

3.3.2 Max-SINR Algorithm

Instead of minimizing the interference power at each iteration, SINR is iteratively

maximized in max-SINR algorithm. In this method, perfect alignment conditions are re-

laxed by eliminating the condition that all the precoders are strictly orthogonal to each

other. At each step, the algorithm updates the postcoding matrices in the considered
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network and then the communication direction is inverted. In the following step the post-

coding matrices used in the previous iteration become the new precoding matrices and

the postcoding matrices are set as the precoding matrices used in the previous step. The

algorithm continues until the convergence is achieved. This method is summarized in

Alg. 2.

Alg. 2 Max-SINR algorithm

Input: αkj , Hkj ∀k, j
Step 1. Start with arbitrary precoding matrices Tj , ∀j = 1, ..., K, so that the column
vectors of each precoding matrix are linearly independent.

Step 2. Compute the interferences plus noise covariance matrix Bki for stream i of
receiver k (Eq. (3.15)), ∀k = 1, ..., K, ∀i = 1, ..., qk at each receiver.

Step 3. Compute the postcoding matrix (interference suppression matrices) Dk column
by column (Eq.( 3.16)), ∀k = 1, ..., K at each receiver.

Step 4. Reverse the communication direction, passing to the reciprocal network and

set
←
Tk= Dk, ∀k = 1, ..., K at each receiver.

Step 5. In the reciprocal network, compute the interference plus noise covariance ma-

trix
←
Bki (Eq.( 3.15)), ∀j = 1, ..., K, ∀i = 1, ..., qj at each transmitter which becomes

receiver of the reciprocal channel.

Step 6. In the reciprocal network, compute the interference suppression matrix
←
Dj

column by column, ∀j = 1, ..., K, ∀i = 1, ..., qj (similar to step 3) at each transmitter
which becomes receiver of the reciprocal channel.

Step 7. Reverse the communication direction, returning to the original network, and

set Tj =
←
Dj , ∀j = 1, ..., K at each transmitter.

Step 8. Repeat from Step 2 until convergence.

Output: Tk, Dk ∀k

←
Bki is the interference plus noise covariance matrix in the reverse channel and it
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is calculated as follows.

←
Bki=

qk∑
l=1,
l 6=i

Pk
qk
α2
kk

←
Hkk

←
t
l

k (
←
t
l

k)
H(
←
Hkk)

H+

K∑
j=1
j 6=k

qj∑
q=1

Pj
qj
α2
kj

←
Hkj

←
t
q

j (
←
t
q

j)
H(
←
Hki)

H + σ2INRk
, ∀k = 1, ..., K, ∀i = 1, ..., qk

(3.15)

where
←
Hjk= HH

kj .

The column vectors of the interference suppression matrix that maximizes the

SINR of the ith stream of the kth receiver are given as

dik =
(Bki)

−1Hkktik∥∥(Bki)−1Hkktik
∥∥ k = 1, ..., K, i = 1, ..., qk (3.16)

In Figure 3.2 and Figure 3.3, the convergence of the iterative algorithms is illust-

rated for low SNR and high SNR values, respectively. It is observed that as the SNR

increases, the number of required iteration increases.
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K = 2
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Max-SINR algorithm has been interpreted in the study of Schmidt et al. (2009) as

a variation of an algorithm that minimizes the sum Mean Squared Error (MSE) for single

stream per user. In order to maximize the sum utility that depends on rate or SINR met-

rics, a weighted sum MSE beamforming objective function is used to compute the beams.

The weights are updated according to the sum utility objective function. A distributed ap-

proach as in the max-SINR algorithm is implemented by pricing the interference coming

from the other transmitters. To maximize the utility objective function, the MSE weights

are adapted according to the user priorities. So that the maximization is achieved in a

two stage algorithm. In the first stage, beams are adapted in an inner loop with fixed

weights and in the second stage these weights are updated to minimize a weighted sum

MSE objective.

Another study on IA that maximizes the network sum rate is given in the study of

Shi et al. (2011). A distributed linear transceiver design approach has been implemented

by the weighted minimum mean square error (WMMSE) algorithm to utilize maximiza-

tion in an interfering broadcast channel. Interference is treated as noise coming from the

other cells and the weighted sum-rate is maximized. The main goal is to find the pre-

coding and the postcoding matrices {T,D} that maximize the system utility. The utility
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maximization problem is the weighted sum rate maximization that can be formulated as

follows.

max
T,D

∑K
k=1

∑qk
i=1wkilog2(1 + γki)

where wki denotes the weight for the priority of the ith stream of the kth user. This prob-

lem formulation is transformed to an equivalent sum-MSE cost minimization problem by

defining a weight matrix. The solution is based on an iterative approach which requires

only local channel knowledge and converges to a stationary point of the weighted sum

rate maximization problem.

In the study of Zhao et al. (2012), max-SINR algorithm has been used as an initial

step to determine the precoding vectors. Distributed convex optimization based on IA

method has been studied in both single and multi-beam cases to maximize the weighted

sum rate problem given in Eq. (3.17). Since the rate function is non-concave, this formu-

lation is hard to solve. Therefore, linear receiver filters as auxiliary optimization variables

have been introduced and this problem is transformed into a convex problem. In order to

solve this convex optimization problem, an algorithm consisting of two stages is imple-

mented, as IA phase and post-alignment optimization phase. The output of the first stage

is used as the input for the second stage.

The first study IA solution for cellular networks is given in the study of Suh et al.

(2010). The authors apply sub-space IA approach to cellular systems in order to increase

the throughput of the network considering the cell-edge area. In the study of Schreck and

Wunder (2011), max-SINR algorithm (Gomadam et al. (2011)) is extended for the cellular

networks. In this study, degrees of freedom are analyzed for MIMO cellular systems for

different number of antennas per base station.

A different family of IA is based on successive stream selection where the least

interfering stream is selected in the null space of the previously selected streams at each

step (Amara et al. (2011), Amara et al. (2012a)). Such approaches have been inspired

from user selection problems (Yoo and Goldsmith (2006), Sun and McKay (2010)). They

are not iterative, since they perform IA by successively selecting the streams as long as

the total sum rate increases.
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3.4 Stream Selection Algorithms

In stream selection based IA algorithms, each stream is selected in the null space

of the previously selected streams at each step where streams are computed from the sin-

gular value decomposition (SVD) of all the channels, (αkkHkk) = UkSkVH
k . In addition,

the lth column vector of Vk and Uk are denoted as vlk and ulk, respectively. The interfer-

ence is aligned after each stream selection step using orthogonal projections.

There are two kinds of interference between the streams. The first one is the in-

terference from the selected stream to the unselected streams and the second one is the

interference to the selected stream from the unselected streams. Therefore, two types of

virtual channels are defined as Virtual Receiving Channels (VRCs) and Virtual Transmit-

ting Channels (VTCs) (Amara et al. (2012a)). These can be expressed as follows.

• Virtual Receiving Channel: VRC is the channel between the transmitter k and the

receiver k∗ including the postcoding vector of the selected stream l∗, ul∗k∗ .

VRCl∗

k∗k = (ul∗k∗)
HHk∗k (3.17)

• Virtual Transmitting Channel: VTC is the channel between the transmitter k∗ and

the receiver k including the precoding vector of the selected stream l∗, vl∗k∗ .

VTCl∗

kk∗ = Hkk∗vl
∗

k∗ (3.18)

For each selected stream, multiple VRCs and VTCs are designed by using the

precoder and decoder vectors, respectively. These vectors are obtained from the SVD

procedure. Precoding and postcoding matrices are constructed from the precoding and

postcoding vectors corresponding to the selected streams, and they are expressed as Tk∗ =

[v1
k∗ , v2

k∗ , ..., v
qk
k∗ ] and Dk∗ = [u1

k∗ ,u2
k∗ , ...,u

qk
k∗ ], respectively.

Therefore, after the virtual channels of user k∗ are obtained, the impact of the

selected stream of user k∗ to the unselected streams is reduced by orthogonal projections.

More precisely, the space spanned by the unselected potential precoding and postcoding

of each user k 6= k∗ is projected orthogonally to the corresponding VRC and VTC of

the selected stream l∗ belonging to user k∗. Projected matrices are denoted by H⊥kk and,
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initially, H⊥kk = Hkk.

The vectors of the projected matrices H⊥kk, ∀k 6= k∗, are in the null space of the

VRC and VTC of all previously selected streams. The projection procedure is imple-

mented in two steps. In the first step the interference coming from the remaining streams

to the selected stream is reduced by projecting the channel matrices H⊥kk generated or-

thogonally to the VRC, (ul∗k∗)HHk∗k, and it is calculated as

H⊥kk = H⊥kkP
⊥
((ul∗

k∗ )HHk∗k)
(3.19)

where P⊥
(ul∗H

k∗ Hk∗k)
is the orthogonal projection matrix parallel to matrix (ul∗k∗)HHk∗k and

can be expressed as

P⊥
((ul∗

k∗ )HHk∗k)
= INTk

− ((ul∗k∗)HHk∗k)
H((ul∗k∗)HHk∗k)∥∥((ul∗k∗)HHk∗k)

∥∥2 . (3.20)

The second step of the projection procedure is to reduce the interference generated

to the remaining streams and consists in projecting the channel matrices H⊥kk generated to

the VTC, Hkk∗vl
∗

k∗ , and it is calculated as

H⊥kk = P⊥
(Hkk∗vl∗

k∗ )
H⊥kk (3.21)

where P⊥
(Hkk∗vl∗

k∗ )
is the orthogonal projection matrix parallel to matrix Hkk∗vl

∗

k∗ and can be

mathematically expressed as

P⊥
(Hkk∗vl∗

k∗ )
= INRk

− (Hkk∗vl
∗

k∗)(Hkk∗vl
∗

k∗)
H∥∥(Hkk∗vl

∗
k∗)
∥∥2 . (3.22)

An illustration of the explained interference alignment process is given in Fig-

ure 3.4. In this figure, it is assumed that the first stream of the first user is selected. The

channel of the second user is orthogonally projected to both VTC and VRC of the selected

stream. In this way, when another stream is to be selected, its channel is guaranteed to

become orthogonal to the channels of the previously selected streams and, thus, it does

not generate any interference to them.

The main objective is to mitigate the interference while finding the best stream

sequence. The stream selection scheme which maximizes the total sum rate given in
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Figure 3.4. The visualization of the interference alignment process for K = 2 MIMO
network.

Eq. (3.8) of the network can be formulated as follows.

{(T∗k,D
∗
k)}k∈[1,...,K] = argmax

Tk,Dk

(SR) (3.23)

The interference alignment procedure for a given selected stream l∗ of user k∗ is

summarized in Alg. 3. The worst case computational complexity of Alg. 3 is calculated

as follows (Golub and Van Loan (1996)), (Rosen (2002)).

O(K(NM2 +N2M +M3)) (3.24)

where M = max
∀k

(NTk) and N = max
∀k

(NRk
) are the maximum number of transmitter and

receiver antennas, respectively.
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Alg. 3 Interference Alignment Algorithm

Input: αkk, H⊥kk, Hkk∗ and Hk∗k ∀k; vl∗k∗ , ul∗k∗ , Tk∗ , Dk∗

Project orthogonally to VRC, (ul∗k∗)
HHk∗k

H⊥kk = H⊥kkP⊥ul∗H
k∗ Hk∗k

for k = 1, ...,K where k 6= k∗

Project orthogonally to VTC, Hkk∗vl
∗
k∗

H⊥kk = P⊥Hkk∗vl∗
k∗

H⊥kk for k = 1, ...,K where k 6= k∗

Compute the SVD of projected matrices

(αkkH⊥kk) = UkSkVH
k for k = 1, ...,K

Update

Tk∗ = [Tk∗ vl∗k∗ ]

Dk∗ = [Dk∗ ul∗k∗ ]

Output: H⊥kk, Vk, Uk and Sk ∀k; Tk∗ , Dk∗

3.4.1 Exhaustive Search of Successive Null Space Stream Selection

The objective of the stream selection algorithms is to select the streams succes-

sively while maximizing the sum rate. The best stream sequence among all the possible

stream sequences can be found by an exhaustive search (Amara et al. (2012a)). Streams,

stream sequences and the related sets are defined as follows.

Each stream i can be expressed as πi = (ki, li) where ki ∈ {1, . . . , K} , li ∈

{1, . . . , qki} and i ∈ {1, . . . , r}. The set of all possible stream sequences can be defined

as follows.

Φ = Φ1 ∪ . . . ∪ Φj ∪ . . . ∪ Φr (3.25)

where Φj is the set of all permutations of length j ∈ {1, . . . , r} given by

Φj =
{
π = (π1π2 . . . πj) |

∀i, i′ ∈ {1, . . . , j} , πi 6= πi′ if i 6= i′
} (3.26)
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The number of elements of the set Φ is calculated as follows.

|Φ| ≤
r∑

i=K

(
r

i

)

where
(
x

y

)
is the number of y permutations of x elements.

Alg. 4 determines the precoding and the postcoding matrices for a given stream

sequence π. It also calculates the sum-rate achieved by the selection of this sequence.

Alg. 4 Stream Selection Algorithm

Input: αkj , Hkj ∀k, j, π
Initialize the variables

T = ∅; D = ∅; i = 1; qk = 0 and H⊥kk = Hkk for k = 1, ..., K

Compute the SVD of all the channels

(αkkH⊥kk) = UkSkVH
k for k = 1, ..., K

while i ≤ |π| do

Pick the ith stream in π

(k∗, l∗) = πi

Update

qk∗ = qk∗ + 1

Apply Alg. 3

Increment i

i = i+ 1

end while

Calculate the sum-rate SRπ given in Eq. (3.8)

Set the variables for the selected streams

(Tk)π = Tk, (Dk)π = Dk for k = 1, ..., K

Output: (Tk)π, (Dk)π ∀k

Using Alg. 4, Alg. 5 performs an exhaustive search which tries all relevant stream

sequences and finds the sequence that yields the greatest sum-rate.

The most challenging drawback of the exhaustive search is the complexity that

depends on the number of streams. The total number of calls to Alg. 3 in the exhaustive
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Alg. 5 Exhaustive Search

Input: αkj , Hkj ∀k, j
Initialize the set Φ

for each stream sequence π ∈ Φ do

Apply Alg. 4

end for

Select the best stream sequence according to Eq. (3.23)

π∗ = argmax
π∈Π

SRπ

T∗k = (Tk)π∗ , D∗k = (Dk)π∗ for k = 1, ..., K

Output: T∗k, D∗k ∀k

search algorithm can be formulated as follows.

r∑
i=1

( (
r!

(r − i)!

)
︸ ︷︷ ︸

The total number of
stream sequences of length i

× i︸︷︷︸
The number of times Alg. 3

is called for each stream sequence

)
(3.27)

Since this brute force approach is too complex to implement in systems with large

number of streams, an approach that has a lower complexity and a closer performance to

the exhaustive search is required.

3.4.2 Successive Null Space Stream Selection (SNSSS)

In this algorithm, only one stream sequence is constructed by successively select-

ing the streams having the highest singular values (i.e., the strongest streams) (Amara

et al. (2012a)). While the streams are selected, their sum rate contributions are checked

whether the system throughput increases or not. Since the transmit power is equally

shared between the streams, adding a stream to a user already served does not necessarily

increase the total sum-rate. The maximum singular value that increases the sum rate is

chosen at each iteration from the set Ω, where Ω is the set which keeps track of the eigen-

values of the available streams. In addition, the constructed stream sequence at the end of

the algorithm is denoted as Ψ.
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The whole procedure is described in Alg. 6.

Alg. 6 Successive Null Space Stream Selection

Input: αkj , Hkj ∀k, j
Initialize

Ψ = ∅; T = ∅; D = ∅; qk = 0 and H⊥kk = Hkk for k = 1, ..., K;
SRΨ = 0; finish = FALSE

Compute the SVD of all the channels

(αkkH⊥kk) = UkSkVH
k for k = 1, ..., K

Construct Ω

Ω = {(Sk)(l, l)|k = 1, ..., K and l = 1, ..., dk}
while finish = FALSE do

Construct the set of streams which increases the sum-rate

Ω′ =
{

Sk(l, l) ∈ Ω| SRΨ∪(k,l) > SRΨ

}
if Ω′ 6= ∅ then

(k∗, l∗) = argmax
(k,l) such that Sk(l,l)∈Ω′

Sk(l, l)

Update

Ψ = Ψ ∪ (k∗, l∗)

qk∗ = qk∗ + 1

Apply Alg. 3

Reconstruct Ω

Ω = {(Sk)(l, l)|k = 1, ..., K and l = 1, ..., dk and (k, l) /∈ Ψ}
else

finish = TRUE
end if

end while

Set the precoding and the postcoding matrices for the constructed sequence

T∗k = Tk, D∗k = Dk for k = 1, ..., K

Output: T∗k, D∗k ∀k

The complexity in terms of the number of calls to Alg. 3 by SNSSS is r. This

algorithm has a very low complexity, and is a suboptimal solution due to the searching of

only one stream sequence which is one of the searched stream sequence by the exhaustive
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search.

3.4.3 Enhanced Successive Null Space Stream Selection (ESNSSS)

In the SNSSS algorithm, just one specific path is constructed by choosing the

largest singular value that increases the sum rate. However, this strategy can lead to

a suboptimal solution. Therefore, constructing different initializations rather than the

maximum stream value can give a higher sum rate values.

In order to decrease the complexity of exhaustive search and to overcome the

suboptimality of SNSSS algorithm, ESNSSS algorithm introduces different initialization

points for the search process of the streams. Each stream sequence is initialized by all

possible streams which are initially computed singular values and they are kept in set Ω0.

This algorithm can be summarized as in Alg. 7 (Amara et al. (2012a)).

The complexity in terms of the number of calls to Alg. 3 by ESNSSS is r2.

3.5 Performance Evaluation

The iterative and the stream selection based IA algorithms, such as max-SINR,

min-Leak, SNSSS and ESNSSS have been implemented for K-pair MIMO interference

channels (Gomadam et al. (2011), Amara et al. (2011), Amara et al. (2012a)). The com-

parison of these algorithms is given in Figure 3.5 for K = 3 and NTk = NRk
= 2. It is

assumed that the transmit power for all the BSs and the received SNR for all the users are

the same.

Figure 3.5 shows that the exhaustive search has the best performance in terms of

the average sum rate in high SNR regions. On the contrary, SNSSS algorithm has the

lowest performance. The reason is that starting with the best stream does not always

yields the higher sum-rate. In addition, it can be observed that ESNSSS, minimum inter-

ference leakage (min-Leak) and maximum SINR (max-SINR) algorithms have the same

performances in higher SNR regions.

The average number of selected streams is given in Table 3.1. It can be observed

that the exhaustive search selects more streams than ESNSSS and SNSSS algorithms
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Alg. 7 Enhanced Successive Null Space Stream Selection

Input: αkj , Hkj ∀k, j
Initialize the set of all streams

Ω0 = {(k, l)|k = 1, ..., K and l = 1, ..., dk}
for each stream (k∗, l∗) ∈ Ω0 do

Initialize the variables to perform stream selection starting with (k∗, l∗)

Ψ = ∅; T = ∅; D = ∅; qk = 0 and H⊥kk = Hkk for k = 1, ..., K; finish = FALSE
Compute the SVD of all the channels

(αkkHkk) = UkSkVH
k for k = 1, ..., K

Set the stream to be selected initially (k∗, l∗)

Ψ = Ψ ∪ (k∗, l∗)

qk∗ = qk∗ + 1

Apply Alg. 3

Construct Ω

Ω = {(Sk)(l, l)|k = 1, ..., K and l = 1, ..., dk}
Run While loop of Alg. 6

Compute (Tk)Ψ, (Dk)Ψ and SRΨ for the stream sequence Ψ

end for

Select the best stream sequence according to Eq. (3.23)

Ψ∗ = argmax
Ψ

SRΨ

T∗k = (Tk)Ψ∗ , D∗k = (Dk)Ψ∗ for k = 1, ..., K

Output: T∗k, D∗k ∀k
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Figure 3.5. Sum rate vs. SNR for K = 3, NTk = NRk
= 2

while SNSSS selects fewer stream on the average. In addition, the average total number

of streams selected by the max-SINR and the min-Leak algorithms is 3, since they select

a fixed number of streams per user as 1 for the considered configuration. Although the

average total number of selected streams by the iterative IA algorithms is higher than those

of stream selection based algorithms, the performances of the ESNSSS and the iterative

algorithms are almost the same in higher SINR regions. This can be explained by the fact

that the stream selection based algorithms can select different number of streams for each

user at each channel realization which is not the case for the iterative algorithms. For the

Table 3.1. The average total number of selected streams

SNR(dB) Exhaustive Search ESNSSS SNSSS
-10 4.89 4.36 4.21
5 2.71 2.50 2.41
30 2.10 2.02 2.00

stream selection based IA algorithms, it is possible that no stream is selected for a user in

some cases. Mostly, this behavior is undesired; therefore, in the following chapters, we
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will propose solutions to avoid this drawback.

3.6 Conclusion

In this chapter, both iterative and stream selection based interference alignment

algorithms have been explained for K-pair MIMO interference channels for the same

received SNR.

In the iterative algorithms, namely min-Leak and max-SINR, the precoding and

postcoding matrices are obtained at the end of the iterations; whereas, in the stream selec-

tion based algorithms, the column vectors of the precoding and postcoding matrices are

constructed after each stream selection. Furthermore, iterative algorithms either minimize

the interference or maximize the SINR; however, stream selection based IA algorithms

aim to achieve both at the same time. The interference is mitigated by performing orthog-

onal projections and the sum-rate is maximized by selecting a stream which increases the

sum-rate at each stream selection.

The comparison of the algorithms demonstrates that the max-SINR performs bet-

ter in lower SNR regions. In higher SNR regions, the performances of max-SINR, min-

Leak and ESNSSS algorithms are almost the same. In addition, ESNSSS can achieve

better performance than SNSSS with an extra complexity while getting closer to the per-

formance obtained by the exhaustive search. Furthermore, stream selection based IA

algorithms can adaptively select different number of streams depending on the selection

criteria while iterative IA algorithms always select a fixed number of streams.
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CHAPTER 4

STREAM SELECTION BASED INTERFERENCE

ALIGNMENT FOR HETEROGENEOUS NETWORKS

4.1 Introduction

In this chapter, stream selection based IA methods are investigated for heteroge-

neous networks with different deployment scenarios for the pico cells. Since the purpose

of using pico cells is to enhance the spectral efficiency or to increase the capacity in areas

of high demand, pico cells can be deployed very close to each other or far away from

each other. Therefore, both the partial and fully connected interference networks (Liu

et al. (2015)) have been investigated for the stream selection based IA approaches to in-

crease the performance of the heterogeneous networks by selecting at least one stream for

each user.

In this context, two different scenarios are considered in this chapter. In the first

scenario, the pico cells are deployed far away from each other where the interference is

weak among the pico cells. In the second scenario, the pico cells are deployed closer to

each other where the interference is strong among the pico cells. Therefore, we propose

two different stream selection based IA algorithms for these two different scenarios. The

objective of stream selection algorithm is to select a stream sequence composed of streams

depending on the selection criteria.

In the fist part, a partial connected interference network is considered. The inter-

ference generated from each pico cell to the users of other pico cells is negligible in this

scenario, since the pico cells are separately deployed from each other. Therefore, interfer-

ence alignment algorithm, Alg.3, is not performed among the pico BSs. For this kind of

scenarios, the ISNSSS algorithm is proposed where the initial streams of the constructed

stream sequences are selected among the pico streams. In other words, to build the set of

tentative stream sequences, the streams are initially selected from the users of pico cells,

continuing with the strongest streams that increase the sum rate. If it is not possible to
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select a stream that positively contributes to the sum rate, a stream that decreases the sum

rate the least is selected. The process is repeated until each user receives at least one

stream. The constructed stream sequences are compared and the sequence leading to the

greatest sum rate is chosen. The main aim is to increase the overall rate of the system

by designing the precoding and decoding matrices while mitigating the interference and

assigning at least one stream per each user. The performance of the ISNSSS algorithm

is evaluated for one pico cell (Aycan et al. (2014)), two pico cell (Aycan Beyazit et al.

(2015) and three pico cell cases.

In the second part, the pico cells are deployed closer to each other. Therefore, a

fully connected interference network between pico cells is considered where the mutual

interference between pico cells is very strong. Therefore, IA is performed between all

pico cells. In such networks, the best stream sequence achieving the highest sum-rate can

be found with exhaustive search by considering all possible combinations. However, ex-

haustive search is too complex due to the large search space. Thus, the main goal of this

study is to decrease this search space. To that end, we propose the advanced successive

null space stream selection (ASNSSS) algorithm which decreases the complexity signif-

icantly while keeping the performance relatively close to that of the exhaustive search

(Aycan Beyazit et al. (2016)). In addition, the proposed algorithm is designed in such a

way that it guarantees the selection of at least one stream from each user while mitigating

the interference among the selected streams. The performance of the ASNSSS algorithm

is evaluated in different scenarios composed of one, two and three pico cells which are

deployed close to each other.

In this chapter, we first introduce the system model in Section 4.2. Then, we

propose the ISNSSS algorithm for the partially connected interference networks in Sec-

tion 4.3 and we propose the ASNSSS algorithm for the fully connected interference net-

works in Section 4.4. Next, we evaluate the performance of the proposed algorithms in

Section 4.5. Finally, we conclude the chapter in Section 4.6.

4.2 System Model

A K-pair heterogeneous network is considered composed of pico cells and a

macro cell as illustrated in Figure 4.1. Each pair k has NTk transmitter antennas and
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NRk
receiver antennas. In addition, the transmit power of the macro and pico BSs are

different. For the sake of simplicity, macro BS - macro user pair is defined as the pair

k = 1, and pico BS - pico user pairs are kept in the set k ∈ Γ = {2, ..., K}. It is assumed

that the required CSI is available at the transmitters in a centralized topology as explained

in Section 2.3.2.

Figure 4.1. System model for MIMO heterogeneous network

The system model used in this chapter is the same as the system model given in

Chapter 3. For instance, the received signal at user k, the SINR of the ith stream of the kth

receiver and the total sum rate (SR) can be calculated using Eq. (3.2), Eq. (3.6), Eq. (3.8),

respectively.

The main objective of the stream selection based IA algorithms is given in Chap-

ter 3 by Eq. (3.23). Due to the heterogeneity, such as different transmit power levels,

there can be an unfair stream selection for the pico cell users. To avoid this problem, an

additional constraint which allows allocating at least one stream to each user is introduced

to the main objective. The stream selection scheme which maximizes the total sum rate

of the network while guaranteeing at least one stream selection from each user can be
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formulated as follows.

{(T∗k,D
∗
k)}k=1,...,K = argmax

Tk,Dk

(SR) (4.1a)

s.t. qk ≥ 1, ∀k (4.1b)

4.3 Partially Connected Interference Networks

In this section, we propose the ISNSSS algorithm for the partially connected in-

terference networks. The algorithm only considers the stream sequence starting with a

pico stream. After a pico stream is selected, the strongest streams with a contribution

to the sum rate are selected. In each selection step, we perform successive orthogonal

projections to the null space of the selected stream. The key point of this approach is to

determine the stream sequences that give the highest sum rate among all the stream com-

bination paths initialized by the pico streams. In the following, improved stream selection

is explained in detail.

Improved Successive Null Space Stream Selection (ISNSSS) Algorithm

ISNSSS algorithm first constructs stream sequences starting with a pico stream,

since the average SNR of the pico users is higher than the macro user. The related justifi-

cation is given in Appendix A.

The initialization set that only includes pico user streams is Ξ. After the first

stream is selected from pico streams, stream with the maximum singular value which

increases the sum rate is chosen from the set Ω, which keeps the track of all the available

streams. If there is no such a stream, a stream that causes the minimum sum-rate decrease

is selected from a user with no selected streams. The construction of the stream sequence

continues until no more streams can be selected. The constructed stream sequence at the

end of the algorithm is denoted as Ψ.

The whole procedure is described in Alg. 8.
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Alg. 8 Improved Successive Null Space Stream Selection (ISNSSS)

Input: αkj , Hkj ∀k, j
Construct the initialization set Ξ

Ξ =
{

(k, l)| k ∈ Γ and l = 1, ..., dk
}

for each stream (k∗, l∗) ∈ Ξ do

1. Initialize the variables

Ψ = ∅; T = ∅; D = ∅; qk = 0 and H⊥kk = Hkk for k = 1, ..., K; finish = FALSE

2. Compute the SVD of all the channels

(αkkHkk) = UkSkVH
k for k = 1, ..., K

3. Set the stream to be selected initially (k∗, l∗)

Ψ = Ψ ∪ (k∗, l∗)

qk∗ = qk∗ + 1

4. Apply Alg. 3

6. Construct

Ω = {(Sk)(l, l)|k = 1, ..., K and l = 1, ..., dk}
8. Continue selecting streams (This step is in the following page)

9. Compute (Tk)Ψ, (Dk)Ψ and SRΨ for the stream sequence Ψ

end for

Select the best stream sequence according to Eq. (3.23)

Ψ∗ = argmax
Ψ

SRΨ

T∗k = (Tk)Ψ∗ , D∗k = (Dk)Ψ∗ for k = 1, ..., K

Output: T∗k, D∗k ∀k
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8. Continue selecting streams

while finish = FALSE do
8.1. Compute the SRΨ

8.2. Select a stream

Construct the set of streams which increases the sum-rate

Ω′ =
{

Sk(l, l) ∈ Ω| SRΨ∪(k,l) > SRΨ

}
if Ω′ 6= ∅ then

(k′, l′) = argmax
(k,l) such that Sk(l,l)∈Ω′

Sk(l, l)

else

Construct the set of streams which decreases the sum-rate the least from the
users with no stream

Ω
′′

k =

∅, if qk 6= 0{
Sk(l′, l′)| l′ = argmin

l

{
SRΨ − SRΨ∪(k,l)

}}
, if qk = 0

for k = 1, ..., K

Ω
′′

= Ω
′′

1 ∪ . . . ∪ Ω
′′

K

if Ω
′′ 6= ∅ then

(k′, l′) = argmin
(k,l) such that Sk(l,l)∈Ω′′

{
SRΨ − SRΨ∪(k,l)

}
else

finish = TRUE

end if

end if

8.3. Continue stream selection

if finish = FALSE then

8.3.1. Update

Ψ = Ψ ∪ (k′, l′), qk′ = qk′ + 1

8.3.2. Apply Alg. 3

8.3.4. Reconstruct Ω

Ω = {(Sk)(l, l)|k = 1, ..., K and l = 1, ..., dk and (k, l) /∈ Ψ}
end if

end while
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The Complexity of the ISNSSS Algorithm

An upper bound on the number of Alg. 3 calls in the ISNSSS algorithm can be

formulated as follows.

K∑
k=2

dk︸ ︷︷ ︸
The total number of

stream sequences

× r︸︷︷︸
Maximum number of times Alg. 3
is called for each stream sequence

(4.2)

4.4 Fully Connected Interference Networks

In this section, we propose an algorithm for the fully connectivity interference

networks where pico cells are deployed closer to each other.

The proposed algorithm for the fully connected interference networks is devel-

oped by analyzing the data collected from extensive exhaustive searches. It performs the

selection of a stream sequence among a predetermined set of sequences in order to reduce

the complexity while guaranteeing at least one stream selection from each user as given

in Eq. (4.1b).

The construction of the stream sequences based on the regular structure is ex-

pressed after the exhaustive search is explained.

4.4.1 Exhaustive Search for Heterogeneous Networks

Even if the exhaustive search is explained in the previous chapter, there is an

additional constraint which is selecting at least one stream for each user. Since the set Φj

defined in Eq. (3.26) includes all possible stream sequences, an additional set is defined as

the set Π in which all stream sequences including at least one stream from each BS-user

pair are kept. The set Π can be defined as follows.

Π =
{
π = (π1π2 . . . πj) | π ∈ Φj; j ≥ K;

∀k,∃m ∈ {1, . . . , j} such that km = k
} (4.3)
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In other words, π is a stream sequence of length j which is constructed by includ-

ing at least one stream from each user k. The maximum number of stream sequences in

the set Π is calculated as follows.

|Π| ≤
r∑

i=K

(
r

i

)
(4.4)

The algorithm is the same as Alg. 5 in Chapter 3 with only a difference in the

construction of the sets. The main drawback of the exhaustive search is its complexity

that depends on the number of streams. An upper bound on the number of Alg. 3 calls by

the exhaustive search can be formulated as follows.

r∑
i=K

( (
r!

(r − i)!

)
︸ ︷︷ ︸

An upper bound on the number of
stream sequences of length i

× i︸︷︷︸
The number of times Alg. 3 is

called for each stream sequence

)
(4.5)

4.4.2 Advanced Successive Null Space Stream Selection (ASNSSS)
Algorithm

The algorithm is developed by analyzing the data collected from extensive exhaus-

tive searches. It performs the selection of a stream sequence among a predetermined set

of sequences in order to reduce the complexity while satisfying Eq. (4.1b). This predeter-

mined set is composed of the sequences with the highest probability of occurrence while

performing the exhaustive search. The sequences in this predetermined set have a regular

structure which can be achieved by selecting the initial streams from the users that have

higher SNR values. Consequently, the proposed stream selection approach starts with

pico streams, because pico users are more likely to have higher SNR values on average as

justified in the appendix. The construction of the stream sequences based on the regular

structure is expressed as follows.

Generated stream sequences are kept in set ΠA in which there can be multiple

stream sequences initialized with the same pico stream. For this purpose, we define the

following sets constructed for each pico user k′ ∈ Γ.

• Ξk′ =
{
π =

(
π1π2 . . . πdk′

)
|π ∈ Φ;∀i ∈ {1, . . . , dk′} , πi = (k′, li)
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for some li ∈ {1, . . . , dk′}
}

(4.6)

where the definition of the set Φ is given in Eq. (3.25).

In other words, the set Ξk′ includes stream sequences π which are composed of

stream permutations of length dk′ that belong to pico user k′. Therefore, the number of

elements of Ξk′ is |Ξk′| = dk′ !

• Υk′,h′ =
{
π =

(
π1π2 . . . π|Γ|−2

)
| π ∈ Φ;

∀i ∈ {1, . . . , |Γ| − 2} , ki ∈ Γ \ {k′, h′} , and ki 6= kj if i 6= j
}

(4.7)

The set Υk′,h′ has two indices. Index k′ is used to leave out the streams of pico

user k′ which are considered in construction of Ξk′ and index h′ is used to leave out the

streams of pico user h′ one of which is considered in construction of set ∆h′ . The number

of elements of this set is calculated as follows:

|Υk′,h′ | = (|Γ| − 2)!×
∏

i∈Γ\{k′,h′}

di (4.8)

Note that if |Γ| = 2, Υk′,h′ = ∅.

• Λ =
{
p| p = (k, l) and k, l = 1

}
(4.9)

Since set Λ only includes the strongest stream of the macro user, |Λ| = 1.

• ∆h′ =
{
p| p = (h′, l) and l = 1

}
(4.10)

In addition, the number of elements of this set is |∆h′| = 1. That is to say, the set

∆h′ includes the strongest stream of the remaining pico user.

Based on the above sets, ΠA is constructed as follows:

ΠA =
⋃
k′∈Γ

Ξk′ ×

 ⋃
h′∈Γ\{k′}

Υk′,h′ × Λ×∆h′

 (4.11)

Furthermore, the number of elements of set ΠA is computed as follows.

|ΠA| =
∑
k′∈Γ

qk′ !×

 ∑
h′∈Γ\{k′}

(|Γ| − 2)!×
∏

i∈Γ\{k′,h′}

di

 (4.12)
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While constructing set ΠA, interference alignment is implemented after the se-

lection of each stream. Following the selection of a stream sequence from ΠA, it might

still be possible to increase the sum-rate further by selecting additional streams. This is

realized by attempting to select the strongest streams from the set which is composed of

the remaining unselected streams and defined as follows:

Ω =
{

(Sk)(l, l)|k = 1, ..., K, l = 1, ..., dk and (k, l) /∈ π∗A
}

where π∗A is the sequence of the selected streams.

The whole procedure of the algorithm ASNSSS is explained in Alg. 9.

The Complexity of the ASNSSS Algorithm

The number of Alg. 3 calls at each stream selection step of the proposed algorithm

can be formulated as follows:

(∑
k′∈Γ

dk′ !×
∑
h′∈Γ
h′ 6=k′

(|Γ| − 2)!×
∏
i∈Γ

i 6=k′,i 6=h′

di

︸ ︷︷ ︸
Total number of stream sequences

× r︸︷︷︸
Maximum number of times

Alg. 3 is called

)
(4.13)

4.5 Performance Results

In this section, the performances of the proposed algorithms for both fully and

partially connected interference networks are given with different scenarios including dif-

ferent number of pico cells.

We consider scenarios where there are 2 transmit antennas for each pico cell and

4 transmit antennas for the macro cell. Each cell has one user that is randomly placed

inside its coverage area and there are 2 receive antennas at each user.

In order to study the performance results of the proposed algorithms, pico cells

are deployed at the cell edge regions under the coverage of a macro cell. System behavior

is observed by varying the locations of the pico BSs with respect to macro BS. More

precisely, pico BSs are initially placed relatively close to the macro BS and they are

shifted together with the pico users from the inner area to cell edge area of the macro
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Alg. 9 Advanced Successive Null Space Stream Selection

Input: αkj , Hkj ∀k, j
Initialize the set ΠA

for each stream sequence π ∈ ΠA do

Apply Alg. 4

end for

Select the precoding and postcoding matrices for the permutation that maximizes the
sum-rate

π∗A = argmax
π∈ΠA

SRπ

Tk = (Tk)π∗A , Dk = (Dk)π∗A for k = 1, ..., K

Initialize the variables

finish = FALSE

Construct Ω

Ω =
{

(Sk)(l, l)|k = 1, ..., K and l = 1, ..., dk and (k, l) /∈ π∗A
}

while finish = FALSE do

Construct the set of streams which increases the sum-rate

Ω′ =
{

Sk(l, l) ∈ Ω| SRΨ∪(k,l) > SRΨ

}
if Ω′ 6= ∅ then

(k∗, l∗) = argmax
(k,l) such that Sk(l,l)∈Ω′

Sk(l, l)

Update

π∗A = π∗A ∪ (k∗, l∗)

qk∗ = qk∗ + 1

Apply Alg. 3

Reconstruct Ω

Ω =
{

(Sk)(l, l)|k = 1, ..., K and l = 1, ..., dk and (k, l) /∈ π∗A
}

else

finish = TRUE

end if

Set the precoding and the postcoding matrices for the constructed sequence

T∗k = Tk, D∗k = Dk for k = 1, ..., K

end while

Output: T∗k, D∗k ∀k
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BS which is fixed at location (0, 0). Locations of the pico cells are identified using the

ratio d/R where R is the macro cell radius and d is the distance between the macro BS

and each pico BS. Since, in practice, pico cells are generally deployed closer to the cell

edge areas of the macro cells, the ratio ranges from 0.6 to 1. In addition, the interference

level between pico cells generated to each other is investigated by changing the distance

between the pico cells, L, while d/R is fixed. Simulations are carried out using the system

parameters listed in Table 4.1.

Table 4.1. System Parameters

Parameter Name Parameter Value
Macro BS Power 43dBm
Pico BS Power 24dBm

Bandwidth 10MHz
Carrier Frequency 2.1GHz

Noise Power −174dBm/Hz
Macro Cell Radius 1000m
Pico Cell Radius 100m
Path loss (macro) 128.1 + 37.6log10(Rm(km))dB
Path loss (pico) 140.7 + 36.7log10(Rp(km))dB

Shadowing std. dev. (macro) 8dB
Shadowing std. dev. (pico) 10dB

The received SINR by the macro user is illustrated in Figure 4.2.

Table 4.2. Received SNR (dB) and SINR (dB) of the Macro User for Different dm Values.

dm = 150m dm = 200m dm = 250m
SNR SINR SNR SINR SNR SINR
26.31 25.40 27.61 26.63 28.92 28.03

The received SNR and SINR of the macro user are given in Table 4.2 for different

distances between the macro user and a pico BS, dm. It can be observed that the macro

user receives negligible interference from the pico BSs for dm > 250m. Therefore, IA

algorithm, Alg. 3, is applied to mitigate the interference generated from pico BSs to the
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Figure 4.2. Received SINR of the macro user when pico BSs at d/R = 0.8

macro user when dm ≤ 250m. Since the SNR and the SINR can vary with the different

transmit power values, this condition on dm may change for different transmit power

values.

4.5.1 Scenarios for Partially Connected Interference Networks

For partially connected interference networks, we evaluate the algorithm ISNSSS

considering three different scenarios including different number of pico cells. These sce-

narios are explained in detail in the following.

Scenario 1.1: d/R is changing for 1 Pico Cell

In Scenario 1.1, there is only 1 pico cell deployed at the cell edge regions under

the coverage of a macro cell as illustrated in Figure 4.3.

In order to analyze the behavior of the stream selection algorithms, the selection

probabilities of the stream sequences in the exhaustive search with their average sum rate

are given in Figure B.1 in Appendix B. It can be observed that the probability of selecting

the first stream from the pico user is greater than selecting it from the macro user.
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Figure 4.3. Scenario 1.1: One Pico cell is deployed under the coverage of a macro cell

Since there are two pico streams in this scenario, Alg. 8 constructs two stream

sequences by selecting the first streams from these pico streams. The obtained stream

paths are compared in terms of their sum rates and the path with the highest sum rate is

selected.

In Figure 4.4, ISNSSS algorithm is also compared to the existing IA methods,

max-SINR and min-Leak explained in the Chapter 3. The performance of the min-Leak

algorithm with one stream per user case is very poor compared to the stream selection

algorithms and max-SINR algorithm with one stream per user case. The comparison of

the number of selected streams for each user for different distance ratios can be listed in

Table 4.3. The results confirm that the proposed method allocates more streams to the

users while increasing the sum rate.

In addition, the complexities of the stream selection algorithms are compared in

Table 4.4. It can be seen that the exhaustive search is very complex when compared to the

ISNSSS and the SNSSS algorithms. On the other hand, the ISNSSS algorithm provides

better performance than the SNSSS algorithm with a small increase in complexity.

62



0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
22

24

26

28

30

32

34

36

38

d/R

S
um

−R
at

e 
(b

ps
/H

z)

 

 

Exhaustive Search
ISNSSS (Proposed Alg.)
SNSSS [Amara et. al. (2012)]
max−SINR [Gomadam et al. (2011)]
min−Leak [Gomadam et al. (2011)]

Figure 4.4. Scenario 1.1: Average sum rate vs. distance ratio d/R comparison with exist-
ing IA methods

Table 4.3. Scenario 1.1: The Average Number of the Selected Streams Per User

d/R=0.6 d/R=0.8 d/R=1

Macro User (ISNSSS) 1.89 1.9 1.92
Macro User (SNSSS (Amara et al. (2012a))) 1.79 1.83 1.85
Pico User (ISNSSS) 1.5 1.55 1.58
Pico User (SNSSS (Amara et al. (2012a))) 1.5 1.47 1.42

Table 4.4. Scenario 1.1: Complexity Comparison of Stream Selection Algorithms for 1
Pico Case

Exhaustive Search ISNSSS SNSSS
240 8 4
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Scenario 1.2: d/R is changing for 2 Pico Cells

In Scenario 1.2 there are 2 pico cells deployed at the cell edge regions under the

coverage of a macro cell as illustrated in Figure 4.5.

Figure 4.5. Scenario 1.2: Two Pico cells are deployed under the coverage of a macro cell

In this scenario, there are 6 streams in total and there are 4 streams that belong

to the pico users. Therefore, 4 stream sequences are constructed initialized by the pico

streams.

Figure B.2 given in Appendix B justifies the initial streams of the selected stream

sequences in the form of trees. Each node in a given tree contains a total probability and

a total weighted sum rate of the constructed stream sequences which are initialized by the

corresponding initial stream. It can be seen that the stream sequences initialized by the

pico streams have higher sum rate values comparing to the stream sequences initialized

by the macro streams.

In Figure 4.6, these methods are also compared to the existing IA methods. Ex-

haustive search gives the upper bound. The performance of the ISNSSS algorithm also
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higher than the other IA algorithms.
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Figure 4.6. Scenario 1.2: Average sum rate vs. distance ratio d/R comparison with exist-
ing IA methods

The comparison of the number of selected streams for each user for different dis-

tance ratios can be listed in Table 4.5. The results confirm that the proposed method

allocates more streams on average to pico users while ensuring better service to the users

and increasing the sum rate.

Furthermore, the complexities of the stream selection algorithms are compared

in Table 4.6. Once again, it can be seen that the exhaustive search is more complex

when compared to the ISNSSS algorithm as the total number of streams increases in the

network.

Scenario 1.3: d/R is changing for 3 Pico Cells

In Scenario 1.3, there are 3 pico cells deployed at the cell edge regions as shown

in Figure 4.7.
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Table 4.5. Scenario 1.2: The Average Number of the Selected Streams

d/R=0.8 d/R=1

Macro User (ISNSSS) 1.82 1.85
Macro User (SNSSS (Amara et al. (2012a))) 1.82 1.84
Pico 1 User (ISNSSS) 1.55 1.58
Pico 1 User (SNSSS (Amara et al. (2012a))) 1.53 1.52
Pico 2 User (ISNSSS) 1.59 1.61
Pico 2 User (SNSSS (Amara et al. (2012a))) 1.58 1.57

Table 4.6. Scenario 1.2: Complexity Comparison of Stream Selection Algorithms for 2
Pico Case

Exhaustive Search ISNSSS SNSSS
9720 24 6

Figure 4.7. Scenario 1.3: Three pico cells are deployed with an equal distance to each
other.
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Figure B.3 given in Appendix B illustrates the initial streams of the selected stream

sequences for Scenario 1.3. It can be seen that the total weighted sum rates (P × SR) of

the stream sequences initialized by the pico streams have higher values than those of the

stream sequences initialized by the macro streams.

In Figure 4.8, these methods are compared to the existing iterative and stream

selection based IA algorithms.
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Figure 4.8. Scenario 1.3: Average sum rate vs. distance ratio d/R comparizon with exist-
ing IA methods

Furthermore, the complexities of the stream selection algorithms are compared in

Table 4.7. It can be seen that the difference between the complexities of the ISNSSS and

the SNSSS algorithms is insignificant when compared to the exhaustive search, but the

performance of the ISNSSS algorithm is approximately 5bps/Hz higher than the SNSSS

algorithm.
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Table 4.7. Scenario 1.3: Complexity Comparison of Stream Selection Algorithms for 3
Pico Case

Exhaustive Search ISNSSS SNSSS
766080 48 8

4.5.2 Scenarios for Fully Connected Interference Networks

The scenario for fully connected interference network is realized by four different

scenarios to evaluate the performance of the proposed algorithm in the following sections.

In Scenarios 2.1 and 2.2, two pico cells are deployed at the cell edge regions of the macro

cell as illustrated in Figure 4.9. In Scenarios 2.3 and 2.4, three pico cells are symmetrically

deployed with respect to the macro cell as illustrated in the Figure 4.10. The number of

NTk and NRk
are same as in Scenarios 2.1 for each pico cell and for macro cell.

Figure 4.9. Scenario 2.1 and 2.2: Two pico cell case with different values of d and L

The related exhaustive search analysis for the scenarios of the fully connected

interference networks is given in Appendix B. Using the given analysis, the proposed
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Figure 4.10. Scenario 2.3 and 2.4: Three pico cell case with different values of d and L.

algorithm builds the set of stream sequences having a regular structure.

Scenario 2.1: d/R is changing while L is fixed

In order to evaluate the ASNSSS algorithm for this scenario, pico cells are shifted

towards to the cell edge of the macro cell by changing the ratio d/R. The distance between

the pico cells is constant and it is L = 150m to have fully connected scenarios.

The sum rate values achieved by different IA approaches are given in Figure 4.11.

It can be seen that the ASNSSS algorithm outperforms the existing stream selection meth-

ods and iterative approaches.

The comparison of the number of selected streams for each user for different dis-

tance ratios can be seen in Table 4.8. The results confirm that the proposed method allo-

cates more streams to pico users at the cell edge regions while increasing the sum rate.
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Figure 4.11. Scenario 2.1: Sum-Rate vs d/R between 0.6 and 1

Table 4.8. Scenario 2.1: The Average Number of the Selected Streams.

d/R=0.6 d/R=0.8 d/R=1

Macro User (ASNSSS) 1.59 1.63 1.7
Macro User (ESNSSS (Amara et al. (2012a))) 1.67 1.74 1.81
Macro User (SNSSS (Amara et al. (2012a))) 1.91 1.89 1.93
Pico 1 User (ASNSSS) 1.47 1.46 1.5
Pico 1 User (ESNSSS (Amara et al. (2012a))) 1.18 1.2 1.25
Pico 1 User (SNSSS (Amara et al. (2012a))) 1.34 1.30 1.29
Pico 2 User (ASNSSS) 1.58 1.59 1.56
Pico 2 User (ESNSSS (Amara et al. (2012a))) 1.28 1.26 1.24
Pico 2 User (SNSSS (Amara et al. (2012a))) 1.31 1.30 1.29
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Scenario 2.2: d/R is fixed while L is changing

In this scenario, pico cells are shifted away from each other along the y-axis while

the x-axis is fixed for the pico cells. The distance between the pico cells is kept maximum

L = 400m to be ensure to have fully connected network.

The SNR and SINR values of each pico user are listed in Table 4.9 and Table 4.10

for L = 100m and L = 400m, respectively. These values are obtained when there is only

pico BSs generating interference to each other at different distances. Since the received

SNR and SINR of the pico users are close to each other when L = 400m, the generated

interference can be negligible between the pico cells. Therefore, the distance between the

pico cells is kept maximum L = 400m in the scenarios.

Table 4.9. Scenario 2.2: Received SNR (dB) and SINR (dB) of the Pico Users when
L = 100m.

SNR SINR
Pico 1 User 40.50 26.38
Pico 2 User 40.00 25.87

Table 4.10. Scenario 2.2: Received SNR (dB) and SINR (dB) of the Pico Users when
L = 400m.

SNR SINR
Pico 1 User 40.50 39.42
Pico 2 User 40.00 39.07

Figure 4.12 shows the performance comparison between the proposed algorithm

and the existing algorithms. It can be seen that the gap between the exhaustive search

and the proposed ASNSSS algorithm is very small, only approximately 1.3 bps/Hz; and

ASNSSS algorithm outperforms the existing stream selection methods and iterative ap-

proaches.
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Figure 4.12. Scenario 2.2: Sum-Rate vs Distance L between 100m and 400m

Complexity Comparison of the Stream Selection Algorithms for Scenario 2.1 and

Scenario 2.2:

The complexity of the stream selection algorithms are calculated in terms of the

number calls to Alg. 3 and the comparison is given in Table 4.11 for Scenario 2.1 and

Scenario 2.2, since the total number of streams is same in scenarios with the same net-

work configurations. It can be observed that Alg. 3 is called by the ASNSSS algorithm at

most 24 times which is much fewer than the number of calls to Alg. 3 by the exhaustive

search and the ESNSSS algorithm. It should be noted that these results represent upper

bounds for the given algorithms as given in Eq. (4.13), since different stream sequences

constructed with the different number of streams can be selected by the stream selec-

tion algorithms. In the exhaustive search, although the number of the searched stream

sequences is fixed, it is difficult to obtain the exact number of the stream sequences and,

thus, the exact number of calls to Alg. 3 due to the constraint defined in Eq. (4.1b). There-

fore, an upper bound is also calculated for the exhaustive search using Eq. (4.5).

Further simulations are performed to compare the complexities of the stream se-

lection algorithms. The average number of calls to Alg. 3 is calculated when pico cells
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Table 4.11. Scenario 2.1 and Scenario 2.2: Complexity Comparison of Stream Selection
Algorithms for 2 Pico Case

Exhaustive Search ASNSSS ESNSSS SNSSS
9720 24 36 6

are located at d/R = 0.8 and L = 150m. The related results are shown using histograms

for SNSSS, ASNSSS, ESNSSS algorithms in Figure 4.13. The number of calls to Alg. 3

is fixed which is equal to 9216 for the exhaustive search. In addition, the average number

of calls to Alg. 3 does not change with either d/R or L as illustrated in Figures 4.14.
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Figure 4.13. Comparisons of the Average Number of Calls to Alg. 3 at d/R=0.8 and
L=150m for two pico cell case

The results demonstrate that the ASNSSS algorithm has a lower complexity with a

simple regular structure when compared to the other stream selection based IA algorithms.

Scenario 2.3: d/R is changing while L is fixed

In this scenario, pico cells are shifted towards to the cell edge of the macro cell

by changing the ratio d/R while the distances between the pico cells are kept fixed as
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Figure 4.14. Scenario 2.1: Comparisons of the Average Number of Calls to Alg. 3 vs d/R
between 0.6 and 1

L = 200m and S = 200m.

The sum rate values achieved by different approaches for the first case of this sce-

nario are given in Figure 4.15. It is shown that the performance of the proposed algorithm

is quite close to the one of the exhaustive search; and the gap is approximately 1 bps/Hz.

Additionally, the ASNSSS algorithm shows better performance than the other existing

stream selection approaches.

Scenario 2.4: d/R is fixed while L is changing

In this scenario, Pico cell 2 and Pico cell 3 are shifted away from each other along

the y-axis while Pico cell 1 is fixed.

The performances of the proposed and the existing algorithms for this case is

shown in Figure 4.16. Similar to the previous cases, the performance of the proposed

algorithm is quite close to that of the exhaustive search; and the gap is approximately 1

bps/Hz while its performance is better than the other existing algorithms.
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Figure 4.15. Scenario 2.3: Sum-Rate vs d/R between 0.6 and 1
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Figure 4.16. Scenario 2.4: Sum-Rate vs Distance L between 200m and 600m
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Complexity Comparison of the Stream Selection Algorithms for Scenario 2.3 and

Scenario 2.4:

To evaluate the complexities, once again, the number calls to Alg. 3 is considered

for Scenario 2.3 and Scenario 2.4. To compute the maximum numbers of calls to Alg. 3,

Eq. (4.5) and Eq. (4.13) are used and the results are given in Table 4.12. As in the two

pico cell case, given results represents the upper bounds for the given algorithms. In other

words, the results given in the table can be obtained when the selected stream sequence

includes all the streams. On the other hand, the upper bound for the exhaustive search is

obtained due to the difficulty in computing the exact number of the stream sequences con-

sidering the constraint defined in Eq. (4.1b). Therefore, an upper bound is also calculated

for the exhaustive search even if the number of the searched stream sequences is fixed.

Table 4.12. Scenario 2.3 and Scenario 2.4: Complexity Comparison of Stream Selection
Algorithms for 3 Pico Case

Exhaustive Search ASNSSS ESNSSS SNSSS
766080 192 64 8

It can be observed that there is a significant complexity reduction by performing

the ASNSSS algorithm. In addition, although ESNSSS and SNSSS algorithms have lower

complexities, the ASNSSS algorithm can achieve almost the same performance with the

exhaustive search.

Furthermore, histograms of the numbers of calls to Alg. 3 are obtained for SNSSS,

ASNSSS and ESNSSS algorithms as seen in Figure 4.17 for d/R = 0.8 and L = 150m.

Since the number of calls to Alg. 3 is fixed for the exhaustive search and it is equal to

729216, it is not shown in Figure 4.17.

In addition, the average number of calls to Alg. 3 does not change with either d/R

or L for the ASNSSS, ESNSSS and SNSSS algorithms and it is illustrated in Figure 4.18.

The results demonstrates a clear advantage of the ASNSSS algorithm compared

to the exhaustive search in terms of complexity and applicability due to the fact that the

ASNSSS algorithm avoids from searching all stream paths by making use of a simple
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Figure 4.17. Comparisons of the Average Number of Calls to Alg. 3 at d/R=0.8 and
L=150m for three pico cell case
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regular structure. In addition, as the number of the pico cells increases, the performance

of the ASNSSS algorithm gets closer to the performance of the exhaustive search.

4.6 Conclusion

In this chapter, we have presented two efficient stream selection approaches for

heterogeneous networks in order to reduce the complexity of the exhaustive search and,

still, achieve a performance closed to the one of the exhaustive search. The proposed

algorithms deal with the interference among the macro and pico cells; after each stream

is selected, we perform orthogonal projections in order to handle the interference to and

from the selected stream. Furthermore, the algorithms satisfy the constraint that at least

one stream must be allocated to each user, which is not required by the existing stream

selection approaches.

For the partially connected interference networks, the proposed algorithm called

ISNSSS constructs a set of stream sequences by initializing each of them with the streams

of the pico users. Then the best stream sequence that gives the highest sum rate is selected

from the set.

For the fully connected interference networks, the proposed algorithm called

ASNSSS selects the best stream sequence in terms of sum rate from a predetermined

set of sequences that is constructed from an analysis of the behavior of the exhaustive

search algorithm. It is observed that initializing the stream sequences using the streams of

pico users generally leads to better stream sequences since it is more likely for pico users

to have a higher SNR value than the macro user.

The performance of the ISNSSS and the ASNSSS algorithms have been evaluated

for different scenarios with different number of pico cells by varying the positions of pico

BSs at the cell edge zone of the macro cell. The performance results indicate that the

proposed algorithms outperform the existing stream selection approaches and iterative IA

solutions by getting closer to the upper bound set by the exhaustive search while achieving

significantly lower complexities. Moreover, as the number of pico cells increases, it has

been observed that the performance gap between the ASNSSS and the exhaustive search

decreases with an increased complexity which is still significantly lower than the one of

the exhaustive search.
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CHAPTER 5

INTERFERENCE ALIGNMENT WITH IMPERFECT CSI

5.1 Introduction

The algorithms proposed in the previous chapters assume that the CSI is perfectly

known at the transmitters in a centralized topology. Thus, the interference can be per-

fectly aligned by designing the precoders and the postcoders. Since this assumption is

not realistic for practical systems, feedback schemes have been commonly implemented

in cellular networks (Love et al. (2008)).

In the feedback mechanism, receivers estimate the channel coefficients by using

training sequences. After the channel estimation, receivers feedback the quantized CSI to

the transmitters with a certain number of bits using codebooks known at both the trans-

mitters and the receivers. Thus, precoders and postcoders can be calculated to align the

interference. The quality of the obtained CSI by the limited feedback affects the perfor-

mance of the IA. It has been shown that increasing the size of the codebook decreases

the distortion caused by the limited feedback, and increases the feedback overhead in the

network. Therefore, the number of bits for CSI should be optimized depending on the

channel conditions (Özbek and Le Ruyet (2014b)).

Equal bit allocation in which the number of feedback-bits for each channel is fixed

is not efficient for the heterogeneous networks due to different pathloss and shadowing

effects.To increase the system throughput with the quantized channel, different feedback

bit allocation schemes have been studied for the interference alignment in K pair MIMO

systems. In order to minimize the effect of the distortion, an adaptive feedback bit al-

location scheme that adaptively selects the number of feedback bits to the links of each

transmitter-receiver pair have been designed in the studies of Cho et al. (2012)) and (Chen

and Yuen (2014).

In the context of the heterogeneous networks, optimizing the bit allocation can

increase the performance of the feedback schemes for IA technique by considering the
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distinctive features of the heterogeneous networks, such as unequal number of transmit

antennas and transmit power levels (Niu et al. (2014)), (Rihan et al. (2015)).

In this chapter, we consider a limited feedback scheme for the proposed stream

selection based IA algorithms. To decrease the intra-stream interference in the quantized

CSI case, a restricted version of the ASNSSS algorithm is presented as restricted ASNSSS

(RASNSSS) algorithm which does not select additional streams after the construction of

the stream sequences. However, there are still multiple pico streams in the constructed

stream sequences and it yields a performance degradation due to the quantization in the

case of a reasonable number of limited feedback bits. To avoid the intra-stream inter-

ference and to decrease the feedback overhead, K-stream selection (KSS) algorithm is

proposed where only the best streams of each user is selected. Instead of allocating equal

number of feedback bits to each channel (Aycan et al. (2015)), an adaptive bit allocation

scheme is presented to maximize the average sum-rate by optimizing the number of bits

to quantize the CDI of each user. The adaptive bit allocation is presented for ISNSSS

(Aycan Beyazit et al. (2016a)), RASNSSS (Aycan Beyazit et al. (2016b)) and KSS (Ay-

can Beyazit et al. (2016)) algorithms. The performance is evaluated for both the partial

and the fully connected interference network scenarios.

We first introduce the system model in Section 5.2 including the limited feedback

model. Next, the stream selection based IA algorithms for the heterogeneous networks

which are RASNSSS and KSS, are proposed for the imperfect CSI in Section 5.3 and

Section 5.4, respectively. Different adaptive feedback bit allocation schemes are presented

for the RASNSSS, KSS and ISNSSS algorithms in order to increase the sum rate of

the network for a fixed feedback load per user in Section 5.5. Next, we evaluate the

performance of the proposed algorithms in Section 5.6. Finally, we conclude the chapter

in Section 5.7.

5.2 System Model

In this chapter, a K-pair heterogeneous network is considered as defined in Chap-

ter 4. The transmission and the channel quantization model for the limited feedback

scheme are given in the following sections.
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5.2.1 Transmission Model

We modify Eq. (3.1) for the case of imperfect CSI and define the transmitted signal

as follows.

xk =
√
PkT̃ksk (5.1)

where T̃k is the unitary precoding matrix of the kth transmitter with dimension NTk × qk
and it is obtained by the proposed algorithms under the quantized channel, H̃kj , between

the jth transmitter and the kth receiver with dimension NRk
×NTj .

Each user decodes the received signals by multiplying them with the postcoding

matrices, D̃k, of dimension NRk
× qk and they are obtained by the proposed algorithms

under the quantized channel. Thus, the decoded data symbols are given as ŷk = D̃H

k yk.

The evaluated data rate for the ith stream of the kth user can be expressed as

follows.

R̃ki = log2(1 + γ̃ki) (5.2)

where γ̃ki is the evaluated SINR for the ith stream of the kth user and it is given by

γ̃ki =
(Pk/qk)α

2
kk

(
d̃ik
)H

H̃kk t̃
i

k

(
t̃ik
)H

H̃H

kkd̃
i

k(
d̃ik
)H

B̃kid̃
i

k

(5.3)

∀k = 1, ..., K, ∀i = 1, ..., qk

where t̃ik is the ith column vector of matrix T̃k with the size of NTk × 1 and d̃ik is the ith

column vector of matrix D̃k with the size ofNRk
×1. Since the perfect CSI is not available

at the transmitters, H̃kj is used in the algorithms. The interference plus noise covariance

matrix of the kth receiver, B̃k, is defined as

B̃k =

qk∑
l=1,
l 6=i

Pk
qk
α2
kkH̃kk t̃

l

k t̃lHk H̃H

kk +
K∑
j=1
j 6=k

qj∑
q=1

Pj
qj
α2
kjH̃kj t̃

q

j t̃
qH

j H̃H

kj + σ2INRk

k = 1, ..., K, i = 1, ..., qk

(5.4)
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The evaluated sum rate is calculated as follows.

S̃R =
K∑
k=1

qk∑
i=1

R̃ki (5.5)

The achievable data rate for the ith stream of the kth user can be expressed as

follows.

R̃
′
ki = log2(1 + γ̃′ki) (5.6)

where γ̃′k is the achievable SINR of the ith stream of the kth receiver and it is given by

γ̃′ki =
(Pk/qk)α

2
kk

(
d̃ik
)H

Hkk t̃
i

k

(
t̃ik
)H

HH
kkd̃

i

k(
d̃ik
)H

B̃′kid̃
i

k

(5.7)

∀k = 1, ..., K, ∀i = 1, ..., qk

The interference plus noise covariance matrix for stream i of the kth receiver, B̃′ki, is

defined as

B̃′ki =

qk∑
l=1,
l 6=i

Pk
qk
α2
kkHkk t̃

l

k t̃lHk HH
kk +

K∑
j=1
j 6=k

qj∑
q=1

Pj
qj
α2
kjHkj t̃

q

j t̃
qH

j HH
kj + σ2INRk

(5.8)

∀k = 1, ..., K, ∀i = 1, ..., qk

The achievable sum rate is calculated as follows.

S̃R
′
=

K∑
k=1

qk∑
i=1

R̃
′
ki (5.9)

In the stream selection algorithms, the sum rate is calculated using S̃R, since only

the quantized channel is available in the transmitters through the communication chan-

nels. On the other hand, the performances of the proposed algorithms are determined

using S̃R
′
. Therefore, the stream selection scheme aims to maximize the total sum rate of

the network while guaranteeing to select at least one stream from each user as follows.
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{
(T̃∗k, D̃

∗
k)
}
k=1,...,K

= argmax
T̃k,D̃k

S̃R (5.10a)

s.t. qk ≥ 1 k = 1, ..., K (5.10b)

5.2.2 Limited Feedback Model

In this section, a limited feedback scheme is presented based on RVQ. The pro-

posed IA algorithms require all the CSI to obtain all precoding and postcoding vectors.

Therefore, a centralized feedback model is considered in which the macro BS collects all

the CSIs from pico BSs through the error and delay free backhaul links. It is assumed that

CQI is perfectly available at the BS and the receivers only feedback their CDI.

Each step of the feedback scheme that is illustrated in Figure 5.1 can be explained

as follows.

Figure 5.1. Centralized CSI Feedback Scheme (without an additional unit): Macro BS
acts as the central unit
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• Step 1: It is assumed that the CSI has been perfectly estimated at each receiver as

Hkj = H̄kj × ‖Hkj‖F .

• Step 2: Each receiver quantizes the desired and the interference CDI. In order to

quantize each CDI, codebooks are generated by using RVQ which contains 2Bkj

codewords. The codeword ci∗kj is selected as the quantized CDI.

• Step 3: The indices of the selected codewords are fed back to the associated trans-

mitters through feedback links.

• Step 4: Each pico BS receives the codebook indices and sends them to the macro

BS through the backhaul links.

• Step 5: The macro BS reconstructs CSIs by using the codebooks known at both

sides. After, the precoding and postcoding vectors are computed by implementing

the proposed algorithm.

• Step 6: The macro BS distributes the precoding and the postcoding vectors to the

pico BSs.

• Step 7: Each transmitter forwards the postcoders to the corresponding receivers

using the forward link.

The Chordal distance metric is used in Step 2 to select the codeword ci∗kj . Since the

codewords and normalized channel are lying in the non-Euclidean space of Grassmann

manifolds, Chordal distance metric yields better performance than the Euclidean distance

as shown in Figure 5.2. The comparison results are obtained using SNSSS algorithm with

different number of Bδ = Bkj , ∀k, j, bits for Scenario 2.1 given in Chapter 4.

5.3 Restricted Advanced Successive Null Space Stream Selection Al-
gorithm

In this section, the restricted advanced successive null space stream selection

(RASNSSS) algorithm is presented for the limited feedback scheme. As the number

of the streams increases, the quantization error also increases for a given number of feed-

back bit. In other words, when the number of feedback bits is fixed, selecting less streams
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Figure 5.2. The comparison of two metrics for SNSSS with different Bδ values for Sce-
nario 2.1.

for each user can decrease the intra-stream interference in the limited feedback scheme.

In the RASNSSS algorithm, after the stream sequences in the set ΠA are selected, there

is no additional stream selection when compared to the ASNSSS algorithm. Therefore,

RASNSSS algorithm given in Alg. 10 is the restricted version of the ASNSSS algorithm

presented in Alg. 9 in Section 4.4.2. The RASNSSS algorithm applies Alg. 4 using H̃kj

∀k, j instead of Hkj ∀k, j.

The construction of stream sequence set, ΠA, is the same as the one given in

Section 4.4.2.

The Complexity of the RASNSSS Algorithm:

The number of calls to Alg. 3 at each stream selection step of the proposed algo-

rithm can be formulated as follows:

(∑
k′∈Γ

dk′ !×
∑
h′∈Γ
h′ 6=k′

(|Γ| − 2)!×
∏
i∈Γ

i 6=k′,i 6=h′

di

︸ ︷︷ ︸
Total number of stream sequences

× (dk′ + (|Γ| − 2) + 2)︸ ︷︷ ︸
Maximum number of
times Alg. 3 is called

)
(5.11)
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Alg. 10 Restricted Advanced Successive Null Space Stream Selection

Input: αkj , H̃kj ∀k, j
Initialize the set ΠA

for each stream sequence π ∈ ΠA do

Apply Alg. 4

end for

Select the best stream sequence according to Eq. (5.10)

π∗A = argmax
π∈ΠA

S̃Rπ

T̃∗k = (T̃k)π∗A , D̃∗k = (D̃k)π∗A for k = 1, ..., K

Output: T̃∗k, D̃∗k ∀k

5.4 K-Stream Selection Algorithm

In this section, the K-stream selection (KSS) algorithm is described where a

stream sequence is selected from a predetermined set of sequences of limited size. Each

stream sequence is constructed with different combinations of the best streams of each

user. So that all the stream sequences include one single stream per user to prevent the

intra-stream interference. Each sequence is initialized with the streams of the pico users

since the pico users are more likely to have higher SNR values on average.

To analyze the behavior of the stream selection process, the selection probabilities

of the stream sequences in the exhaustive search with their average sum rate are given in

Figure B.1 in Appendix B. It can be observed that the probability of selecting the first

stream from the pico user is greater than selecting it from the macro user. In addition, the

selection of pico streams as the initial streams is justified in Appendix A.

The construction of the stream sequences based on the regular structure is de-

scribed as follows.

Each stream i can be expressed as πi = (ki, li) where ki ∈ {1, . . . , K} , li ∈

{1, . . . , qki} and i ∈ {1, . . . , r}. The set of all permutations of length j ∈ {1, . . . , r} can

be defined as follows.

Φj =
{
π = (π1π2 . . . πj) | ∀i, i′ ∈ {1, . . . , j} , πi 6= πi′ if i 6= i′

}
(5.12)
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All stream sequences that include at least one stream from each BS-user pair are kept in

set Π which can be defined as follows.

Π =
{
π = (π1π2 . . . πj) | π ∈ Φj; j ≥ K;

∀k, ∃m ∈ {1, . . . , j} such that km = k
} (5.13)

The generated stream sequences are kept in the set Πp and it is defined as follows.

Πp =
{
π = (π1π2 . . . πj) |π ∈ Π; j = K; l1 = . . . = lj = 1; k1 ∈ Γ

}
(5.14)

Alg. 11 performs the KSS algorithm which applies Alg. 4 using H̃kj ∀k, j.

Alg. 11 KSS Algorithm

Input: αkj , H̃kj ∀k, j
Initialize the set Πp as given in Eq.( 5.14)

for each stream sequence π ∈ Πp do

Apply Alg. 4

end for

Select the precoding and postcoding matrices for the permutation that maximizes the
sum-rate

π∗p = argmax
π∈Πp

S̃Rπ

T̃∗k = (T̃k)π∗p , D̃∗k = (D̃k)π∗p for k = 1, ..., K

Output: T̃∗k, D̃∗k ∀k

The Complexity of the KSS Algorithm:

The number of calls to Alg. 3 at each stream selection step of the proposed algo-

rithm can be formulated as follows:

(
|Πp|︸︷︷︸

Total number of
stream sequences

× K︸︷︷︸
The number of

times Alg. 3 is called

)
(5.15)
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5.5 Adaptive Bit Allocation Scheme for Quantized CSI

In this section, an adaptive feedback bit allocation is presented. The main objec-

tive is to maximize the average sum rate by optimizing the number of bits to quantize

the macro and pico CDIs for each user. Since optimizing the total number of bits for the

whole system is too complex, an upper bound on the each user’s data rate is obtained as

defined in Eq. (5.2). In this way, the given total number of feedback bits for each user is

adaptively and locally allocated to the channels.

The optimization problem of the bit allocation for the stream selection based IA

algorithms can be formulated for the kth user as follows.

max
Bkj ;j=1,...,K

qk∑
i=1

E [R̃ki]

s.t.
K∑
j=1

Bkj ≤ Bk

(5.16)

where Bk is the total number of feedback bits for user k.
An approximate upper bound is derived for the solution of the bit allocation prob-

lem in Eq. (5.16). The upper bound for the total data rate of each user is the sum of the
upper bounds of the rate of each stream. Therefore, an upper bound is obtained for each
stream (Anand et al. (2013)). The problem is considered for the high SINR region where
log2(1 + x) ≈ log2(x) since the interference is mitigated by performing the stream se-
lection based IA algorithms. Furthermore, the interfering and the desired channel terms
are modeled as independently distributed random variables. Therefore, E [R̃ki] can be
rewritten by using Eq. (5.6) as follows.

E

log2

(
(Pkk/qk)

(
d̃
i

k

)H
Hkk t̃ik t̃iHk HH

kkd̃
i

k

)
︸ ︷︷ ︸

a

−

E

[
log2

(
qk∑

l=1,
l 6=i

(Pkk/qk)
(

d̃
l

k

)H
Hkk t̃lk t̃lHk HH

kkd̃
l

k

︸ ︷︷ ︸
b1

+

K∑
j=1
j 6=k

qj∑
q=1

(Pkj/qj)
(

d̃
q

j

)H
Hkj t̃qj t̃qHj HH

kj d̃
q

j

︸ ︷︷ ︸
b2

+σ2INRk

︸ ︷︷ ︸
b

)]

(5.17)

where Pkj is the average received power at user k from BS j and it is calculated as Pkj =

Pjα
2
kj .
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The channel matrix Hkk can be expressed as a function of the quantized channel

matrix H̃kk as given in Eq. (2.27). Accordingly, the first term of Eq. (5.17) can be rewritten

as follows (Anand et al. (2013)).

a = log2

(
(Pkk/qk) ‖Hkk‖2

F

∣∣∣ (d̃ik
)H (√

1− ekk ˜̄Hkk +
√
ekkZkk

)
t̃ik
∣∣∣2) (5.18)

Assuming large number of feedback bits, the error magnitude, ekk, is small, so

that it can be neglected (Anand et al. (2013)). Consequently, Eq. (5.18) can be rewritten

as follows.

a = log2

(
(Pkk/qk) ‖Hkk‖2

F

(
(1− ekk)

∣∣∣∣(d̃ik
)H

˜̄Hkk t̃
i

k

∣∣∣∣2 )) (5.19)

Since |x + y|2 ≤ (|x| + |y|)2, the third term of Eq. (5.17), b2, can be written as

follows.

b2 ≤
K∑

j=1,
j 6=k

qj∑
q=1

(Pkj/qj) ‖Hkj‖2
F

(
(1− ekj)

∣∣∣∣(d̃ik
)H

˜̄Hkj t̃
q

j

∣∣∣∣2︸ ︷︷ ︸
v

+

(
ekj

∣∣∣∣(d̃ik
)H

Zkj t̃
q

j

∣∣∣∣2
)

+

2
√

1− ekj
√
ekj

∣∣∣∣(d̃ik
)H

˜̄Hkj t̃
q

j

∣∣∣∣ ∣∣∣∣(d̃ik
)H

Zkj t̃
q

j

∣∣∣∣︸ ︷︷ ︸
z

)
(5.20)

The term
∣∣∣(d̃k)H ˜̄Hkj t̃j

∣∣∣ can be considered approximately zero due to the IA

scheme. Therefore, the terms v and z vanish and Eq. (5.20) can be rewritten as follows.

b2 ≤
K∑
j=1
j 6=k

qj∑
q=1

(Pkj/qj) ‖Hkj‖2
F

(
ekj

∣∣∣∣(d̃ik
)H

Zkj t̃
q

j

∣∣∣∣2 ) (5.21)

Similarly, b1 can be obtained as follows.

b1 ≤
qk∑
l=1,
l 6=i

(Pkk/qk) ‖Hkk‖2
F

(
ekk

∣∣∣∣(d̃ik
)H

Zkk t̃
l

k

∣∣∣∣2 ) (5.22)
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Using Jensen’s inequality, the upper bound for Eq. (5.17) can be obtained as fol-

lows.

E[a]− E[b] ≤

log2

(
E
[

(Pkk/qk) ‖Hkk‖2
F

(
(1− ekk)

∣∣∣∣(d̃ik
)H

˜̄Hkk t̃
i

k

∣∣∣∣2 )])︸ ︷︷ ︸
T1

−

log2

( qk∑
l=1,
l 6=i

E
[

(Pkk/qk) ‖Hkk‖2
F

(
ekk

∣∣∣∣(d̃ik
)H

Zkk t̃
l

k

∣∣∣∣2 )]︸ ︷︷ ︸
T2

+

K∑
j=1
j 6=k

qj∑
q=1

E
[

(Pkj/qj) ‖Hkj‖2
F

(
ekj

∣∣∣∣(d̃ik
)H

Zkj t̃
q

j

∣∣∣∣2 )])︸ ︷︷ ︸
T3

(5.23)

Since E
[
‖Hkk‖2

F

]
= NTkNRk

, the first term of Eq. (5.23), T1 can be expressed using the

Eq. (2.28) as follows (Zhang and Andrews (2010)), (Özbek and Le Ruyet (2014a)).

T1 ≈ (Pkk/qk) 2Bkkβ(2Bkk ,
NTkNRk

NTkNRk
− 1

)

≤ (Pkk/qk)

(
1− 2

− Bkk
NTk

NRk
−1

) (5.24)

The second and the third term of Eq. (5.23), T2 and T3, can be expressed as

follows (Ravindran and Jindal (2008)), (Jindal (2006)).

T2 + T3 ≈ Pkk(qk − 1)

qk
2Bkkβ(2Bkk ,

NTkNRk

NTkNRk
− 1

) +
K∑
j=1
j 6=k

Pkj2
Bkjβ(2Bkj ,

NTjNRk

NTjNRk
− 1

)

≤ Pkk(qk − 1)

qk
2
− Bkk

NTk
NRk

−1 +
K∑
j=1
j 6=k

Pkj2
−

Bkj
NTj

NRk
−1

(5.25)

.

Using Eq. (5.24) and Eq. (5.25) in Eq. (5.17), the optimization problem can be
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expressed for any stream of the kth user as follows.

max
Bkj ;j=1,...,K

[
log2

(
(Pkk/qk)

(
1− 2

− Bkk
NTk

NRk
−1

))
−

log2

(
Pkk(qk − 1)

qk
2
− Bkk

NTk
NRk

−1 +
K∑
j=1
j 6=k

Pkj2
−

Bkj
NTj

NRk
−1

)]

s.t.
K∑
j=1

Bkj ≤ Bk

(5.26)

The solutions for the problem expressed in Eq. (5.26) are obtained by using a

Matlab based software for convex optimization (Grant and Boyd (2014)). After obtaining

the Bkj values which are real numbers, a round operation is applied to get integer values.

In order to perform the IA algorithms, each transmitter should know the complete

quantized CSI of the network or obtain the precoding and the postcoding vectors (Anand

et al. (2013)). Since it is achieved by the given feedback topology in Section 5.2.2, the

optimization problem defined in Eq. (5.26) is also suitable for any IA algorithms such as

Max-SINR or min-Leak.

On the other hand, depending on the stream selection approach, the solution to the

optimization problem defined in Eq. (5.26) can be varied. The solutions of the adaptive

bit allocation for the RASNSSS, KSS and ISNSSS algorithms are given in the following.

5.5.1 Adaptive Bit Allocation for RASNSSS Algorithm

RASNSSS algorithm proposed for the limited feedback scheme just selects the

streams from the constructed stream sequences kept in set ΠA and do not continue to

select streams as in the ASNSSS algorithm given as Alg. 9. In the constructed stream

sequence, there is only one selected stream for the macro user; however, multiple streams

can be selected for a pico user.

Since the number of selected streams is not known in advance for a pico user, the

optimization problem is defined for the case where all the streams of all the pico users are

selected.

Accordingly, the optimization problem for a pico user k where k ∈ Γ can be
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expressed as follows.

max
Bkj ;j=1,...,K

[
log2

(
(Pkk/qk)

(
1− 2

− Bkk
NTk

NRk
−1

))
−

log2

(
Pkk(qk − 1)

qk
2
− Bkk

NTk
NRk

−1 +
K∑
j=2
j 6=k

Pkj2
−

Bkj
NTj

NRk
−1

+ Pk12
− Bk1

NT1
NRk

−1

)]

s.t.
K∑
j=1

Bkj ≤ Bk

(5.27)

On the other hand, the optimization problem for a macro user where k = 1 can be

expressed as follows.

max
B1j ;j=1,...,K

[
log2

(
P11

(
1− 2

− B11
NT1

NR1
−1

))
−

K∑
j=2

P1j2
−

B1j
NTj

NR1
−1

)]

s.t.
K∑
j=1

B1j ≤ B1

(5.28)

5.5.2 Adaptive Bit Allocation for the KSS Algorithm

The KSS algorithm constructs stream sequences by different stream combinations

of the best streams of each user and each sequence is initialized by the streams of the pico

users.

Since the intra-stream interference has a severe impact on the performance of the

IA in the limited feedback schemes, each constructed stream sequence includes only one

stream for each user. In this way, for a given number of feedback bits, transmission with

single stream per each user reduces the quantization error compared to the transmission

with multiple streams.

Avoiding the intra-stream interference for the limited feedback scheme, the opti-
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mization problem for the KSS algorithm can be expressed as follows.

max
Bkj ;j=1,...,K

[
log2

(
Pkk

(
1− 2

− Bkk
NTk

NRk
−1

))
− log2

( K∑
j=1,
j 6=k

Pkj2
−

Bkj
NTj

NRk
−1
)]

; ∀k

s.t.
K∑
j=1

Bkj ≤ Bk

(5.29)

5.5.3 Adaptive Bit Allocation for the ISNSSS Algorithm

The ISNSSS algorithm given in Alg. 8 in the previous chapter is described assum-

ing perfect CSI at the transmitters. In this chapter, the ISNSSS algorithm is evaluated for

the partially connected interference networks with the imperfect CSI. Therefore, Alg. 8 is

performed using H̃kj ∀k, j instead of Hkj ∀k, j and, thus, the precoding and the postcod-

ing matrices are calculated using the quantized CSI.

Since the number of the selected streams is not known in advance for each user,

the optimization problem is defined for the case where all the streams of all the users are

selected. Therefore, the problem expressed in Eq. (5.26) is considered.

A similar case applies to the existing stream selection based IA algorithms, such

as, ESNSSS and SNSSS (Amara et al. (2012a)).

5.6 Performance Results

The performances of the stream selection based IA algorithms with the quantized

CSI are evaluated in Scenario 1.2 which is illustrated in Figure 4.5 and Scenario 2.1 which

is illustrated in Figure 4.9. For these scenarios, we consider that there are 2 transmit

antennas for each pico cell and 4 transmit antennas for the macro cell. Each cell has one

user that is randomly placed inside its coverage area. Each user has 2 receive antennas.

The locations of the pico BSs are varied with respect to macro BS. More precisely,

pico BSs are initially placed relatively close to the macro BS and they are shifted together

with the pico users from the inner area to cell edge area of the macro BS located at (0, 0).
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Locations of the pico cells are identified using the ratio d/R where R is the macro

cell radius and d is the distance between the macro BS and each pico BS. Since, in prac-

tice, pico cells are generally deployed closer to the cell edge areas of the macro cells, the

ratio ranges from 0.6 to 1.

Simulations are carried out using the system parameters listed in Table 4.1.

As in the previous chapter, both the fully and the partially interference networks

are considered for the performance evaluations. For partially connected networks, the

ISNSSS and the KSS algorithms are evaluated for the Scenario 1.2 and the RASNSSS

and the KSS algorithms are evaluated for the Scenario 2.1. For all the scenarios, different

bit allocation schemes (BAS) are performed for the different total number of feedback

bits BT =
∑K

k=1Bk, such as BT = 45, BT = 63, BT = 90 and BT = 120. The values of

B1, B2 and B3 for BT = 45 is given as follows.

• BAS-1: B1 = 7, B2 = B3 = 19

• BAS-2: B1 = B2 = B3 = 15

The values of B1, B2 and B3 for BT = 63 is given as follows.

• BAS-3: B1 = 9, B2 = B3 = 27

• BAS-4: B1 = B2 = B3 = 21

The values of B1, B2 and B3 for BT = 90 is given as follows.

• BAS-5: B1 = 10, B2 = B3 = 40

• BAS-6: B1 = B2 = B3 = 30

The values of B1, B2 and B3 for BT = 120 is given as follows.

• BAS-7: B1 = 10, B2 = B3 = 55

• BAS-8: B1 = B2 = B3 = 40

In the considered scenarios, there are 9 channels including the desired channels

and the interfering channels. Therefore, the number of allocated bits to each channel is 5

with BT = 45, 7 with BT = 63 and 10 with BT = 90 in the equal bit allocation scheme

(EBA).
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For the KSS algorithm, the considered stream sequences are illustrated in Fig-

ure 5.3. The selected stream sequences are initialized by the pico streams, such as the

best stream of Pico 1 user is P1 1 and the best stream of Pico 2 user is P2 1. M1 1 is the

best macro stream.

Figure 5.3. Stream sequences constructed by the KSS algorithm.

5.6.1 Scenario for Partially Connected Interference Networks

Scenario 1.2: d/R is changing for 2 Pico Cells

For partially connected interference networks, we evaluate the KSS and the

ISNSSS algorithms for Scenario 1.2 as illustrated in Figure 4.5. Pico cells are deployed

far away from each other, so that the pico cell users only receive interference from the

macro BS.

The results are presented in two stages: First, the results for reasonable number

of bits for the practical implementations of the limited feedback, BT = 45 and BT = 63,

are presented. Later, the results for the number of limited feedback bits for theoretical

analysis, BT = 90 and BT = 120, are given.

The performance comparisons of the KSS and the ISNSSS algorithms for BT =

45 andBT = 63 are given for different bit allocation schemes in Figure 5.4. The proposed
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adaptive feedback bit allocation scheme outperforms the EBA scheme using both the KSS

and the ISNSSS algorithms. In addition, it can be observed that the performances of the

ISNSSS and the KSS algorithms increase when more bits are allocated to the pico users.

The allocated bit numbers to each channel can be seen in detail in Table 5.1 for

BAS-3 scheme withBT = 63. For the KSS algorithm, the most of the bits are allocated to

the interference channels between the macro BS and the pico users. Since, the interference

generated from macro BS to pico users is very strong, more bits are required to have better

information on the interference channels in the limited feedback case. For the ISNSSS

algorithm, desired channels of pico have more bits than the other channels to decrease the

intra-stream interference between the pico streams, since multiple streams are selected

for the pico users.

Table 5.1. Scenario 1.2: Average Number of Allocated Bits for BT = 63 at d/R = 0.8
for the KSS and the ISNSSS algorithms.

B1 = 9 B2 = 27 B3 = 27

KSS
B11 = 4.7 B21 = 21.8 B31 = 21.8
B12 = 2.0 B22 = 5.2 B32 = 0
B13 = 2.3 B23 = 0 B33 = 5.2

ISNSSS
B11 = 8.6 B21 = 9.3 B31 = 9.3
B12 = 0.2 B22 = 17.7 B32 = 0
B13 = 0.2 B23 = 0 B33 = 17.7

The comparisons between the KSS, the ISNSSS and the existing algorithms are

shown in Figure 5.5 for BAS-3 scheme with BT = 63. The KSS algorithm outperforms

the ISNSSS and the SNSSS (Amara et al. (2012a)) algorithms since only one stream is

selected for each user, so that the intra-stream interference is avoided. On the other hand,

the KSS algorithm also outperforms the existing iterative max-SINR and min-Leak al-

gorithms (Gomadam et al. (2011)), even they are performed with a single stream. It has

been shown that the max-SINR and min-Leak algorithms are very sensitive to the imper-

fect CSI as demonstrated in the studies of Xie et al. (2013) and Razavi and Ratnarajah

(2014).

The performance degradations between the evaluated and the achievable sum-rate
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Figure 5.4. Scenario 1.2: Different adaptive bit allocation schemes with BT = 45 and
BT = 63 for the KSS and the ISNSSS algorithms.
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Figure 5.5. Scenario 1.2: Comparison of different algorithms for adaptive bit allocation
for BAS-3 scheme with BT = 63.

shown in Figure 5.6 are approximately 3bps/Hz, 8.5bps/Hz and 7bps/Hz, in the KSS,

max-SINR and min-Leak algorithms, respectively, at d/R = 1. Therefore, it can be

observed that the KSS algorithm is more robust to channel uncertainties when compared

to the iterative algorithms.

In addition, in Figure 5.7, we have compared the evaluated and the achievable

sum-rate as a function of the number of iteration when the pico cells are located at d/R =

0.8 for the max-SINR algorithm. It can be seen that the increase in the evaluated sum-rate

is approximately 4bps/Hz while the increase in the achievable sum-rate is only 2bps/Hz.

The performance comparisons forBT = 90 andBT = 120 are given in Figure 5.8.

It can be observed that the increase in the performance of the ISNSSS algorithm is greater

than the KSS algorithm for higher number of feedback bits.

Detailed comparisons of the algorithms for BT = 120 can be seen in Figure 5.9.

The ISNSSS algorithm outperforms the KSS algorithm and the other existing algorithms.

Since the intra-stream interference is reduced with the decreasing quantization error, se-

lecting multiple streams increases the performance. However, the feedback overhead

increases as the number of the bits increases.

For BT = 120, the detailed bit allocation to each channel is given in Table 5.2.
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Figure 5.6. Scenario 1.2: Comparison of the achievable and the evaluated sum-rate for
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Figure 5.8. Scenario 1.2: Different adaptive bit allocation schemes with BT = 90 and
BT = 120 for the KSS and the ISNSSS algorithms.
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Figure 5.9. Scenario 1.2: Comparison of different algorithms for adaptive bit allocation
for BAS-7 scheme with BT = 120.

It can be seen that the number of allocated bits for the interference channels between the

macro BS and the pico users is greater when compared to the case BT = 63. In addition,

the pico desired channels can also have enough feedback bits to decrease the intra-stream

interference between for the pico users. Accordingly, the ISNSSS algorithm achieves

higher performance than the KSS algorithm.

Table 5.2. Scenario 1.2: Average Number of Allocated Bits for BT = 120 at d/R = 0.8
for the KSS and the ISNSSS algorithms.

B1 = 10 B2 = 55 B3 = 55

KSS
B11 = 4.8 B21 = 49.4 B31 = 49.4
B12 = 2.5 B22 = 5.2 B32 = 0.4
B13 = 2.7 B23 = 0.4 B33 = 5.2

ISNSSS
B11 = 9.5 B21 = 26.5 B31 = 26.5
B12 = 0.2 B22 = 28.2 B32 = 0.3
B13 = 0.3 B23 = 0.3 B33 = 28.2
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5.6.2 Scenarios for Fully Connected Interference Networks

Scenario 2.1: d/R is changing while L is fixed

In Scenario 2.1, pico cells are shifted towards the cell edge of the macro cell by

changing the ratio d/R. The distance between the pico cells is constant and is L = 150m.

Once again, the results are presented in two parts: For BT = 45 and BT = 63, and for

BT = 90 and BT = 120.

The performance comparisons of the KSS and the RASNSSS algorithms with

BT = 45 and BT = 63 are given for different bit allocation schemes in Figure 5.10. The

proposed adaptive feedback bit allocation outperforms the EBA scheme for both the KSS

and the RASNSSS algorithms. In addition, it can be observed that the BAS-3 scheme

performs better than the BAS-4 scheme. In other words, allocating more bits for the pico

users improves the performance of the algorithms. The reason is that the interference

generated from the macro BS to the pico users is very strong. Therefore, as the number

of the feedback bits increases for the pico users, the quantization error can be decreased.

Table 5.3 shows the average numbers of bits allocated to each channel in detail

for the KSS and the RASNSSS algorithms. For the KSS algorithm, since the interference

generated from macro BS to pico users is very dominant, it is observed that the interfer-

ence channels between the pico users and the macro BS allocates higher number of bits,

B21 and B31. On the other hand, for the RASNSSS algorithm, it is observed that the pico

desired channels require higher number of bits, because a pico cell has more than one

stream in the RASNSSS algorithm. In addition, the interference channels between the

pico users and the macro BS have more bits than the other interference channels.

Moreover, the proposed bit allocation is performed for the existing stream selec-

tion based IA algorithms, such as ESNSSS, SNSSS (Amara et al. (2012a)) and the itera-

tive IA algorithms, such as max-SINR and min-Leak (Gomadam et al. (2011)) algorithms

for the single stream case. The performance comparisons are shown in Figure 5.11 for

BAS-3 scheme with BT = 63. It can be observed that the KSS algorithm achieves higher

performance than the max-SINR and the min-Leak algorithms. The reason is that the

KSS algorithm is less sensitive to the channel uncertainties than the max-SINR and the

min-Leak algorithms as shown in Figure 5.12. The performance degradations between
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Figure 5.10. Scenario 2.1: Different adaptive bit allocation schemes with BT = 45 and
BT = 63 for the KSS and the RASNSSS algorithms.

the evaluated and the achievable sum-rate for the KSS, the max-SINR and the min-Leak

algorithms are observed as approximately 3bps/Hz, 8bps/Hz and 7bps/Hz, respectively, at

d/R = 1.

In addition, in Figure 5.13, we have compared the evaluated and the achievable

sum-rate as a function of the number of iteration when the pico cells are located at

d/R = 0.8 for the max-SINR algorithm. It can be seen that while the increase in the
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Table 5.3. Scenario 2.1: Average Number of Allocated Bits for BT = 63 at d/R = 0.8
for the KSS and the RASNSSS Algorithms

B1 = 9 B2 = 27 B3 = 27

KSS
B11 = 4.8 B21 = 18.8 B31 = 18.7
B12 = 2.1 B22 = 5.5 B32 = 2.8
B13 = 2.1 B23 = 2.7 B33 = 5.5

RASNSSS
B11 = 4.8 B21 = 9.1 B31 = 9.1
B12 = 2.1 B22 = 16.5 B32 = 1.1
B13 = 2.1 B23 = 1.4 B33 = 16.8
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Figure 5.11. Scenario 2.1: Comparison of different algorithms for adaptive bit allocation
for BAS-3 scheme with BT = 63.
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Figure 5.12. Scenario 2.1: Comparison of the achievable and the evaluated sum-rate for
the KSS, max-SINR and min-Leak algorithms for BT = 63 and BAS-3
scheme.

evaluated sum-rate is approximately 4bps/Hz, the increase in the achievable sum-rate is

only 1.5bps/Hz.

When the total number of feedback bits is increased to BT = 90 or BT = 120 for

both the KSS and the RASNSSS algorithms, similar behavior withBT = 45 andBT = 63

is observed as shown in Figure 5.14. As the number of allocated bits increases for the pico

users, the average sum rate also increases.

In addition, the average numbers of allocated bits for BT = 90 are given in Ta-

ble 5.4 for the KSS and the RASNSSS algorithms considering the BAS-5 scheme. For

the KSS algorithm, allocating more bits for B21 and B31 is important to handle the in-

terference generated from the macro BS to the pico users. For the RASNSSS algorithm,

it is seen that B22 and B33 have more bits for the pico desired channels to decrease the

intra-stream interference.

The performance comparisons of the proposed and the existing algorithms are

given in Figure 5.15 for the BAS-7 scheme with BT = 120 since the BAS-7 scheme

allocated more bits to pico users when compared to the BAS-6 scheme. In this case, the
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Figure 5.13. Scenario 2.1: Comparison of achievable and evaluated sum-rates vs. itera-
tions at d/R = 0.8 for max-SINR algorithm

Table 5.4. Scenario 2.1: Average Number of Allocated Bits for BT = 90 at d/R = 0.8
for the KSS and the RASNSSS Algorithms

B1 = 10 B2 = 40 B3 = 40

KSS
B11 = 4.9 B21 = 30.1 B31 = 29.8
B12 = 2.5 B22 = 5.6 B32 = 4.4
B13 = 2.6 B23 = 4.3 B33 = 5.8

RASNSSS
B11 = 4.9 B21 = 16.2 B31 = 16.2
B12 = 2.5 B22 = 21.4 B32 = 2.4
B13 = 2.6 B23 = 2.4 B33 = 21.4
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(a) Comparisons for the KSS algorithm.
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(b) Comparisons for the RASNSSS algorithm.

Figure 5.14. Scenario 2.1: Different adaptive bit allocation schemes with BT = 90 and
BT = 120 for the KSS and the RASNSSS algorithms.

RASNSSS algorithm outperforms the KSS algorithm since the number of allocated bits

is enough to resolve both the desired and the interference channels.

The detailed bit allocation to each channel is given in Table 5.5 for the BAS-7

scheme with BT = 120. It can be seen that the number of allocated bits for the inter-

ference channels between the macro BS and the pico users increases when compared to
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Figure 5.15. Scenario 2.1: Comparison of different algorithms for adaptive bit allocation
for BAS-7 scheme with BT = 120.

the case BT = 90. In addition, the pico desired channels can also have enough feed-

back bits to decrease the intra-stream interference for the pico users. Accordingly, the

RASNSSS algorithm achieves higher performance than the KSS algorithm as the stream

sequences constructed in the RASNSSS algorithm have higher probability of occurrence

while performing the exhaustive search.

Table 5.5. Scenario 2.1: Average Number of Allocated Bits for BT = 120 at d/R = 0.8
for the KSS and the RASNSSS Algorithms

B1 = 10 B2 = 55 B3 = 55

KSS
B11 = 4.8 B21 = 41.5 B31 = 40.6
B12 = 2.5 B22 = 5.9 B32 = 8.5
B13 = 2.7 B23 = 7.6 B33 = 5.9

RASNSSS
B11 = 4.8 B21 = 23.7 B31 = 23.6
B12 = 2.5 B22 = 27.3 B32 = 4.1
B13 = 2.7 B23 = 4.0 B33 = 27.3
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Complexity Comparison of the Considered Algorithms:

We compare the complexities of the stream selection algorithms in terms of the

number of calls to Alg. 3 and they are given in Table 5.6 for Scenario 2.1, since the

total number of streams is the same in scenarios with the same network configurations.

It can be observed that Alg. 3 is called by the KSS algorithm at most 12 times which

is much fewer than invocations performed by the exhaustive search and also the other

algorithms except for the SNSSS algorithm. However, the SNSSS algorithm has the

poorest performance. It should be noted that these results represent upper bounds for

the given algorithms, since the stream selection algorithms can select different stream

sequences with different lengths.

Table 5.6. Complexity Comparisons of the Stream Selection Based IA Algorithms for 2
Pico Case in Scenario 2.1.

Exhaustive Search KSS RASNSSS ISNSSS ESNSSS SNSSS
9720 12 16 24 36 6

On the other hand, the structures of the proposed stream selection based IA and

the iterative algorithms are completely different. The proposed algorithms are successive

algorithms while max-SINR and min-Leak algorithms are iterative algorithms. There-

fore, the comparison of the complexities of these algorithms is not straightforward. The

required number of the iterations increases in the high SNR regions for the iterative algo-

rithms while the number of calls Alg. 3 does not change with different SNR values in the

proposed stream selection based IA algorithms.

In fact, the given threshold and the maximum number of iterations affect the com-

plexities of the iterative algorithms. The given threshold is the sum-rate difference be-

tween the previous iteration and the last iteration for the max-SINR and the min-Leak

algorithms. As the threshold decreases, the complexity of the algorithms increases. If the

threshold cannot be achieved, then the algorithms are performed until the given maximum

number of iterations is reached. We choose the threshold as 0.01 and the maximum num-

ber of the iterations as 3000 for Scenario 1.2 and Scenario 2.1. The average number of

iterations is 107.20 for the max-SINR algorithm and 371.54 for the min-Leak algorithm.
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5.7 Conclusion

In this chapter, we have studied imperfect CSI case for the RASNSSS and the

ISNSSS algorithms presented in the previous chapter. In addition, we have proposed the

KSS algorithm for the limited feedback schemes in the heterogeneous networks with an

adaptive bit allocation to reduce the quantization error. Since the intra-stream interference

has a severe impact on the performance of the IA with the limited feedback schemes, the

KSS algorithm is proposed where we select only one stream for each user.

The precoders and postcoders have been obtained by the proposed algorithms un-

der the quantized CDI. The presented adaptive bit allocation scheme has been performed

for the heterogeneous networks. The number of bits of each user is optimized for the CDI

feedback to maximize the average sum rate of the network.

The performance of the proposed algorithms, RASNSSS, KSS and ISNSSS, have

been evaluated by varying the positions of pico BSs. Simulation results demonstrate that

the KSS algorithm achieves higher performance gain when compared to the RASNSSS,

ISNSSS and the existing stream selection based IA algorithms with the limited feedback

scheme for a given number of feedback bits. Since the KSS algorithm selects only one

stream for each user, quantization error can be reduced when compared to the other algo-

rithms that can potentially select more streams for each user. On the other hand, the KSS

algorithm is also compared with the max-SINR and min-Leak algorithms. It has been

observed that the KSS algorithm achieves higher performance, although only one stream

is considered for the max-SINR and min-Leak algorithms and it has been shown that the

KSS algorithm is more robust to the channel uncertainties.

Furthermore, the presented adaptive bit allocation schemes improve the perfor-

mances of the algorithms compared to the equal bit allocation. It has been observed that

most of the bits should be allocated to the interference channels between the macro BS

and pico users for the KSS algorithm, since the generated interference by the macro BS

to the pico users is dominant. For the RASNSSS and the ISNSSS algorithms, on the other

hand, since more streams can be selected for each user, the number of bits allocated to the

desired channels also increases to reduce the intra-stream interference.

When the total number of bits increases, the RASNSSS and the ISNSSS algo-

rithm achieve better performance than the KSS algorithm since the number of allocated

110



bits is enough to decrease intra-stream interference for both the desired channels and the

interference channels. In this case, the feedback overhead will also increase. Therefore,

we propose the KSS algorithm for the practical implementations of the limited feedback

scheme.
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CHAPTER 6

CONCLUSION

6.1 Summary

In this thesis, we have developed different stream selection based IA algorithms

for the heterogeneous networks considering both perfect and imperfect CSI.

In Chapter 3, a general system model has been given assuming the perfect CSI is

available at the transmitter side. The presented IA algorithms in this chapter have been

evaluated in the homogeneous networks where the number of transmit and receive anten-

nas are equal and the transmit power is the same for all the transmitters by assuming all

users have the same distances from their serving BSs. The existing IA algorithms includ-

ing iterative and stream selection based interference alignment algorithms, are explained

and their performances are compared. In the iterative algorithms, the precoding and the

postcoding matrices are designed in order to minimize the total interference experienced

by all the receivers, or to maximize the SINR at each receiver. In the stream selection

based algorithms, on the other hand, the precoding and the postcoding matrices are ob-

tained by selecting the best stream sequences that maximizes the sum rate depending

on the stream selection scheme. SNSSS algorithm constructs a single stream sequence

by selecting the strongest streams, while ESNSSS constructs multiple stream sequences

initialized with different streams and selects the best sequence. It has been observed

that the performances of the mentioned IA approaches are almost identical in a homo-

geneous network model. In addition, the performance of the stream selection based IA

algorithms increase when the search space of the stream sequences increases. Further-

more, the stream selection based IA algorithms construct stream sequences with a differ-

ent number of streams depending on the selection criteria while iterative IA algorithms

always select a fixed number of streams. However, this feature of the stream selection

based IA approaches can not always guarantee for the users to receive a stream due to the

channel conditions.
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Allocating at least one stream to each user has been studied in Chapter 4 for hete-

rogeneous networks assuming perfect CSI availability at the transmitters. Depending on

the pico cell deployments, two different cases have been considered as partially connected

and fully connected heterogeneous networks. ISNSSS algorithm has been presented for

the partially connected interference network where the pico users do not receive inter-

ference from other pico BSs. Therefore, IA procedure is only performed to mitigate the

interference generated to pico users from the macro BS and the interference generated to

the macro user from the pico BSs. In order to construct better stream sequences, ISNSSS

starts selecting streams from the pico users, because pico users have a higher SNR value

than the macro user in general. On the other hand, ASNSSS algorithm has been proposed

for fully connected interference networks where each pico cell generates interference to

all other pico users. The sequences with the highest probability of occurrence while per-

forming the exhaustive search are included in a predetermined set. It has been shown that

the sequences in this predetermined set have a regular structure which requires select-

ing the initial streams from the pico users. Performance results show that both ISNSSS

and ASNSSS algorithms achieve good performances when compared to the iterative IA

algorithms. When compared to the existing stream selection based IA algorithms, the pro-

posed algorithms can allocate more streams on average to the pico users while ensuring

better service and increasing the sum rate. In addition, the ASNSSS and ISNSSS algo-

rithms significantly reduce the complexity of the exhaustive search and achieve a closer

performance of the exhaustive search.

In the context of IA, the knowledge of CSI plays a very crucial role in designing

precoding and postcoding matrices to achieve the perfect alignment. Since assuming the

availability of the perfect CSI at the transmitter is not realistic for practical systems, a

limited feedback scheme for the ISNSSS and the ASNSSS algorithms has been presented

in Chapter 5. The ASNSSS algorithm has been modified as RASNSSS algorithm which is

the restricted version of the ASNSSS algorithm by selecting less streams for each user to

reduce the quantization error. In addition, a novel stream selection algorithm called KSS

has been proposed. The KSS algorithm selects a single stream for each user to reduce the

intra-stream interference with the imperfect CSI. Stream sequences are initialized with the

pico streams and the selection continues with the best streams of the other users. In order

to improve the performance of the algorithms in the limited feedback case, different adap-
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tive feedback bit allocation schemes have been proposed for the algorithms. Performance

results have shown that the adaptive bit allocation schemes improve the performances of

the algorithms compared to the equal bit allocation. It has been observed that allocating

more bits to the interference channels between the macro BS and pico users gives better

results due to the dominant interference generated by the macro BS to the pico users.

For a reasonable number of feedback bits, the KSS algorithm performs better than the

existing stream selection and the iterative IA algorithms. On the other hand, when there

is a sufficient number of bits to increase the CSI quality, the RASNSSS and the ISNSSS

algorithms achieve better performance than the KSS algorithm. In other words, allocating

more bits reduces the intra-stream interference; therefore, more streams can be selected

for each user and as a result the average sum rate increases. However, the feedback load

increases and the codebook design gets more complex with the increasing number of bits,

which is not practical for the limited feedback schemes. Therefore, we propose the KSS

algorithm for the practical implementations.

6.2 Perspectives

There are additional aspects that can be considered to further develop the ap-

proaches given in this thesis. These aspects can be identified as follows.

• Although most of the studies on IA have focused on interference channel, there are

also IA studies to improve the user throughput in multi-user MIMO (MU-MIMO)

cellular networks. Since the stream selection based IA algorithms have been in-

vestigated for single user MIMO systems so far, the extension to multi-user MIMO

heterogeneous networks is a possible direction for future work. As a starting point,

we can extend the scenarios that are described in this thesis by considering a hetero-

geneous network composed of one pico cell with one user and one macro cell with

two users. In this case, the proposed algorithms are applicable with slight modifica-

tions. Further analysis can be carried out using exhaustive search to identify better

criteria for constructing stream sequences.

• In case of multiple pico cells with multiple users, the number of transmit antennas

will probably need to be increased to handle the interference in multi-user MIMO
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heterogeneous networks, since, from the DoF perspective, as the number of the

users increase, more antennas at the transmitters are required to perform the align-

ment properly. In other words, IA in the spatial domain is only achievable among

a limited number of antennas. Therefore, user selection methods can be applied

before the proposed stream selection based IA algorithms. There are different user

scheduling algorithms based on different criteria, such as maximum SNR, mini-

mum interference-to-noise ratio (INR), maximum SINR, Opportunistic IA (OIA),

opportunistic maximum rate (OMR) (Maciel-Barboza et al. (2015)).

• Another possible extension for this thesis can be to consider dense deployment of

small cells. In this case, clustering and user scheduling approaches can be jointly

applied before the stream selection based IA algorithms. For instance, first, pico

cells can be clustered depending on their interference level or their distance to each

other and then the interference between the macro cell and the pico cells inside the

clusters can be aligned. Next, the interference inside the cluster can be aligned by

applying user scheduling algorithms. In such a scenario, a coordination between

the pico cells is required (Chen et al. (2014)).

• On the other hand, fairness is important in terms of the QoS for the networks (Hong

and Luo (2014)). Selecting multiple streams for each user in MU-MIMO systems

is difficult to achieve in the areas with high user density. Therefore, achieving

QoS targets becomes a challenging research problem, especially in the high SNR

regime. There are studies that improve the worst user SINR by power control ap-

proaches (Liu et al. (2013), Yetis et al. (2014)). In this way, a fair transmission can

be achieved with the cost of a reasonable sum-rate degradation. To this end, new

stream selection criteria can be developed for MU-MIMO systems while ensuring

fairness among the streams of each user.

• Acquiring accurate CSI is also an important problem to achieve perfect alignment.

In this thesis, we have considered a limited feedback scheme in a centralized man-

ner. In order to approximate the CSI more accurately, improving the codebook

design to reduce the quantization error and the feedback overhead can further be in-

vestigated in future studies. In addition, it has been shown that achieving IA using

the delayed CSI can be possible (Maddah-Ali and Tse (2012)), (Lee et al. (2014)).
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Therefore, the delayed CSI can be exploited to increase the performance of the

proposed stream selection based IA algorithms under more realistic conditions.
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APPENDIX A

JUSTIFICATION FOR THE INITIALIZATION OF

STREAM SEQUENCES WITH PICO-USER STREAMS

Although the collected data do not yield a complete criterion for step-by-step se-

lection of each stream, it is possible and important to justify the selection of pico streams

as the initial streams. The data show that stream paths leading to relatively higher sum

rate values generally start with the streams of the user which has the greatest SNR value.

Below, it is justified that with high probability, this user is a pico user.

Let ρp =
Prp

Pn
and ρm = Prm

Pn
be the average SNR values of pico and macro users,

respectively. Furthermore, let Prp = Pk(dB)− PLp(dB) and Prm = P1(dB)− PLm(dB)

be the received powers of the corresponding pico and macro users, respectively, where

PLp and PLm are the path loss for pico and macro users, and Pk, k ∈ Γ and P1 are the

transmitted powers of the corresponding pico and macro BSs, respectively. Also, Pn is

the noise power.

In order to find the probability that the SNR of the pico user is greater than the

SNR of the macro user, P (ρp > ρm), the following inequality can be considered.

P (Ptp − PLp > Ptm − PLm) (A.1)

Using the path loss equations given in Table 4.1 in Section 4.5, which are some of the most

commonly employed path loss models in the heterogeneous network scenarios (Ghosh

et al. (2012) 3GPP (2010)), Equation (A.1) can be expressed as follows.

P
(

(Ptp − (140.7 + 36.7 log10(rp(km))) > Ptm − (128.1 + 37.6 log10(rm(km))))(dB)
)

=

P
(

log10(rp) <
(Ptp − Ptm)(dB)− 12.6 + 37.6 log10(rm)

36.7

)
=

P
( rp
rm

< 10(
(Ptp−Ptm )(dB)−12.6

36.7
)
)

where rp is the distance between the pico user and the pico BS and rm is the distance
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between the macro user and its BS. In addition, it is assumed that 37.6/36.7 ≈ 1. For

heterogeneous networks, pico transmit power, Pk, k ∈ Γ, can range between 23dBm and

30dBm and typical macro transmit power, P1, is 43dBm. Therefore, the probability of

P ( rp
rm
≤ Q) can vary between 0.12 to 0.2. In this study, Q is 0.1377 because Pk, k ∈ Γ

is 24dBm.

In order to calculate the probability that P ( rp
rm
≤ Q), letX be the random variable

to represent the distance between the pico BS and the pico user and Y be the random vari-

able to represent the distance between the macro BS and the macro user. These random

variables are independent and the cumulative distribution functions of X and Y are given

as follows (Leon-Garcia (2008)).

P (X ≤ x) = FX(x) =
x2

R2
p

, (A.2)

P (Y ≤ y) = FY (y) =
y2

R2
m

where Rp is the range of a pico BS and Rm is the range of a macro BS. Consequently, the

probability density functions of X and Y are as follows.

fX(x) =
2x

Rp
2 , fY (y) =

2y

Rm
2 (A.3)

To calculate the probability that P ( rp
rm
≤ K), a new random variable Z = X/Y

can be used as follows (Leon-Garcia (2008)).

P (Z ≤ z) = FZ(z) = P (X/Y ≤ z) = P (X ≥ zY, Y < 0) + P (X ≤ zY, Y > 0)

=

∫ 0

−∞

[∫ ∞
yz

fX(x)dx

]
fY (y)dy +

∫ ∞
0

[∫ yz

−∞
fX(x)dx

]
fY (y)dy

Since x ∈ [0, Rp] and y ∈ [0, Rm],

FZ(z) =

∫ Rm

0

[∫ zy

0

fX(x)dx

]
fY (y)dy (A.4)

=

∫ Rm

0

FX(zy) · fY (y)dy
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where FX(x) = 1 if x > Rp. For z > Rp/Rm,

FZ(z) =

∫ Rp/z

0

y2z2

R2
p

2y

R2
m

dy +

∫ Rm

Rp/z

2y

R2
m

dy = 1− 1

2

R2
p

R2
m

1

z2
(A.5)

If Z = Q = 0.1377, Rp = 0.1km, Rm = 1km, then

P (X/Y < Q) = FZ(Q) = 1− 1

2

0.12

12

1

0.13772
(A.6)

≈ 0.736

Thus, a pico user has a higher SNR value than a macro user with a probability of 73.6%.

Note that these derivations are obtained for Kp = 1 where Kp is the number of pico

users. For cases Kp > 1, then the probability of having higher SNR values for pico users

becomes as follows.

1− P (Z ≥ Q)Kp = 1− (1− P (Z < Q))Kp (A.7)

Therefore, pico users have higher SNR values than a macro user with a probability of

92.7% for Kp = 2 as in Scenario 2.1 and Scenario 2.2 and 98% for Kp = 3 as in Scenario

2.3 and Scenario 2.4.

For the given scenarios for partial and fully connected interference networks, the

following Table A.1 supports the justification for the initialization of stream sequences

with pico-user streams. It can be observed that the SNR values of the pico users are

higher than the macro user.

Table A.1. SNR and SINR Values of Pico Users vs. Shift Number for Different Scenarios
at d/R = 0.8

Scenario 1.3 Scenario 2.3
User Values

(dB) SNR SINR SNR SINR

Macro User 36.09 35.84 35.40 27.32
Pico 1 User 39.32 14.78 39.32 3.46
Pico 2 User 38.97 14.12 38.97 14.90
Pico 3 User 39.59 14.93 39.59 15.32
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APPENDIX B

EXHAUSTIVE SEARCH STATISTICAL ANALYSIS

In order to analyze the behavior of the stream selection algorithms depending

on the position of the pico cell, the selection probabilities of each stream path and the

average sum rate obtained after the possible selections are given in the stream sequence

trees. In addition, the weighted sum-rates are computed by the production of the given

probabilities. These results are obtained by the exhaustive search.

The proposed algorithm ISNSSS for the partially connected network achieves to

construct stream sequences by examining certain metric values obtained from the exhaus-

tive analysis. These metrics can be defined as follows.

• P is the selection probability of each stream sequences.

• SR is the average of the sum rates achieved by the sequence only when the sequence

is selected.

• The multiplication of P and SR represents the sum rate contribution of the selected

stream sequence.

Scenarios for Partially Connected Interference Networks:

P and P × SR are given in the stream trees, as in Figure B.1, Figure B.2 and Fig-

ure B.3 for Scenario 1.1, Scenario 1.2 and Scenario 1.3 studied in Chapter 4, respectively.

It can be seen that from the given stream trees for the three scenario considered

for the partially connected networks, initializing the stream sequences with the streams

from the pico user has higher probability than selecting the first streams from the macro

user.
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Figure B.1. Scenario 1.1: Tree Diagram for the total weighted sum rates of each branch
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Scenarios for Fully Connected Interference Networks:

The construction of the stream sequence set by the ASNSSS algorithm is ex-

plained in Chapter 4. The selected stream sequences in the exhaustive search are analyzed

by examining metrics P , SR and P × SR.

The analysis in Scenario 2.1 show that different stream sequences with different

lengths can be selected by the exhaustive search. The tree of the selected stream sequences

starting from pico streams, such as P1 1, P1 2 which belong to pico 1 user and P2 1,

P2 2 which belong to pico 2 user, can be seen in Figure B.4 for d/R = 0.7. The stream

sequences constructed by the proposed ASNSSS algorithm are highlighted in the given

tree. It can be also observed that the selected streams starting from macro streams, M 1

and M 2, have lower sum rate contributions. The predetermined set constructed by the

proposed approach are highlighted in the tree. It can be seen that the weighted sum rate

of the selected stream sequences (P × SR) are higher than the other selected sequences

in the exhaustive search. This observation can be used to achieve higher sum rate values

while decreasing the size of the search tree. The tree given in Figure B.5 shows that it is

possible to shrink the tree in Figure B.4 while still achieving high sum rate values.

The analysis for the Scenario 2.2 show that the weighted sum rate of the selected

stream sequences (P ×SR) are higher than the other selected sequences in the exhaustive

search and it can be illustrated in Figure B.6.

The stream sequences constructed by the ASNSSS algorithm for Scenario 2.3 and

Scenario 2.4 can be seen in Figure B.7.
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Figure B.5. Scenario 2.1: Stream sequences constructed by ASNSSS
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Figure B.7. Scenario 2.3: Sum-Rate vs d/R between 0.6 and 1
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