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Abstract It is known that the enrichment of the polynomial finite element space of
degree 1 by bubble functions results in a stabilized scheme of the SUPG-type for
the convection-diffusion-reaction problems. In particular, the residual-free bubbles
(RFB) can assure stabilized methods, but they are usually difficult to compute, unless
the configuration is simple. Therefore it is important to devise numerical algorithms
that provide cheap approximations to the RFB functions, contributing a good stabiliz-
ing effect to the numerical method overall. Here we propose a stabilization technique
based on the RFB method and particularly designed to treat the most interesting case
of small diffusion. We replace the RFB functions by their cheap, yet efficient ap-
proximations which retain the same qualitative behavior. The approximate bubbles
are computed on a suitable sub-grid, the choice of whose nodes are critical and de-
termined by minimizing the residual of a local problem with respect to L1 norm.
The resulting numerical method has similar stability features with the RFB method
for the whole range of problem parameters. This fact is also confirmed by numerical
experiments. We also note that the location of the sub-grid nodes suggested by the
strategy herein coincides with the one in Brezzi et al. (Math. Models Methods Appl.
Sci. 13:445–461, 2003).
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1 Introduction

It is well known that the convection-diffusion-reaction problems may contain thin
regions in which the solution varies abruptly. The plain Galerkin method may not
work for such problems on reasonable discretizations, producing unphysical oscilla-
tions. The SUPG method, and its variants, are among the most popular approaches to
overcome that difficulty, which are based on augmenting the variational formulation
by mesh-dependent terms in order to gain control over the derivatives of the solution
[10, 12, 16]. The great advantage of this approach is not only its generality, but also
its error analysis can be performed in many cases of interest. Nevertheless, the need
for the proper choice of stabilizing parameter is considered as a major drawback of
the method.

Another approach consists of enriching the finite element spaces by bubble func-
tions. The relationship between the use of bubble functions and stabilized methods
was also studied in [1–3]. It turns out that, to find a more suitable value for the stabi-
lizing parameter in the SUPG method, it is crucial to use special type of functions, so
called the residual-free bubbles (RFB), defined by a local problem posed inside each
element. The RFB method also allows one to prove error bounds [6, 19] and can be
generalized to a much wider variety of problems [5, 13]. However it requires solving
a local differential equation which may not be easier than to solve the original one
[14, 15].

Yet another way of stabilizing the Galerkin method is to stabilize by means
of a suitable refinement around the layer so that, the stabilization is actually
not needed anymore, like in the Shishkin meshes [11]. The drawback of these
methodologies resides in that they require a priori knowledge of the layer loca-
tions.

Here, we will present a stabilization method for one-dimensional convection-
diffusion-reaction problems, particularly designed to treat the most interesting case
of small diffusion, but able to adapt from one regime to another continuously. It
is based on the RFB method, in which, however, we replace the RFB functions
by their cheap, yet efficient approximations, so called pseudo RFBs, which retain
the same qualitative behavior as the RFBs. Similar approaches to obtain suitable
approximations to the RFBs can be found in the literature [4, 7, 9, 17, 18]. The
pseudo bubbles are chosen to be piecewise linear on a suitable sub-grid that, the
position of whose nodes are determined by minimizing the residual of local differ-
ential problems with respect to L1 norm. The recipe for spotting sub-grid points
is simple and their location coincides with the one in [8]. The resulting numeri-
cal method has similar stability features to the RFB method for the whole range
of problem parameters. This fact is confirmed by numerical experiments presented
below.

The layout of the paper is as follows: We review the RFB method in Sect. 2. In
Sect. 3, we discuss the explicit locations of sub-grid nodes on which we construct the
pseudo bubble functions and describe the details of the numerical method proposed.
Finally we perform the numerical tests in Sect. 4.
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2 A review of RFB for boundary value problems

We will consider the following linear elliptic convection-diffusion-reaction problem
in I = (0,1):

Lu = −εu′′ + βu′ + σu = f (x) with u(0) = u(1) = 0 (1)

Let 0 = x0 < x1 < x2 < · · · < xN−1 < xN = 1 and Th = {K} be a decomposition of I

into subintervals K = (xk−1, xk) where k = 1, . . . ,N . For the sake of simplicity, we
shall assume that the decomposition is uniform, so that we can denote the length of
the intervals in the subdivision by h. However, all our discussions will take place at
the element level, and therefore, they will also be valid for quasi-uniform decompo-
sitions.

We assume that the diffusion coefficient ε is a positive constant, and that the con-
vection field β and the reaction field σ are non-negative piecewise constants with
respect to the decomposition Th. So, unless β ≡ 0 (pure reaction case), we can speak
of inflow and outflow. When ε � |β|h + σh2, the solution of the problem will have
boundary layers for a generic f , that can be either only at the outflow, or at both ends
of I , depending on the reciprocal values of |β|h and σh2. In these cases, the pure
Galerkin method will typically fail, showing strong oscillations near the boundary
layers, and some stabilization is needed.

Here we will consider stabilizations based on the augmented space idea which
includes the RFB strategy, and it can be summarized as follows. We start by recalling
the abstract variational formulation of problem (1): Find u ∈ H 1

0 (I ) such that

a(u, v) = (f, v), ∀v ∈ H 1
0 (I ) (2)

where

a(u, v) = ε

∫
I

u′v′ dx +
∫

I

(βu)′v dx +
∫

I

σuv dx (3)

We now define Vh as a finite-dimensional space, which is a subspace of H 1
0 (I ). Then

the standard Galerkin finite element method reads: Find uh ∈ Vh such that

a(uh, vh) = (f, vh), ∀vh ∈ Vh (4)

Now, we decompose the space Vh such that Vh = VL ⊕ VB , where VL is the space
of continuous piecewise linear polynomials and VB = ⊕

K BK with BK = H 1
0 (K)

Then every vh ∈ Vh can be written in the form of vh = vL + vB , where vL ∈ VL and
vB ∈ VB . We require the bubble component uB of uh to satisfy the original differen-
tial equations in K strongly, i.e.

LuB = −LuL + f in K (5)

subject to the boundary condition,

uB = 0 on ∂K. (6)
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By the classical static condensation procedure [8], the method used to compute an
improved linear approximation due to the residual-free bubble effect reads: Find uh =
uL + uB in Vh such that

a(uL, vL) + a(uB, vL) = (f, vL), ∀vL ∈ VL (7)

The term a(uB, vL) is responsible for the stabilization of the numerical method and
the bubble component uB should be computed before we solve (7) for its linear part.
Recall uB is identified by the linear part uL and the source function f through (5)–(6),
which may be as complicated as solving the original differential equation. Therefore,
it is important to bring a simple recipe about to obtain a suitable approximation to the
bubble component of the problem that provides a similar stabilizing effect into the
numerical method. We discuss that approach in the following section. The discussion
will take place in a typical element K , and therefore, we shall drop the index K in
the notation unless it is necessary.

3 The choice of the sub-grid nodes

Let us define a sub-grid in a typical element K = (xk−1, xk) by adding two points z1
and z2 with the property that

xk−1 < z1 < z2 < xk (8)

on which, we approximate the bubble functions. The shape of approximations, which
is essentially related with the location of sub-grid points, is crucial to get a good stabi-
lization effect on the numerical method. Therefore the choice of points in the sub-grid
must be fulfilled in a special manner. That will be accomplished by a minimization
process with respect to L1 norm in the presence of layers.

Let us assume that f is a piecewise linear function with respect to the discretiza-
tion. Then the residual in (5) becomes a linear function and it is reasonable to consider
bubble functions Bi (i = 1,2) defined by

LBi = −Lψi in K, Bi = 0 on ∂K, i = 1,2 (9)

where ψ1,ψ2 are the restrictions of the piecewise linear basis functions for VL to K

(Fig. 1). Further we define Bf ,

LBf = f in K, Bf = 0 on ∂K (10)

Fig. 1 The restrictions of
piecewise linear basis functions
to a typical element K
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Fig. 2 Basis functions
employed in the approximation
of bubble functions

Now if

uL|
K

= uL(xk−1)ψ1 + uL(xk)ψ2

then, we take

uB |
K

= uL(xk−1)B1 + uL(xk)B2 + Bf (11)

Thus

LuB = uL(xk−1)LB1 + uL(xk)LB2 + LBf

= uL(xk−1)(−Lψ1) + uL(xk)(−Lψ2) + f

= −L(uL(xk−1)ψ1 + uL(xk)ψ2) + f = −LuL + f in K

That is, (5) is automatically satisfied with the present choice of bubble functions.
Equation (9) is similar to the original problem (1) and may be difficult to solve.
However, using the element geometry and the problem properties, it is possible to
construct a cheap, yet efficient approximate bubbles, say B∗

i , over the sub-grid (8),
having the same qualitative behavior with its continuous counterpart Bi (i = 1,2).
The construction of such approximate bubble functions B∗

i is given in the following.
Let B∗

i (x) = αibi(x) be the classical Galerkin approximation of Bi through (9),
that is,

a(B∗
i , bi)K = (−Lψi, bi)K, i = 1,2 (12)

where bi is a piecewise linear function with the following properties (Fig. 2);

bi(xk−1) = bi(xk) = 0, bi(zi) = 1, i = 1,2

Using integration by parts, the properties of bubble functions and the midpoint rule
for quadratic terms that appears, we get explicit expressions for α1 and α2, separately:

α1 = (−Lψ1, b1)
K

ε‖b1
′‖2

K
+ σ‖b1‖2

K

= 3β + (ξ − 2h)σ

2h( 3ε
ξ(h−ξ)

+ σ)
(13)
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and

α2 = (−Lψ2, b2)
K

ε‖b2
′‖2

K
+ σ‖b2‖2

K

= −3β + (2h − η)σ

2h( 3ε
η(h−η)

+ σ)
(14)

Note that α2 < 0. Now it remains to choose zi , so that the stabilizing effect of bubble
function Bi is maintained in its discrete counterpart B∗

i (i = 1,2). The main criteria
that we use to determine the locations of the sub-grid nodes is to minimize L1 norm
of the residual coming out from the bubble equation (9) in the critical case where a
layer structure exists. In other words, we choose zi such that

Ji =
∫

K

|LB∗
i + Lψi |dx, i = 1,2 (15)

is minimum. That approach (15) were also used in [4]. Before we derive the explicit
locations of sub-grid points that emerges from the criterion (15), let us make some
general observations on their configuration. Set

ξ = z1 − xk−1, η = xk − z2, δ = z2 − z1 (16)

K1 = [xk−1, z1], K2 = [z1, z2], K3 = [z2, xk]
From (8) and (16), it is obvious that ξ + δ + η = h. At the same time, we do not want
δ to be too small, either, when compared with ξ and η. Therefore we take,

δ ≥ min{ξ, η} (17)

From the qualitative behavior of the problem (1), we always have η ≤ ξ , which im-
plies δ ≥ η. Hence η will always be the smallest of the three sub-lengths and, thus we
have

η ≤ h/3 (18)

Now we are in a position to give the explicit description of sub-grid points for each
type of problem regime.

3.1 Diffusion-dominated regime

In the present algorithm, the problem is assumed to be diffusion-dominated when
6ε > βh + σh2/9. In this regime, the stabilization is not needed, and a uniform sub-
grid seems to be appropriate. Therefore we choose ξ = η = δ = h/3.

3.2 Convection-dominated regime

In convection dominated case, we have a single exponential boundary layer at the
outflow. Therefore it is enough to find an optimal location for z2 only and place z1 on
an appropriate location with respect to the configuration of the problem. We assume
that the problem is convection-dominated if 6ε ≤ βh + σh2/9 with 3β ≥ σh. The
following lemma suggests an optimal position for z2 by using (15).
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Lemma 1 In convection-dominated case, the point ηe = −3β+
√

9β2+24εσ

2σ
minimizes

the integral (15) for i = 2.

Proof Following the lines of [4], it is possible to write the integral J2 as follows:

J2 =
∫

K

| − εB∗
2

′′|dx +
∫

K

|βB∗
2

′ + σB∗
2 + βψ2

′ + σψ2|dx (19)

Let g2 = βB∗
2

′ + σB∗
2 + βψ2

′ + σψ2. Then, a direct calculation over K gives,

∫
K

g2 dx = β + σh

2
(α2 + 1) = β + σh

2

(
1 − 3β + (2h − η)σ

2h( 3ε
η(h−η)

+ σ)

)

= β[12ε + ση(h − η)] + σ [6εh + ση2(h − η)]
12ε + 4ση(h − η)

(20)

which is always positive. Now we split the element K by z2 and investigate the sign
of g2 in each of these subdomains. In that direction, use ση ≤ σ h

3 < β and α2 < 0, to
get

g2|K3 = −α2
β

η
− α2

σ(x − xk)

η
+ β

h
+ σ(x − xk−1)

h

= −α2

η
(β − σ(xk − x)) + 1

h
(β + σ(x − xk−1))

≥ −α2

η
(β − ση) + 1

h
(β + σ(x − xk−1)) > 0

Thus the second term on the right hand side of (19) attains its minimum if g2 |K1∪K2

is non-negative, too. That is,

g2|K1∪K2 = α2
β

h − η
+ α2

σ(x − xk−1)

h − η
+ β

h
+ σ(x − xk−1)

h

= (β + σ(x − xk−1))

(
α2

h − η
+ 1

h

)

= (β + σ(x − xk−1))
−ση2 − 3βη + 6ε

2h(3ε + ση(h − η))

is positive, only if

η ≤ −3β + √
9β2 + 24εσ

2σ
(21)

On the other hand, the first term on the right hand side of (19) is a locally decreasing
function of η, since ∫

K

|−εB∗
2

′′|dx = −α2
εh

η(h − η)
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and

d

dη

(
−α2

εh

η(h − η)

)
= −ε(h − 2η)(3β + σ(2h − η))

2η(h − η)(3ε + ση(h − η))
< 0 (22)

This fact together with (21) determines an optimal value for η. �

Remark 1 The value of ηe coincides with the one suggested in [8].

Remark 2 The value of α2 at ηe is simply equal to ηe

h
− 1.

The choice of other lengths δ and ξ should be consistent with the physics of the
problem. Thus we take η = ηe, δ = η and ξ is chosen accordingly (ξ = h − 2η).

3.3 Reaction-dominated regime

In reaction-dominated case, we have two parabolic boundary layers at both ends and
the location of both sub-grid points z1 and z2 should be chosen in such a way that
approximate bubble functions mimic the exact ones. Thus we spot the position of z2
from Lemma 1 and it remains to find a proper location for z1, which can be accom-
plished by minimizing the integral

J1 =
∫

K

|LB∗
1 + Lψ1|dx (23)

Before we find an optimal position for z1, we need the following intermediate result.
Note that the problem is assumed to be reaction-dominated if 6ε ≤ βh + σh2/9 and
3β < σh.

Lemma 2 Let α1 be as in (13). In reaction dominated regime we have

ξ

2h
− 1 < α1 < 0

Proof The upper estimate can easily be obtained by using the fact that

3β + (ξ − 2h)σ < σh + (ξ − 2h)σ = σ(ξ − h) < 0

To show the lower bound, observe that,

α1 + 1 = 3β + (ξ − 2h)σ

2h( 3ε
ξ(h−ξ)

+ σ)
+ 1 = 6εh + ξ(h − ξ)(3β + σξ)

6εh + 2σξh(h − ξ)

>
6εh + σξ2(h − ξ)

6εh + 2σξh(h − ξ)
>

ξ(6ε + σξ(h − ξ))

2h(3ε + σξ(h − ξ))
>

ξ

2h �

The following lemma suggests an optimal position for z1.

Lemma 3 In reaction-dominated case, the point ξe = 3β+
√

9β2+24εσ

2σ
minimizes the

integral (23).
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Proof It is possible to write the integral J1 as follows:

J1 =
∫

K

| − εB∗
1

′′|dx +
∫

K

|βB∗
1

′ + σB∗
1 + βψ1

′ + σψ1|dx (24)

Let g1 = βB∗
1

′ + σB∗
1 + βψ1

′ + σψ1. Without loss of generality, assume ξ >
2β
σ

.
Then we have

∫
K

g1 dx = −β + σh

2
(α1 + 1) = −β + σh

2

(
3β + (ξ − 2h)σ

2h( 3ε
ξ(h−ξ)

+ σ)
+ 1

)

= 6ε(σh − 2β) + σξ(h − ξ)(σξ − β)

4(3ε + σξ(h − ξ))
> 0 (25)

Now split K into two subregions by z1 and calculate the integral of g1 over each of
these sub-domains:

∫
K1

g1 dx = α1β + α1
σξ

2
− β

ξ

h
− σξ

2h
(ξ − 2h)

= β

(
α1 − ξ

h

)
+ σξ

(
α1

2
− ξ

2h
+ 1

)

≥ β

(
α1 − ξ

h

)
+ 2β

(
α1

2
− ξ

2h
+ 1

)
= 2β

(
α1 − ξ

h
+ 1

)
(26)

where we have used Lemma 2. Further we have
∫

K2∪K3

g1 dx =
(

σ
h − ξ

2
− β

)(
α1 − ξ

h
+ 1

)
(27)

The common factor of the last terms in (26)–(27) can be rewritten as

α1 − ξ

h
+ 1 = 3β + (ξ − 2h)σ

2h( 3ε
ξ(h−ξ)

+ σ)
− ξ

h
+ 1 = (h − ξ)(−σξ2 + 3βξ + 6ε)

2h(3ε + σξ(h − ξ))

Since
∫
K

g1 dx ≥ 0, the second term on the right hand side of (24) attains its minimum

if both
∫
K1

g1 dx and
∫
K2∪K3

g1 dx are positive. For sufficiently large σ , this is only

possible if

ξ ≤ 3β + √
9β2 + 24εσ

2σ
(28)

On the other hand, we note that the first term on the right hand side of (24) is a locally
decreasing function of ξ , since

∫
K

|−εB∗
1

′′|dx = −α1
εh

ξ(h − ξ)
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and

d

dξ

(
−α1

εh

ξ(h − ξ)

)
= −ε(h − 2ξ)(−3β + 2σh − σξ))

2ξ(h − ξ)(3ε + σξ(h − ξ))
< 0 (29)

for σh > 3β . This fact together with (28) determines the optimal value ξe. �

Remark 3 The value of ξe coincides with the one suggested in [8].

Remark 4 The value of α1 at ξe is simply equal to ξe

h
− 1.

Hence we take η = ηe, ξ = min{h − 2η, ξe} and δ is chosen accordingly (i.e. δ =
h − η − ξ ). We note that the points continuously get through from one regime to
another in all cases.

Finally we recall that the pseudo bubble functions B∗
i (i = 1,2) are approxima-

tions to Bi on the sub-grid specified above, through (12) and they are used in place of
Bi to represent uB in (11). The approximate representation of uB by bubble functions
B∗

i (i = 1,2) is eventually used to solve (7) for its linear part.

4 Numerical results

In this section, we report some numerical experiments to illustrate the performance of
the present algorithm in the interesting case of small diffusion which corresponds to
the convection-dominated or reaction-dominated regimes depending on the ratio be-
tween the related problem parameters. We remark that the linear part of the numerical
solution uL only are presented in all figures.

Experiment 1: We first consider the constant-coefficient case where β = 1 and
f (x) = 1. We compute the approximate solution on both uniform and non-uniform
meshes. The uniform mesh is generated by dividing the unit interval [0,1] into
ten elements, i.e., the mesh size h = 1/10 and the grid points xi = ih where
i = 0,1, . . . ,10. The non-uniform mesh is randomly generated from the uniform
mesh by adding a small fraction of h to xi , so that the grid point xi of the uniform
mesh is replaced by a point between xi − h

4 and xi + h
4 . We display the numerical

results on the non-uniform mesh only because the results on the uniform mesh are
similar, yet better. In Fig. 3, we present the linear part of the numerical solution uL

together with the exact solution u for ε = 10−2 and various intensities of reaction
(σ = 0.1,1,10,20,50,100). The corresponding numerical results for ε = 10−5 are
reported in Fig. 4.

Experiment 2: We turn our attention to a variable-coefficient case for the same
range of the problem parameters. We set β = x+1

6 and decompose the domain into a
uniform discretization of 20 elements. Two different source functions are tested and
the numerical results are displayed in Figs. 5, 6, 7, 8.

Experiment 3: We consider a more interesting variable-coefficient case which also
exhibits an internal layer. We set β = −2(2x − 1) and f (x) = 4(2x − 1) and we
decompose the domain into a uniform discretization of 25 elements. We report the
corresponding numerical results in Figs. 9, 10.
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Fig. 3 The linear part uL of the numerical solution and the exact solution u for several values of σ when
f (x) = 1 and ε = 10−2
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Fig. 4 The linear part uL of the numerical solution and the exact solution u for several values of σ when
f (x) = 1 and ε = 10−5
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Fig. 5 The linear part uL of the numerical solution for several values of σ when f (x) = 1, ε = 10−2 and
β = x+1

6
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Fig. 6 The linear part uL of the numerical solution for several values of σ when f (x) = 1, ε = 10−5 and
β = x+1

6
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Fig. 7 The linear part uL of the numerical solution for several values of σ when f (x) = σx, ε = 10−2

and β = x+1
6



16 A. Sendur, A.I. Nesliturk

Fig. 8 The linear part uL of the numerical solution for several values of σ when f (x) = σx, ε = 10−5

and β = x+1
6
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Fig. 9 The linear part uL of the numerical solution for several values of σ when f (x) = 4(2x − 1),
ε = 10−2 and β = −2(2x − 1)
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Fig. 10 The linear part uL of the numerical solution for several values of σ when f (x) = 4(2x − 1),
ε = 10−5 and β = −2(2x − 1)
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In all three experiments, we report that the numerical results are in good agreement
with the physical configuration of the problem for a wide range of parameters, even
when the mesh is coarse. The transition from one regime to another is accurately
captured by the algorithm. The related results are also comparable with the one in [8].
Therefore we may conclude that the pseudo RFBs retain the stability features of RFBs
and provide us a robust, yet a cheap numerical method.
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