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Abstract The time-varying frequency structure of musical signals have been an-
alyzed using wavelets by either extracting the instantaneous frequency of signals
or building features from the energies of sub-band coefficients. We propose to
benefit from a combination of these two approaches and use the time-frequency
domain energy localization curves, called as wavelet ridges, in order to build features
for classification of musical instrument sounds. We evaluated the representative
capability of our feature in different musical instrument classification problems
using support vector machine classifiers. The comparison with the features based
on parameterizing the wavelet sub-band energies confirmed the effectiveness of the
proposed feature.

Keywords Wavelet ridge · Musical instrument classification ·
Support vector machine

1 Introduction

The classification of musical instruments is one of the main issues in the automatic
transcription of music. There have been many features offered to represent musical
signals which also targeted to reveal the differences of musical instrument sounds
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(Herrera-Boyer et al. 2003, 2006; Deng et al. 2008; Essid et al. 2006; Klapuri and Davy
2006). While the temporal evolution of the signal is characterized by the time-based
features, the spectral features are extracted based on the short-time spectrum using
time-frequency transformations such as short-time Fourier transform, constant-Q
transform, and wavelets (Alm and Walker 2002; Pielemeier et al. 1996). Apparently,
representing musical signals with time-frequency features are effective due to the
nature of musical signals where the frequency varies with time.

The wavelet analysis is a very popular time-frequency analysis technique and it is
widely used for the non-stationary signals in which the statistical properties vary with
time (Mallat 2009). As musical signals are inherently non-stationary, wavelets are
frequently used to analyze their properties and build representative features from
them. The time-varying frequency structure of the signals is observed in a time-
frequency plane with the continuous wavelet analysis, while the signal is divided into
its sub-bands via the discrete wavelet transform (DWT) leading to wavelet packet
analysis, which can also be interpreted with the multi-resolution concept (Vetterli
and Kovačević 1995).

Accordingly, the use of wavelets in musical signals may be separated into two
cases based on the following representations. In one representation, the emphasis is
given to the extraction of instantaneous frequency (IF) (Boashash 1992) for analysis
and re-synthesis purposes built upon sinusoidal modeling (Pielemeier et al. 1996;
Beauchamp 2007; Goodwin and Vetterli 1996; Kronland-Martinet 1988). The IF
of a signal can be extracted using wavelet analysis (Delprat et al. 1992) based on
the time-frequency energy localization (see Sejdić et al. 2009; Shafi et al. 2009,
for recent overviews). As the energy is concentrated in frequency about the IF
(Boashash 1992), the required information can be extracted using the curves at
the time-frequency plane along where the energy is locally maximum, namely the
wavelet ridges (Mallat 2009; Delprat et al. 1992; Carmona et al. 1997; Todorovska
2001). These trajectories allow to characterize the frequency modulation law of the
signals. Moreover, the wavelet transform coefficients along the ridges are called as
the skeleton of the wavelet transform (Delprat et al. 1992), which can be used to
de-noise and reconstruct a signal (Carmona et al. 1999; Lin 2006; Özkurt and Savacı
2006). The ridges can be computed using many techniques (Mallat 2009; Delprat
et al. 1992; Carmona et al. 1997; Todorovska 2001; Guillemain and Kronland-
Martinet 1996), where some examples for IF and ridge extraction can be found in
Dai et al. (2008), Özkurt and Savacı (2005), Shuai and Yuan (2006) and Tse and Lai
(2007), including musical rhythm detection (Smith and Honing 2008). Although the
diagram of ridges associated with the musical instrument sounds has been presented
in Delprat (1997), the features representing musical instrument sounds based on
wavelet ridges have not been considered for the classification of instruments.

The other wavelet representation involves with the sub-band coefficients, their
energy, and the distribution of the amplitude or energies of the coefficients. The
first attempts for this case are focused on finding a suitable wavelet function to
represent musical signals, such as harmonic and musical wavelets (Newland 1994),
and log-Morlet wavelet function (Olmo et al. 1999). Later, the amplitude envelopes
of the wavelet coefficients have been used rather than the raw wavelet coefficients
or the sub-band energies (Hacıhabiboğlu and Canagarajah 2002). The employment
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of DWT has been investigated in Tzanetakis et al. (2001), preceding to the usage
of sub-band wavelet coefficients and wavelet packets for musical instrument sound
classification (Pruysers et al. 2005). The sub-band power and pitch frequency fea-
tures have been extracted for audio including musical instrument sounds in Lin
et al. (2005). Furthermore, the musical instrument sounds have been classified by
parameterizing the energy of each sub-band in the remarkable works of Kostek and
Czyzewski (2001), Kostek (2004, 2005) and Wieczorkowska (2001, 2010). The obser-
vation stated in Kostek (2004) reveals that the distribution pattern of energy values
within the sub-bands is similar for the wind instruments whereas the same parametric
representation for the string instruments is different from the wind instruments.
This is consistent with the assumption of Do and Vetterli (2002), declaring that the
energy distribution in frequency domain identifies a texture, whereas the marginal
densities of wavelet sub-band coefficients have been modeled with a Generalized
Gaussian Density (GGD). This GGD modeling has been used for musical genre
(Tzagkarakis et al. 2006) and then for musical instrument classification in Özbek
and Savacı (2007). Following the same idea, histograms computed from the wavelet
coefficients at different frequency sub-bands have been efficiently used for music
information retrieval (Li and Ogihara 2006).

The presented paper proposes to benefit from a combination of these two repre-
sentations. Using the sub-band energies is likely to result with an acceptable recog-
nition rate, but certainly loses the temporal dimension of timbre which is essential
in discriminating musical instruments. That explains the intention of offering a time-
related parameter in Kostek (2004), in addition to the wavelet sub-band energies.
As the energy is concentrated around the IF, wavelet ridges can be used to build
features similar to the ones that has been built upon the spread of energies in wavelet
sub-bands. Besides, wavelet ridges carry the time domain information which can be
exhibited in the feature vector. By using the ridges, we offer to build a representation
of musical signals reflecting their time-varying frequency components, mainly com-
posed of the fundamental and harmonic frequencies, where the energy is localized.
Although, the main purpose is to classify instruments, meanwhile, the note of the
musical instrument may be determined based on the distribution of energy to the
frequencies in those sub-bands.

The representative capability of our wavelet ridge based feature is evaluated in
different musical instrument classification problems using support vector machine
(SVM) classifiers (Cristianini and Shawe-Taylor 2000; Vapnik 1998) which have
proven to demonstrate successful classification rates for audio and musical instru-
ment classification (Deng et al. 2008; Essid et al. 2006; Lin et al. 2005; Wieczorkowska
and Kubera 2009). As the study is focused on wavelet representations, the impor-
tance is given to the comparison results with different wavelet mother functions.
Therefore, only the SVM classifiers are used for evaluation rather than comparing
the results of different classifiers.

The organization of the paper is as follows: Section 2 reviews the wavelet trans-
form and the method of obtaining the wavelet ridges of a signal. The experimen-
tal study performed for different musical instrument groups will be explained in
Section 3. Finally, the corresponding performance results using SVMs and conclu-
sions will be presented.
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2 A review of wavelet transform and wavelet ridges

In continuous wavelet transform (CWT), the signal s(t) is projected on a zero-mean
family of functions called wavelets,

Ws(a, b ; ψ) =
∫ ∞

−∞
s(t)ψ∗

a,b (t)dt , (1)

with translations and scaling of a mother wavelet function, where a and b are the
scaling and translation coefficients, respectively. The ψ(·) is the mother wavelet
function, the ∗ denotes the complex conjugate, the scaled and translated wavelet is
given by

ψa,b (t) = 1√
a
ψ

(
t − b

a

)
. (2)

The local time-frequency energy density named as scalogram is defined in Delprat
et al. (1992) and Mallat (2009) as

Ps(a, b ; ψ) � |Ws(a, b ; ψ)|2 . (3)

For numerical computations, the DWT is obtained by regularly sampling CWT
at discrete time and scale positions, hence defining the scaled and translated wave-
lets as

ψm,n(t) = a−m/2ψ
(
a−mt − bn

)
m, n ∈ Z, (4)

then the scalogram matrix for discrete case can be defined as

Ps = |Ws(am, b n;ψm,n)|2 , (5)

which are simply the local time-frequency domain energy densities evaluated at the
discrete dilations am and the translations b n.

A way of showing the time-frequency information is to define the ridges of the
signal. There are several ridge detection methods including stationary phase method
which calculates the ridges using stationary point theorem (Delprat et al. 1992;
Todorovska 2001; Guillemain and Kronland-Martinet 1996), and the simple method
which directly finds the local maxima of the scalogram (Mallat 2009; Carmona et al.
1997; Todorovska 2001).

The interpretation of the IF using the analytic function representation indicates
that the derivative of the phase of a signal provides a measure of frequency
(Boashash 1992; Delprat et al. 1992). Hence, the signals can be modeled using a
frequency-modulated signal fitted to the change of the main frequency. For a multi-
component signal s(t) with L components, the instantaneous amplitudes Al(t) and
the instantaneous phases φl(t) can be described by

s(t) =
L∑

l=1

Al(t)e jφl(t). (6)
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Fig. 1 Three level wavelet
decomposition S
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Then the wavelet transform of the signal can be written as (Delprat et al. 1992;
Carmona et al. 1997; Todorovska 2001)

Ws(a, b ; ψ) = 1

2

L∑
l=1

Al(b)e jφl(b)ψ̂∗(aφ′
l(b)) + r(a, b) , (7)

with r(a, b) ∼ O(|A′
l|, |φ′′

l |) indicating higher orders where the primes denote the
derivatives. Therefore, if the Fourier transform of the mother wavelet function ψ̂(ω)

is localized near a certain frequency ω = ω0, the scalogram is localized around L
curves

al = al(b) = ω0

φ′
l (b)

, l = 1, . . . , L (8)

which are named as the ridges of the wavelet transform or simply wavelet ridges
(Delprat et al. 1992; Carmona et al. 1997; Todorovska 2001).

On the other hand, by selecting the variables a = 2 and b = 1 in (4), we obtain
the dyadic grid which leads to the orthonormal bases with the special choices of
the mother wavelet function ψ . Accordingly, the signal s(t) can be written as a
linear combination of the dyadic wavelet coefficients whereas reconstruction of the
signal from those coefficients is possible. By interpreting this dyadic grid with very
efficient and low complexity filter-bank structures based on the multi-resolution
concept, which states that a given signal can be represented by the sum of a coarse
approximation and details, the signal can be decomposed into many detail and
approximation sub-band coefficients (Vetterli and Kovačević 1995). Figure 1 displays
the decomposition where the signal S is decomposed to three level detail (D) and
approximation (A) sub-band coefficients.

3 Experimental study

3.1 Instrument sound samples

In this study, we mainly used the University of Iowa Electronic Music Studios musical
instrument samples (Fritts 1997). The samples were recorded in an anechoic chamber
in mono channel, having 16 bit dynamic range and sampled at 44.1 kHz. The sound
files with groups of note samples in the library have been separated note by note,
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Fig. 2 Normalized energy
values for 10 sub-bands of
some musical instruments
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and labeled accordingly in Özbek et al. (2007). Each of the samples is in one of the
three dynamic ranges: fortissimo (ff), mezzo forte (mf), and pianissimo (pp). The
wind instruments recordings include samples with and without vibrato whereas we
excluded the string samples played by plucking (pizzicato).

It is accepted that the starting transients are the most important part of the
signal for the recognition of musical sounds (Kostek 2005). Therefore, a frame
length consisting of 2,048 samples were selected from the attack part of the musical
instrument sounds.

3.2 Wavelet sub-band energy based feature

The energy related parameters for each of the instrument note samples were
computed by decomposing the signals into 10 sub-bands as

En = Ei

10∑
i=1

Ei

i = 1, . . . , 10 (9)

where En denotes the partial energy parameter normalized with respect to the
overall energies of the each sub-band energy parameterized by Ei. Figure 2 displays
the energy-based feature (En) for some of the chosen musical instruments. For each
bar group in the sub-bands, each micro-bar corresponds to the different note sample
of that instrument. The ranges of the instruments can be seen from the distribution
of the energies to the sub-bands.

Although the second order Daubechies wavelet (db2) was preferred as a mother
wavelet function because of its lower computational load than the others as ac-
knowledged in Kostek (2004), we also computed the energy parameters using the
Daubechies db8 wavelets as in Li and Ogihara (2006), as well as bi-orthogonal
(bior4.4) wavelets in order to compare the efficiency. Furthermore, the first three
moments, i.e., the mean, the variance, and the skewness values of the energy
parameters for each sub-band were computed.
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3.3 Wavelet ridge based feature

In order to determine the ridges, we applied the technique proposed in Özkurt
and Savacı (2005) which uses singular value decomposition (SVD) to factorize the
scalogram matrix given in (3). By selecting only the dominant components associated
with the signal, an approximated scalogram matrix was obtained. Then, by selecting
the localized energy points in the scalogram, the wavelet ridges were labeled. The
complex Morlet wavelet

ψ(t) = 1√
2π

e jω0te−t2/2 , (10)

was selected as the mother wavelet function because the magnitude and phase of the
wavelet coefficients can be easily separated due to the fact that it is described by an
analytic function (Todorovska 2001). Moreover, the Gaussian shape of this mother
wavelet function provides a smooth energy distribution, thus the resulting wavelet
ridges effectively display this distribution over the time-frequency plane. Figure 3
shows an example of a Flute A4 note sample, its scalogram calculated using CWT,
and the corresponding wavelet ridges marked by employing the SVD-based ridge
determination procedure.

The values of the ridges are displayed using a gray level image in which darker
points represent higher energy of the hills of the scalogram similar to the spectro-
gram. Apparently, the ridges denote the energies which are concentrated around the
fundamental frequency and the corresponding harmonic frequencies of the sample
signal as shown in the hills of the scalogram in (b) of Fig. 3. Due to the multi-
resolution capability of wavelets, the scalogram can be referred as a high resolution
spectrum. Another interpretation can be displayed based on the ridge energies for
each frequency. Figure 4 shows the A4 note samples of Soprano Saxophone and
Violin, their spectrograms, and the energy values of their ridges. While both of the
instrument samples have the same note signal, the energies of the partials differ
with respect to the instrument. Therefore, as in the case of the energy of the bins
in the Fourier transform (shown in the spectrograms) or of the sub-bands of the
wavelet transform, the energy of the ridges is likely to reveal the differences of the
instruments.

Furthermore, while the wavelet ridges include the time evolution of the frequency,
we eliminated the redundant information in time by downsampling. We selected
the values of only the 8 time instants for a feasible feature vector length which
directly effected the classification performance. Similarly, the frequency content was
compacted in sub-bands. Thus, as in the energy based parameters of the sub-bands,
we built features by summing the energy values of the ridges for 10 sub-bands,
having 80 values. We included the mean, variance, and skewness values of the energy
parameters and labeled the corresponding features with ’mvs’.

3.4 SVM classification

The SVM classifiers have been developed based on statistical learning theory
(Vapnik 1998). They are widely used because of their generalization ability.
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Fig. 3 a A Flute A4 note
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Although they were originally designed for solving two-class classification prob-
lems, multi-class classifications can be performed using the two common methods:
one-vs-all and one-vs-one. While the choice of the method depends on the problem,
one-vs-all method often produces acceptable results (Schölkopf and Smola 2002).
Therefore, we chose to implement SVM classifiers using one-vs-all method (Weston
et al. 2003). Each classifier was implemented using the radial basis function (RBF)
kernel. The feature vectors were normalized before introducing to the SVM clas-
sifiers. Half of the samples were used for training while the remaining half of the
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Fig. 4 The Soprano
Saxophone and Violin A4 note
samples, their spectrograms,
and corresponding ridge
energy values
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samples were left for testing. The presented results were obtained after a 10-fold
stratified cross-validation scheme with kernel parameter σ = 1.

4 Results

We present the classification performance results in three different groups: string
instruments, wind instruments, and both string and wind instruments. For the string
instruments, we used the samples of Bass (289), Cello (352), Viola (271), and Violin
(283), while for the wind instruments we selected Alto Saxophone (192), Flute (227),
Oboe (104), and Trumpet (212) with the number samples given in parentheses. In
each case, eight different feature vectors were evaluated, i.e., R, Db2, Db8, Bior44,
Rmvs, Db2mvs, Db8mvs, Bior44mvs. Here, R denotes the feature of the wavelet
ridges, where Db2, Db8, and Bior44 denote the energy parameters calculated with
DWT using the respective mother wavelet function. The labels including mvs denote
that the mean, variance, and skewness values of the features were included in the
feature vector. The numbers printed as boldface in the tables denote the highest
value of the corresponding result while all numbers are given in percentage.

For the string instruments, the confusion matrices obtained using the Db2 and R
features are displayed in the Table 1. An increase in the classification scores of Viola
and Violin was observed with the proposed wavelet ridge-based feature. Bass had the
highest performance which is mainly due to the frequency range of the instrument.
Viola was found to have the lowest performance and it was confused mostly with
Cello in both cases, while the confusion of Violin with Cello was decreased in the
proposed feature case.

We observed similar results for the wind instruments, where the confusion matrix
for the wavelet ridge based feature is given in the Table 2. As similar but lower rates
were observed for other features, only the results obtained by the wavelet ridge
based feature will be presented afterwards. The Trumpet was found to have the
highest performance while Flute had the lowest score with similar misclassification
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Table 1 Confusion matrices for the string instruments using Db2 and R features

Instrument Db2 R

Classified as Classified as

Bass Cello Viola Violin Bass Cello Viola Violin

Bass 94.1 4.6 0.0 1.3 94.5 2.3 1.7 1.5
Cello 4.1 85.6 8.2 2.1 1.1 85.5 11.0 2.4
Viola 1.7 39.8 45.4 13.1 2.5 26.8 57.4 13.3
Violin 0.7 25.6 9.2 64.5 0.1 8.7 12.4 78.8

rates with the other three instruments. Afterwards, the string and wind instruments
were combined and a new classification was performed for eight instruments. The
confusion matrix for the wavelet ridge based feature is given in the Table 3.

Parallel to the observations from the string and wind instruments classification
performance results, Bass and Trumpet had higher performance scores whereas
Flute and Viola displayed lower classification rates. While the afore presented
confusion matrices have denoted the performance of the wavelet ridge based feature
for the classification of instruments, Table 4 displays the average accuracies for each
of the string, wind, and all of the instruments computed using each of the feature set.

In all of the cases, the proposed wavelet ridge based feature outperforms the
wavelet sub-band energy based feature sets. In most of the cases, adding the mean,
variance, and the skewness values to the features resulted with better classification
performance, however it was found to be the opposite when using the wavelet ridge
based feature. This can be explained with the localization of energy around the
ridges. By concentrating the highest energy in the frequencies of a sub-band,
the variation of the energy within the sub-band mostly depends on the energy of
the ridges. Therefore, adding the mean, variance, and skewness values to the feature
may not supply extra information to be used in classification. Besides, by enlarging
the length of the feature vector it may cause a decrease in the classification rates.

An advantage of the method is in the gathered information related to the
frequency content. While the instruments are being classified, the extracted wavelet
ridges may aid in identification of the notes of the instruments. For the notes in the
C4-C5 octave range, based on the maximum energy value of the ridge, the notes of
the isolated sample were correctly (within a semitone) identified with ratios of 95%
for Alto Saxophone and 85% for Flute, whereas lower for the rest such as around
50% for Viola and Violin. The misclassifications were mainly due to the one frame
analysis in the attack part of the signal. By using more frames in the wavelet analysis
or by analyzing the sustain part of the notes where the frequency and correspondingly
the spectral energy of the signal is stable, more precise identification of notes may be

Table 2 Confusion matrix for the wind instruments using R feature

Instrument Classified as

Alto Saxophone Flute Oboe Trumpet

Alto Saxophone 73.6 16.4 10.0 0.0
Flute 10.8 69.2 9.4 10.6
Oboe 4.6 7.9 86.5 1.0
Trumpet 0.7 7.6 0.4 91.3
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Table 3 Confusion matrix for the string and wind instruments using R feature

Instrument Classified as

Alto Saxophone Bass Cello Flute Oboe Trumpet Viola Violin

Alto Saxophone 66.8 5.3 1.8 11.1 8.2 0.0 3.9 2.9
Bass 0.0 93.3 2.6 0.2 0.0 0.0 1.9 2.0
Cello 0.0 0.4 81.8 1.0 0.0 2.3 9.3 5.2
Flute 3.4 14.6 2.5 55.9 4.1 7.6 7.3 4.6
Oboe 7.1 1.0 0.0 10.5 75.0 4.9 0.4 1.1
Trumpet 0.1 0.0 0.9 5.6 1.8 89.7 1.3 0.6
Viola 1.7 3.7 26.5 2.4 0.0 2.8 49.3 13.6
Violin 2.9 0.7 7.7 0.1 0.0 0.4 13.7 74.5

performed. Besides, the frequency of the note may not always be the frequency with
the highest energy as illustrated in the Fig. 4. Therefore, a proper identification of
notes from tracking of harmonic frequency positions would be required as in Every
and Szymanski (2006).

Although the proposed feature has better classification performance than the
wavelet sub-band energy based feature sets, and some of the state-of-the-art features,
it has not yet outperformed the mel frequency cepstral coefficients (MFCCs) which
recently been shown as the best feature for many musical instruments (Wiec-
zorkowska and Kubik-Komar 2010). In order to build a baseline for comparison
purposes, the classification rates for the standard 13-length MFCC feature have
been obtained as 91.8, 90.4 and 85.5% for the string, wind, and all of the instru-
ments case, respectively. Similar with the MFCCs, the wavelet ridges display the
spectral envelope of the signal. However, the MFCCs lack to display the temporal
information which were included in the wavelet ridges representing the temporal
evolution of the spectral variation. Therefore, we aimed to use this additional time
domain information extracted from the attack part of the signals for the recognition
of musical sounds. While the state-of-the-art features like MFCCs may result with
better performance and therefore are widely used, some of the features may have
better representations for some certain instruments. Moreover, improvements of
MFCCs yield slightly better results which reflect that there is not much room to
benefit further from MFCCs. As explained above, by using wavelet ridges, it may
be possible to determine and follow the individual partials (notes) which may exist
and possibly overlapping in a polyphonic music or in a mixture of musical instrument

Table 4 Performance results
for the string, wind, and all
cases for all feature sets

Feature Performance (%)

String Wind All

R 79.7 79.9 73.9
Db2 69.9 66.2 64.6
Db8 73.1 61.7 62.7
Bior44 72.6 65.3 62.8
Rmvs 76.4 72.7 70.2
Db2mvs 76.1 71.2 67.1
Db8mvs 70.3 66.6 65.5
Bior44mvs 72.3 71.0 66.1
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Table 5 Confusion matrix
with the ridge based feature
for the CD samples

Instrument Classified as

Cello Oboe Piano Violin

Cello 70.7 17.1 8.9 3.3
Oboe 0.3 64.7 9.0 26.0
Piano 16.6 14.3 43.3 25.8
Violin 18.9 22.6 1.6 56.9

sounds. This is similar to the use of the pitch frequency cepstral coefficients which
intends to extract the frequency content with timbre information.

The benefit of using wavelet ridges is to reveal the information hidden in the time-
frequency domain by following the energy paths. As the energy paths can be investi-
gated in higher resolution, information for the discrimination of the instruments can
be obtained accordingly. Although obtaining a unique representation for a musical
instrument is still far, the skeleton information represented in the wavelet ridge based
features is found efficient and can be used to build better representations.

We further evaluated our proposed feature using the solo excerpts of musical
CDs obtained from personal collections and the library of Turkish Radio and
Television Corporation. The collection was composed of 69 different tracks from
four instruments, i.e., Cello, Oboe, Piano, and Violin. Only the left channel of
the stereo tracks were used. The analyzed samples were extracted using an energy
threshold in order to discard the silence. The same analysis frame length and SVM
architecture were kept. The number of total samples for each instrument was not
less than 1,400 which half of them were used for training and the rest was kept for
testing. No test sample was selected from the recordings of the training sample. The
confusion matrix with the wavelet ridge based feature is presented in Table 5.

The results display that the Cello was mostly confused with Oboe, while Oboe and
Piano were mostly confused with Violin. Piano had the lowest performance due to
the misclassifications with all three instruments. The performance results of the CD
excerpts for all feature sets are displayed in Table 6.

Repeatedly, the wavelet ridge based feature set had the highest performance
compared to the other feature sets. The lower performance results obtained for all
of the instruments are mainly due to the selection of the analysis frame which may
not be in accordance with the attack part as in the isolated note samples. While
for the isolated note samples it was relatively easy to detect the attack part of the
signal, there were no preprocessing for the frames excerpted from the CD recordings.
Besides, all of the 10 sub-bands were used unlike Li and Ogihara (2006) where the

Table 6 Performance results
of the CD excerpts for all
feature sets

Feature Performance (%)

R 59.9
Db2 48.3
Db8 52.4
Bior44 50.5
Rmvs 63.9
Db2mvs 43.7
Db8mvs 54.7
Bior44mvs 52.0
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Table 7 Confusion matrices with the wavelet ridge based feature with trained/tested with isolated
note samples/CD excerpts using R feature

Instrument Trained with isolated note samples Trained with CD excerpts

Classified as Classified as

Cello Oboe Violin Cello Oboe Violin

Cello 54.8 39.8 5.4 6.9 73.9 19.2
Oboe 48.4 26.7 24.9 0.0 100.0 0.0
Violin 14.9 31.8 53.3 0.7 37.5 61.8

features have been built by selecting the most efficient sub-bands. Obviously, a pre-
selection of the sub-bands according to the instrument would be helpful in increasing
the performance ratios.

The final experiments were made for the wavelet ridge based feature set using the
isolated note samples as training data and the CD excerpts for testing data, and vice
versa. Note that there are only three instruments in common, i.e., Cello, Oboe, and
Violin, and Table 7 displays the confusion matrices obtained for both cases.

Because of the limited number of Oboe note samples, the performance was lower
when trained with the isolated note samples. On the contrary, when trained with the
CD excerpts, all Oboe samples were correctly classified. Therefore, for Oboe, the
isolated note samples seem to lack a fully representation of the instrument. However,
it is not the case for the Cello, which is mostly confused with Oboe when trained
with the CD excerpts. This may be due to the CD recordings which possibly could
not present all the note samples of the corresponding musical instrument. Results
also demonstrated that the wavelet ridge based feature performs better for string
instruments than the wind instruments, independent from the collection of sounds.
This is in accordance with the previous results which demonstrates its ability to catch
the variations in time and frequency of string instruments compared to the more
stable sounds of wind instruments.

5 Conclusions

This paper offers wavelet ridges in order to build features for representing musical
signals. The features based on parameterizing the wavelet sub-band energies have
been found efficient but they lack the time domain information. By displaying the
energy of the time-varying frequency content of the signal, the features based on
wavelet ridges were found to have better classification rates than the wavelet sub-
band energy based features, computed using different mother wavelet functions in a
comparative study for some sample musical instrument classification problems.

Although the frequency content were summed in sub-bands in order to make fair
comparisons with the sub-band based feature sets, the extraction of ridges can be
performed at different scales or time resolutions according to a pre-defined precision.
For example, making a finer analysis by adjusting the scales to the semitones
of musical note frequencies will result with the determination of the exact note
frequency while a classification of instruments is ongoing. Thus, it seems possible
to fuse this information to solve the identification of note and instrument at the
same time which will be helpful for musical information retrieval. However, our
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observations justified that necessary caution should be taken when increasing the
detail in time or frequency. Otherwise, increasing the length of the feature with
redundant information is likely to result with a decrease in the classification accuracy.

The wavelet ridges offer a way of determining a unique identifier (skeleton) of
each musical instrument by considering both time and frequency domain informa-
tion. Therefore, similar/alternative features based on wavelet ridges can be used to
exploit possible discrimination directions. However, as the ridge extraction method
uses continuous wavelet transform, the necessity of high computation time is still
cumbersome. An option may be to use the dual-tree complex wavelet transform
(Selesnick et al. 2005) which also combines the advantages of both the continuous
and discrete time wavelet analysis.
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