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Abstract

Key establishment is a crucial primitive for building secure channels: in a multi-party setting, it
allows two parties using only public authenticated communication to establish a secret session key which
can be used to encrypt messages. But if the session key is compromised, the confidentiality of encrypted
messages is typically compromised as well. Without quantum mechanics, key establishment can only be
done under the assumption that some computational problem is hard. Since digital communication can
be easily eavesdropped and recorded, it is important to consider the secrecy of information anticipating
future algorithmic and computational discoveries which could break the secrecy of past keys, violating
the secrecy of the confidential channel.

Quantum key distribution (QKD) can be used generate secret keys that are secure against any fu-
ture algorithmic or computational improvements. QKD protocols still require authentication of classical
communication, however, which is most easily achieved using computationally secure digital signature
schemes. It is generally considered folklore that QKD when used with computationally secure authenti-
cation is still secure against an unbounded adversary, provided the adversary did not break the authen-
tication during the run of the protocol.

We describe a security model for quantum key distribution based on traditional classical authenti-
cated key exchange (AKE) security models. Using our model, we characterize the long-term security of
the BB84 QKD protocol with computationally secure authentication against an eventually unbounded
adversary. By basing our model on traditional AKE models, we can more readily compare the relative
merits of various forms of QKD and existing classical AKE protocols. This comparison illustrates in
which types of adversarial environments different quantum and classical key agreement protocols can be
secure.

Keywords: quantum key distribution, authenticated key exchange, cryptographic protocols, secu-
rity models

1 Introduction

Quantum key distribution (QKD) promises new security properties compared to cryptography based on
computational assumptions: QKD can provide for two parties to establish a secure key using an untrusted
quantum channel and a public, authenticated classical channel, and this key is secure against any adversary
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who is limited solely by the laws of quantum mechanics. While some classical1 cryptographic tasks can be
achieved with information-theoretic security against unbounded adversaries, key establishment over a public
authenticated channel is not one of them. Moreover, the practicality of such information-theoretically secure
schemes is often limited, and as a result most classical cryptographic schemes rely for their security on
various computational assumptions, the most widely used of which — factoring, discrete logarithms — could
be efficiently solved by a large-scale quantum computer. As a result, QKD could be an important primitive
for cryptography secure against any advances in computing technology, provided quantum mechanics remains
an accurate description of the laws of nature.

Authenticated key establishment (AKE) is the cryptographic task which QKD achieves. The classical
cryptographic literature has extensively studied AKE since the founding of public key cryptography in
1976. After a period of ad hoc security analysis of key establishment protocols based on resistance to
various individual attacks, protocols are now generally analyzed within the context of a security model,
which aims to capture a wide variety of security properties in the context of an attacker who can control
all communication, as well as possibly compromise participants; proofs typically consist of probabilistic
reductions to computationally hard problems. One seminal model for security of AKE protocols was proposed
by Bellare and Rogaway [BR93]. The BR model led to the CK01 model by Canetti and Krawczyk [CK01],
upon which was based the eCK model [LLM07]. An alternative approach to this family of security models
is given by Canetti’s universal composability framework [Can01]. One of the general observations of this line
of work has been that calculating a secret key is relatively easy, but properly modelling authentication —
ensuring that the key is shared with precisely the intended party and no other — requires greater care.

There are many types of QKD protocols, but for our purposes we will divide them into 3 classes: prepare-
send-measure protocols, measure-only protocols, and prepare-send-only protocols. The first QKD protocol,
now called BB84, was proposed by Bennett and Brassard [BB84]; it is an example of a prepare-send-measure
protocol in which Alice randomly prepares one of several quantum states, sends it to Bob, and Bob randomly
measures in one of several settings. Ekert [Eke91] proposed an entanglement-based protocol, which is an
example of a measure-only protocol: Alice and Bob only randomly measure in one of several settings; the
state itself can be prepared by Eve entirely untrusted. Biham et al. [BHM96] proposed a prepare-send-only
protocol, in which Alice and Bob each randomly prepare one of several quantum states and send them to
Eve, who measures and sends back a classical result. Different versions can be appealing due to ease of
implementation, resistance to side-channel attacks on preparing or measuring, or device independence.

Research arguing for the security of QKD has largely proceeded independent of the aforementioned clas-
sical AKE security models. Various proofs of QKD have been given in a stand-alone 2-party setting; some
of the most important ones include [May96, LC99, BBB+00, SP00, Ina02, GLLP04, Ren05], but many oth-
ers exist for different variants of QKD; some work on QKD has been done in the universal composability
framework [BOHL+05]. These proofs typically proceed under the assumption that classical communication
happens over on authentic public channel; details on authenticating the classical communication are typically
left out of the analysis. It is widely recognized that the authentication can be secure against an unbounded
adversary if all classical communication is protected by information-theoretically secure message authen-
tication codes, such as the Wegman-Carter 2-universal hash function [CW79, WC81]. Alternatively, it is
generally considered folklore [PPS07, ABB+07, SML10, IM11] that if QKD was performed using a computa-
tionally secure authentication scheme (such as public key digital signatures), then messages encrypted under
the keys output by QKD would be secure provided that the adversary could not break the authentication
scheme before or during the QKD protocol.

Contributions. Our goal is to describe the security of quantum key distribution in a security model simi-
lar to existing classical authenticated key exchange protocols and compare the relative security properties of
various QKD and classical AKE protocols. Our model is explicitly a multi-party model, includes authenti-
cation, and allows for either computationally secure or information theoretically secure authentication. We
aim to capture two properties: (1) QKD is immediately secure against an active adversary who is restricted
such that he is unable to break the authentication scheme, and (2) QKD is long-term secure, meaning that, if
it is secure against an active adversary who is restricted during the run of the protocol to be unable to break

1We use the adjective “classical” to mean “non-quantum”, so “classical cryptography” means “non-quantum cryptography”,
not “historical cryptography”.
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the authentication scheme, then it remains secure even when the (classical and quantum) data obtained by
the active bounded adversary are subsequently given to an unbounded quantum adversary.

Security model for classical-quantum AKE protocols. In particular, we first introduce in Section 2 a
multi-party model for analyzing the security of QKD protocols. In our model, which adopts the formalism
of Goldberg et al.’s framework for authenticated key exchange [GSU12], parties consist of a pair of classical
and quantum Turing machines, each of which is capable of sending and receiving messages. The adversary
controls all communications between parties, but is restricted in its ability to affect communication between
a single party’s classical and quantum devices. The adversary also has the ability to compromise various
values used by parties during or after the run of the protocol. As is typical, the adversary’s goal is to
distinguish the session key of a completed session from a random string of the same length.

Having defined the adversarial model, we then introduce our two security definitions, immediate secu-
rity against an active, potentially bounded adversary, and long-term security, meaning security against an
adversary who during the run of the protocol is potentially bounded, but after the protocol completes is
unbounded (except by the laws of quantum mechanics). Our model is generic enough to allow the bound
on the adversary to be computational — assuming that a particular computational problem is hard — or
run-time or memory-bounded [CM97]. We adapt the long-term security notion of Müller-Quade and Unruh
[MQU10] from the classical universal composability framework to our classical-quantum model.

Security of BB84. We then proceed in Section 3 to show that the BB84 protocol, when used with a
computationally secure classical authentication scheme such as a digital signature, is secure in this model.
For the quantum aspects of the proof, we rely on existing proof techniques, but when combined with the
signature scheme in our model, this work provides a proof of the folklore theorem that QKD, when used with
computationally secure authentication in a multi-party setting, is information theoretically secure, provided
the adversary did not break the authentication during the run of the protocol. Note, importantly, that this
is the first proof of QKD in a multi-party setting; while our QKD protocol is still a 2-party protocol, it
operates in an environment where many parties may be interacting simultaneously, whereas previous proofs
of security of QKD — including the universal composability proof of Ben-Or et al. [BOHL+05] — deal with
only 2 honest parties (plus the adversary).

Comparison of quantum and classical AKE protocols. Finally, we use our generic security model to
compare in Section 4 the security properties of classical key exchange protocols and examples from each of the
three classes of QKD protocols (prepare-send-measure, measure-only, prepare-send-only). This comparison
is facilitated by our phrasing of QKD in a security model more closely related to traditional AKE security
models, which we can then use to compare the relative powers afforded to the adversary under those models.
In particular, our model allows us to compare how different protocols react when the randomness used in
the protocol is revealed — or if it is later discovered that bad randomness was used. For example, some
classical AKE protocol such as UP [Ust09] is secure even if the randomness used for either a party’s long-term
secret key or ephemeral secret key is revealed before the run of the protocol, but the same is not true for the
randomness used to pick basis choices in BB84. And the EPR protocol of Ekert is secure even if all of the
randomness used by the parties is leaked after the protocol completes, unlike BB84 where data bit choices
must remain secret.

2 QKD model

Our model begins as an enhancement to the eCK model [LLM07] in which each party has access to a quantum
device. The quantum device may be viewed as limited based on for example current hardware limitations.
As usual we consider interactive protocols within a multi-party multi-session setting, where communication
is controlled by the adversary. Subject to quantum physics restriction the adversary controls the quantum
communication channel between parties. Having described the parties and the communication model, we
describe how, if at all, the adversary may gain access to secrets used by the parties. We then define secrecy
against bounded adversaries and long-term security against unbounded adversaries: the long-term security
definition is achieved by having the active bounded short-term adversary output a classical and quantum
transcript upon which the unbounded quantum adversary may operate.

We next formally describe the model. We use k to denote a security parameter. In the description we
utilize only qubits, but these can if necessary be generalized to arbitrary-dimension quantum systems.
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Figure 1: A party’s classical and quantum Turing machines

2.1 Parties and protocols

A party (see also [ABOE10, Definition 1.1 second bullet]) is an interactive classical Turing machine with
access to a quantum Turing machine. Typically we refer to this pair of devices jointly as the party.

The classical machine can activate the quantum device via a special activation request or receive (via
designated activation routines) measurement outcomes from the quantum device. The communication is
delivered over a two way classical communication tape (the e-channel in Figure 1(a)). The classical Turing
machine has also access to a sequence of random bits – the r-tape in Figure 1(a) – and a separate c-tape
over which the party can receive and send other activation requests and messages as specified by designated
routines. Similarly, the quantum Turing device can be activated by the classical Turing machine and can
receive and send qubits over a designated quantum channel q as in Figure 1(b).

Each party can have associated authenticated public strings (which can be public keys or identifiers). Such
public strings are assumed to be distributed over an authenticated channels to other parties. Furthermore,
pairs of parties may possess shared secrets that were a priori distributed over a confidential and authenticated
channel.

A protocol is a collection of interactive classical and quantum subroutines that produce a shared secret
key between two (or more parties) or output an indicator of an error. The interactions may use messages
received on either the classical or quantum channels. The final output of the protocol is made via the classical
Turing machine.

A session is an execution of the protocol. Sessions are initiated via a special incoming request and upon
initiation each one is identified with a unique2 session identifier Ψ chosen by the party at which the session
is executed (in which case we say the party owns the session). A session that has been initiated but is not
yet completed is called active. Since sessions are interactive procedures a party may own more than one
active session at a given point of time.

Each active session has a separate session state that stores session-specific classical data.3

Upon receiving and sending all protocol messages and performing the required measurements and com-
putations specified by the protocol, the session completes by having the classical Turing machine output
either an error symbol ⊥ or a tuple (sk, pid,v,u). The tuple consists of:

• sk: a session key;

• pid: a party identifier;

• v: a vector (v0,v1, . . . ) where each vi is a vector of public values or labels; (For example, v1 may
consist of the public values contributed by party P1. Including v as part of the session output binds
the session with the various values used by the parties to compute the session key.)

• u: a vector (u0,u1, . . . ) where each vector ui is a public value or label; u is called the authentication
vector and indicates what information the session owner uses to identify its peer pid.

2With this definition uniqueness is guaranteed only within a party; globally uniqueness can be guaranteed by requiring the
session identifier is the concatenation of the unique party identifier and the party’s own session identifier

3While quantum protocols in general may make use of quantum memory for storing quantum states during a session, the
current QKD protocols we consider in this paper, such as BB84 or EPR, do not, so we omit this from our model.
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Definition 1 (Correctness). A key exchange protocol π is said to be correct if, when all protocol messages
are relayed faithfully, without changes to content or ordering, the peer parties output the same session key k
and the same vector v.

Memory. A party may hold in its memory several value pairs of the form (x,X), where x is a private
value and X is a public value or label. The pair may be a public key pair, such as private key x and public
key X, or a labelled private value, such as a private value x and a unique public label X = `(x). The value
pairs may be generated by some algorithm specified by the protocol.

There are two classifications of value pairs: ephemeral value pairs, which are associated with a particular
session Ψ, and static value pairs, which can be used across multiple sessions. The party may also have value
pairs that have been generated but not yet used. If necessary, different types of key pairs may be permitted,
for example, if a protocol uses one type of key pair for digital signatures and another type of key pair for
public-key encryption. The protocol specifies an algorithm for generating new pairs.

Classical Turing machine communication. As described above each classical Turing machine has
two incoming-outgoing classical communication channels, denoted by e and c in Figure 1(a), over which
the classical Turing machine receives activations and submits responses. The responses themselves can be
activation requests. Furthermore the classical Turing machine has an input of classical (pseudo-)random bits
which can be read at will by the Turing machine, denoted by r in Figure 1(a).

The following activations of the classical Turing machine are allowed:

• SendC(params, pid): This activation is received via channel c and directs the party to begin a new
key exchange session. A new session is initiated and assigned a unique session identifier Ψ based on
protocol-specific public parameters params and an identifier pid of the party with whom to establish
the session. The response to this query includes the session identifier Ψ and any protocol-specific
outgoing classical message msg′ that are sent via the outgoing channel c. If required by the protocol
specification the Turing machine can send an activation request C2Q(m) over the e outgoing channel;
the activation of the quantum Turing machine may cause that quantum Turing machine to write an
output to its q channel as well, or to prepare its measurement device to receive quantum messages.

• SendC(Ψ,msg): This query models the delivery of classical messages over c-channel. The party’s
classical Turing machine is activated with session Ψ and classical message msg. It returns any outgoing
classical message msg′ over the c-channel. If required by the protocol specification the Turing machine
can send an activation request C2Q(m) over the e outgoing channel; the activation of the quantum
Turing machine may cause that quantum Turing machine to write an output to its q channel as well,
or to prepare its measurement device to receive quantum messages.

• Q2C(m): Upon activation with this query the classical Turing machine activates its most recent session
with input m. This query may cause the classical Turing machine to output to its c channel, or send
another activation over the e channel.

A protocol specification may request that the classical Turing machine act probabilistically. In this case
the classical machine obtains random bits from the r-channel.

Quantum Turing machine communication. Each party’s quantum Turing machine has an incoming-
outgoing classical communication channel, denoted by q in Figure 1(b), over which the machine receives
and submits quantum information. The responses themselves can be activation requests. Furthermore the
quantum Turing machine has a two-way classical control channel (denoted by e in Figure 1(b)) with which
it communicates with the classical Turing machine.

The following activations of the quantum Turing machine are allowed:

• SendQ(ρ): This query activates the quantum Turing machine with quantum message ρ; it returns any
outgoing quantum message ρ′ over the q-channel. If required by the protocol specification the Turing
machine can send an activation request C2Q(m) over the e outgoing channel, for example, to report
any measurement results obtained from measuring ρ. The activation of the classical Turing machine
may cause that classical Turing machine to write an output to its c channel as well.
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• C2Q(m): This query activates the quantum Turing machine with classical control message m, for
example to prepare the quantum circuit for execution due to an anticipated SendQ activation. The
activation may cause a quantum state to be output over the outgoing quantum channel q as well as a
classical message to returned over the classical control channel e.

2.2 Adversarial model

The adversary is, similar to a party, a pair of interactive classical and quantum Turing machines. The
adversary’s classical Turing machine runs in time at most tc(k) and has access to a quantum Turing machine
with runtime bounded by tq(k) and memory bounded by mq(k) qubits; bounds may be unlimited. The
adversary takes as its input all public information and may interact with the (honest) parties. Furthermore
the adversary can establish corrupted (dishonest) parties that are fully in control of the adversary. Honest
parties are unable to distinguish between honest and dishonest parties.

Communication over the parties’ classical c-channels is controlled by the adversary. On the classical
channels, the adversary can read, copy, reorder, insert, delay, modify, drop or forward messages at will. The
sending and receiving parties have no intrinsic mechanism to detect which actions, if any, the adversary
performed on the classical messages.

Communication over the parties’ quantum q channels is also controlled by the adversary. The adversary’s
operations on the quantum channels are bound by the laws of quantum mechanics: the delivery of quantum
messages can be delayed, modified in order, forwarded, or dropped; the adversary can create new quantum
states and perform joint quantum operations on quantum messages received from the parties as well as on the
adversary’s state. However, due to the laws of quantum mechanics, the adversary cannot necessarily obtain
full information about quantum messages from the parties; for example, measurements by the adversary may
irrevocably disturb the state of messages transmitted by the parties, and the adversary may be unable to
precisely copy a message due to the no-cloning theorem. We assume that the communication channel between
the adversary’s quantum machine and party’s quantum machines are perfect; the adversary’s quantum device
can simulate any environmental or noise affect on the qubits sent by a party.

Queries. The adversary can direct a party to perform certain actions by sending any of the aforementioned
activation queries over party’s the c and q channels. The adversary has neither immediate control and
cannot observe the content exchanged between the classical and quantum subcomponents of a party over
the e channel, nor has information about the bits obtained from the r-channel. Furthermore, to allow for
information leakage the adversary may issue the following queries to parties:

• RevealNext → X: This query allows the adversary to activate the classical Turing machine to read
input from the r-channel and learn future public values. The activated party generates a new value
pair (x,X), records it as unused, and returns the public value X. (This query may be specialized in
the event that there are multiple value pair types specified by the protocol.)

• Partner(X)→ x: This query allows the adversary to compromise secret values used in the protocol com-
putation. If the party has a value pair (x,X) in its memory, it returns the private value x. Partner(Ψ)
returns the secret key sk for session Ψ, if it exists; this is often referred to as a RevealSessionKey query.

Where necessary to avoid ambiguity, we use a superscript to indicate the party to whom the query is
directed, for example SendCPi(Ψ,msg).

Partnering. If (x,X) is a value pair, with public key value or public label X, then the adversary is said
to be a partner to X if the adversary issued the query Partner(X) to a party holding that value pair in its
memory. Whenever a party generates a key pair (x,X), for example in response to a session activation or a
RevealNext query, the adversary is not a partner to X until the query Partner(X) is issued. The adversary
can become a partner to any value X.

2.3 Security definition

For the purpose of defining session key security, the adversary has access to the following additional oracle:
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• Test(i,Ψ) → κ: If party Pi has not output a session key, return ⊥. Otherwise, choose b
$← {0, 1}. If

b = 1, then return the session key sk from the output for session Ψ at party Pi. If b = 0, return a
random bit string of length equal to the length of the session key sk in session Ψ at party Pi. Only
one call to the Test query is allowed.

Definition 2 (Fresh session). A session Ψ owned by an honest party Pi is fresh if all of the following occur:

1. For every vector vj, j ≥ 1, in Pi’s output for session Ψ, there is at least one element X in vj such
that the adversary is not a partner to X.

2. The adversary did not issue Partner(Ψ′) to any honest party Pj for which Ψ′ has the same public output
vector as Ψ (including the case where Ψ′ = Ψ and Pj = Pi).

3. At the time of session completion, for every vector uj, j ≥ 1, in Pi’s output for session Ψ, there was
at least one element X in uj such that the adversary was not a partner to X.

We emphasize the difference between the first and the third condition in the last definition: the latter is
decided at the time when the session completes, whereas the former is decided at the end of the adversary’s
execution. In other words, there may be some values that are okay for the adversary to learn after completion
(but not before), and other values that the adversary can never learn.

Definition 3 (Security). Let k be a security parameter. An authenticated key exchange protocol is secure
if, for all adversaries A with classical runtime bounded by tc(k), quantum runtime bounded by tq(k), and
quantum memory bounded by mq(k), the advantage of A in guessing the bit b used in the Test query of a
fresh session is negligible in the security parameter; in other words, the probability that A can distinguish the
session key of a fresh session from a random string of the same length is negligible.

2.4 Long-term security

One of the main benefits of quantum key distribution is that it can be secure against unbounded adversaries.
However, such strong security comes at the cost of being unable to use computationally secure cryptographic
primitives such as public key digital signatures for authentication. The definition above can be used to
analyze QKD when computationally secure cryptographic primitives are used; for example, we can choose a
tc(k), tq(k), and mq(k) such that the cryptographic primitive is believed secure against such an adversary.
The particular values may be chosen based on known classical algorithms for factoring or computing discrete
logarithms and on the present-day limits of quantum devices.

Regardless of the bound on the active adversary, we can still recover a very strong form of long-term
security by considering an unbounded quantum Turing machine acting after the protocol has completed.
In other words, during the run of the protocol, we assume a bounded adversary as in Definition 3; this
bounded active adversary produces some classical and quantum transcript which it then provides to the
unbounded adversary. This models the real-world scenario of an adversary being somewhat limited by its
classical and quantum computing equipment now but later having much more powerful equipment or making
an algorithmic breakthrough.

Definition 4 (Long-term security). An authenticated key exchange protocol is long-term secure if, for
all unbounded quantum Turing machines M acting on a classical and quantum transcript produced by a
(bounded) adversary A in Definition 3, the advantage of M in guessing the bit b used in the Test query of a
fresh session is negligible in the security parameter.

2.5 Discussion

Several aspects of our model allow for a great range of flexibility in terms of adversarial power and allows
quantum key distribution be fairly compared with classical key establishment. We will describe a few
specializations of our definition and comment on one of the key differences between our model and traditional
classical AKE models, the output vectors v and u.
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Bounds on devices. First, if tq(k) = mq(k) = 0, and Definition 4 is omitted, the model reduces to a
classical definition for secure session key establishment. It refines the idea of authentication as the session
output can explicitly identify how peers were identified and authenticated. Thus any classical protocol
analyzed in [GSU12] can also be analyzed in the model presented here. The definition here is stronger in the
sense it encompasses a wider range of protocols and relates to the definitions in [LLM07, CK01] the same
way [GSU12] relates to them.

Secondly, it is feasible to model present limitations of quantum devices. While there are ongoing improve-
ments in controlling quantum systems, at present the number of qubits a device can work with is essentially
a small constant compared to classical computers. Thus, using our model with appropriate values of tq(k)
and mq(k), based on beliefs about current practical limitations, one can devise efficient protocols that are
easy to implement but guarantee unconditional future secrecy. An appropriate assumption on tc(k) — for
example that all adversaries with polynomial running time tc(k) cannot solve a particular hard problem —
allow the model to be used as existing classical reductionist security models are used.

Of course, the devices available to the adversary can be made unbounded essentially allowing a complete
quantum world. Thus the definitions presented here are suitable for analyzing novel quantum key distribution
protocols. These alternatives show the wide range of scenarios our definitions incorporate. Due to the unified
underlying framework it is easier to compare various protocols and decide which one is the best for the task
at hand.

The output vectors. One of the key differences between our model and traditional AKE security models
is how we phrase restrictions on what secret values the adversary can learn and when. In the eCK model,
for example, a fresh session is defined as one in which the adversary has not learned (a) both the session
owner’s ephemeral secret key x and long-term secret key a, and (b) both the peer’s ephemeral secret key
y and long-term secret key b (or just the peer’s long-term key if no matching peer session exists). In our
model, this could be specified as v = (v0 = (a, x),v1 = (b, y)).

Since in traditional AKE security models the restriction on values learned is specified in the security
model, a new security model is required for each differing combination of learnable values. Though models
may often appear similar, they sometimes contain subtle but important formal differences and thus become
formally incomparable [Cre11]. The traditional approach of specifying the values that can or cannot be
learned in the security definition itself contrasts with our approach — building on that of Goldberg et
al. [GSU12] — where the vectors v and u in the session output specify what can or cannot be learned. As
a result, two protocols with differing restrictions on values that can be learned could both be proven secure
in our model and then compared based on which values can or cannot be revealed.

3 BB84

We now turn to BB84 protocol [BB84]. We first specify the protocol in the language of the model of Section 2,
discuss some aspects of our formulation, and complete the section with a security analysis.

Definition 5. Let k be a security parameter. The BB84 protocol is defined by having parties responding to
activations as follows:

1. Upon activation SendC(start, initiator, B) the classical Turing machine A does the following:

(a) create a new session ΨA with peer identifier B;

(b) read n1 (random) data bits ΨA
dAB from its r-tape;

(c) read n1 (random) basis bits ΨA
bA from its r-tape;

(d) send activation C2Q(ΨA
bA,Ψ

A
dAB) on its e-tape, which indicates that the quantum device should

encode each data bit from ΨA
dAB as |0〉 or |1〉 if the corresponding basis bit ΨA

bA is 0, or as |+〉 or
|−〉 if the corresponding basis bit ΨA

bA is 1;

(e) send activation SendC(ΨA, start, responder, A) on its c-tape to B.

2. Upon activation SendC(ΨA, start, responder, A) the classical Turing machine B does the following:
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(a) create a new session ΨB with peer identifier A;

(b) read n1 (random) basis bits ΨB
bB from its r-tape;

(c) send activation C2Q(ΨB
bB) on its e-tape, which indicates the quantum device should measure the

ith qubit in the |0〉/|1〉 if the ith bit of ΨB
bB is 0, or in the |+〉/|−〉 basis if ith bit of ΨB

bB is 1.

3. Upon activation Q2C(m), the classical Turing machine B does the following:

(a) set ΨB
dAB equal to m;

(b) compute σ ← SignpkB
(ΨA,ΨB ,ΨB

bB , B);

(c) send activation SendC(ΨA,ΨB ,ΨB
bB , σ) on its c-tape to A.

4. Upon activation SendC(ΨA,ΨB ,ΨB
bB , σ), the classical Turing machine A does the following:

(a) verify σ with pkB;

(b) discard all bit positions from ΨA
dAB for which ΨA

bA is not equal to ΨB
bB; assume there are n2 such

positions left;

(c) read n2 (random) bits ΨA
indAB from its r-tape; set ΨA

chkAB to be the substring of ΨA
dAB for which

the bits of ΨA
indAB are 1, and set ΨA

kAB to be the substring of ΨA
dAB for which the bits of ΨA

indAB

are 0; let n3 denote the length of ΨA
kAB

(d) compute σ ← SignpkA
(ΨA,ΨB ,ΨA

bA,Ψ
A
indAB ,Ψ

A
chkAB , A);

(e) send activation SendC(ΨA,ΨB ,ΨA
bA,Ψ

A
indAB ,Ψ

A
chkAB , σ) on its c-tape to B.

5. Upon activation SendC(ΨA,ΨB ,ΨA
indAB ,Ψ

A
chkAB , σ), the classical Turing machine B does the following:

(a) verify σ with pkA;

(b) discard all bit positions from ΨB
dAB for which ΨA

bA is not equal to ΨB
bB

(c) set ΨB
chkAB to be the substring of ΨB

dAB for which the bits of ΨA
indAB are 1, and set ΨB

kAB to be
the substring of ΨB

dAB for which the bits of ΨA
indAB are 0

(d) let ε be the proportion of bits of ΨA
chkAB that do not match ΨB

chkAB; if ε > 0.061 then abort;

(e) compute σ ← SignpkB
(ΨA,ΨB , ε, B);

(f) send activation SendC(ΨA,ΨB , ε, σ) on its c-tape to A.

6. Upon activation SendC(ΨA,ΨB , ε, σ), the classical Turing machine A does the following:

(a) verify σ with pkB;

(b) read (random) bits ΨA
F from its r-tape to construct a random a 2-universal hash function F :

{0, 1}n3 → {0, 1}r′ (where r′ = n3h(ε) + o(n3)) for information reconciliation (see Appendix A)
and compute F ′ = F (ΨA

kAB);

(c) read (random) bits ΨA
P,G from its r-tape to generate a random permutation P on n3 elements and

a 2-universal hash function G : {0, 1}n3 → {0, 1}s′ (where s′ = n3(1− 3h(ε)) + o(n3)) for privacy
amplification (see Appendix A), respectively; compute ΨA

skAB ← G(P (ΨA
kAB));

(d) compute σ ← SignpkA
(ΨA,ΨB , F, F ′, P,G,A);

(e) send activation SendC(ΨA,ΨB , F, F ′, P,G, σ) on its c-tape to B;

(f) output (sk = ΨA
skAB , pid = B,v = (v0 = (`(ΨA

dAB)),v1 = (`(ΨA
bAB)),v2 = (`(ΨB

dAB)),v3 =
(`(ΨB

bAB)),v4 = (`(ΨA
F )),v5 = (`(ΨA

P,G))),u = (u1 = (pkB))) (recall `(·) denotes the label de-
scribing the corresponding secret value).

7. Upon activation SendC(ΨA,ΨB , F, F ′, P,G, σ), the classical Turing machine B does the following:

(a) verify σ with pkA;

(b) use F and F ′ to correct ΨB
kAB to ΨB

kAB′ ;
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(c) compute ΨB
skAB ← G(P (ΨB

kAB′));

(d) output (sk = ΨB
skAB , pid = A,v = (v0 = (`(ΨA

dAB)),v1 = (`(ΨA
bAB)),v2 = (`(ΨB

dAB)),v3 =
(`(ΨB

bAB)),v4 = (`(ΨA
F )),v5 = (`(ΨA

P,G)), ),u = (u1 = (pkA))).

Remark 1. In the output vector v, the values `(ΨA
bAB), `(ΨB

bAB), `(ΨA
F ), and `(ΨA

P,G) appear as single
component vectors. But in step 6(e) the values are broadcast in the clear. This may seem a bit contradictory
since, if the adversary becomes a partner to either of those values (and therefore learns their content), the
session is not fresh, but because of the broadcast the adversary does in fact learn the values corresponding
to the aforementioned labels. The important distinction is when the adversary obtains these values, either
before or after the protocol commences and measurements are performed. For the adversary to learn these
values before parties’ measurements, it must partner to these values, violating session freshness. Learning
the values after the session completes is not an issue and the values are given to the adversary “for free”,
without the need for partnering.

Remark 2. The output vector u represents the values which the session owner uses to authenticate its peer.
Similar to `(ΨA

bAB) the authentication information has to be exclusively available to the alleged peer, but
only at the time of protocol execution: these values may subsequently be revealed. Therefore, as described in
Definition 2, partnering to u is decided upon session completion.

Observe that for the BB84 protocol above, Alice does not include her own authentication secret pkA. This
implies that the protocol is resilient to key compromise impersonation attacks: even with Alice’s authentica-
tion keys no party is able to pretend to be someone other than Alice to Alice.

3.1 Security of BB84

We now show that the BB84 protocol stated above is a secure and long-term-secure authenticated key
exchange protocol under the assumption that the bounded active adversary cannot break the signature
scheme.

Theorem 1 (Security of BB84). Let k be a security parameter. Suppose that the probability εsig that any
probabilistic polynomial time classical Turing machine with oracle access to a (tq(k),mq(k))-bounded quantum
Turing machine can break the signature scheme is negligible in k. Then the BB84 protocol is a secure
authenticated key exchange protocol according to Definition 3.

Proof sketch. Our proof combines an existing proof of security by Christandl et al. [CRE04] for the
BB84 protocol with the sequence-of-games technique of Shoup [Sho06]. First we show — using techniques
from classical reductionist security — that no bounded adversary can (except with negligible probability)
successfully tamper with the classical authenticated communication. Then we show — using techniques
from QKD security proofs — that the adversary cannot distinguish the key from random. Details appear in
Appendix B.

Theorem 2 (Long-term security of BB84). Let k be a security parameter. Suppose the signature scheme
is secure against all bounded adversaries as specified in Theorem 1. Then the BB84 protocol is a long-term
secure authenticated key exchange protocol according to Definition 4.

Proof. The argument has in fact appeared in the argument of Theorem 1. Observe that in its proof the
bounds on tc(k), tq(k), and mq(k) and on the adversary general is required only for guaranteeing the
authenticity and origin of messages in the hop from game 0 to game 1. Once assured that the classical
authentic communication has not been tampered with the remainder of the argument is a typical argument
for a quantum key distribution scheme, which does not require any bounds on the adversarial power. Since
the unbounded adversary runs after the protocol completes, meaning it cannot inject reorder or modify
messages in the transcript, the past classical communication remains authentic and the result follows.

4 Comparing classical and quantum key exchange protocols

In Section 2.5, we discussed how our model can be used to analyze both purely classical protocols and
quantum protocols. Given its similarity to existing classical AKE security models and its flexibility in
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Table 1: Comparison of security properties of various classical and quantum AKE protocols.

Protocol
Signed Diffie– UP BB84 EPR BHM96

Hellman [CK01] [Ust09] [BB84] [Eke91] [BHM96, Ina02]

Protocol type
classical classical

quantum quantum quantum
prepare-send-measure measure-only prepare-send-only

Security model in which CK01 [CK01], eCK [LLM07],
this paper this paper this paper

can be proven secure this paper this paper
Randomness revealable × static key at most 1 of × static key × static key × static key
before protocol run? × ephemeral key static key, × basic choice × basis choice × basis choice

ephemeral key × data bits × data bits
× info. recon. × info. recon. × info. recon.
× priv. amp. × priv. amp. × priv. amp.

Randomness revealable X static key at most 1 of X static key X static key X static key
after protocol run? × ephemeral key static key, X basis choice X basis choice X basis choice

ephemeral key × data bits × data bits
X info. recon. X info. recon. X info. recon.
X priv. amp. X priv. amp. X priv. amp.

Short-term security computational computational computational or computational or computational or
assumption assumption information-theoretic information-theoretic information-theoretic

Long-term security × × assuming short-term- assuming short-term- assuming short-term-
secure authentication secure authentication secure authentication

analyzing the security of a variety of protocols, it is natural to use the model to try to identify qualitative
differences between different classes of protocols.

One of the key differences between existing AKE security models such as CK01 and eCK is what ran-
domness the adversary is allowed reveal, and when, and still have the protocol be secure. Our framework is
more generic: it is not the model that specifies which randomness can be revealed but the protocol itself in
its output vectors v and u. As a result, we can “compare” protocols by viewing them all within our model
and then comparing which values are included in the output vector.4

Table 1 summarizes the observations of this section. We compare are two qualitatively different classical
AKE protocols and three qualitatively different QKD protocols: (1) the signed Diffie–Hellman protocol
[CK01] (which can be proven secure in the CK01 model), (2) the UP protocol [Ust09], a variant of the MQV
protocol [LMQ+03] which can be proven secure in the eCK model, (3) the BB84 [BB84] prepare-send-measure
QKD protocol, (4) the EPR [Eke91] (entanglement-based) measure-only QKD protocol, and (5) the BHM96
[BHM96, Ina02] prepare-send-only QKD protocol. We note that our model is flexible enough to allow all
these protocols to be proven secure in it, of course with different cryptographic assumptions, bounds on the
adversary, and different output vectors. It is these differences we compare in Table 1

Revealing randomness before the run of the protocol. Some classical AKE protocols, especially eCK-
secure protocols such as UP and similar MQV-style protocols, remain secure even if the adversary learns
either the ephemeral secret key or the long-term secret key, but not both, before the run of the protocol.
This contrasts with all known QKD protocols, where none of the random values used during the protocol
— the long-term secret key, the basis choices (for measure protocols), data bits (for prepare protocols),
information reconciliation function, or privacy amplification function — can be revealed to the adversary
in advance. (This is why all of these values are included individually in the output vector v in the BB84
specification in Section 3.)

Revealing randomness after the run of the protocol. For classical AKE protocols to remain secure, at
least some secret values must not be revealed after the run of the protocol. For protocols with so-called
perfect forward secrecy, such as signed Diffie–Hellman, the parties’ long-term secret keys can be corrupted
after the run of the protocol, but not the ephemeral secret keys. For eCK-secure protocols such as UP and
similar MQV-style protocols, either the long-term secret key or the ephemeral secret key, but not both, can
be revealed after the protocol run (or, as per the previous paragraph, before/during). For measure-only
entanglement-based QKD protocols such as EPR, all random choices made by the parties can be revealed
after the run of the protocol: this is because the key bits are not chosen by the parties, nor in fact by the
adversary, but are the result of measurements and (after successful privacy amplification) are uncorrelated

4We note that it has been shown [Cre11] that the CK01 and eCK models are formally incomparable, meaning neither can
be shown to imply the other. Nonetheless, properties of specific protocols secure in those models may be compared by resorting
to a third model such as the one in this paper.
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with any of the input bits of any of the parties, including the adversary. This is not the case for prepare-and-
send protocols such as BB84 or BHM96, as the sender does randomly choose data bits which must remain
secret.

Short-term and long-term security. Classical AKE protocols can be proven secure only under compu-
tational assumptions, and as such only offer short-term security in the sense of Definition 3. Even against
an unbounded passive adversary they do not retain any of their secrecy properties. Thus classical AKE
protocols are only secure against bounded short-term adversaries; however, they can be compared on the
relative strength of the bound on the adversary. This contrasts with QKD protocols. QKD can be shown to
be secure against either unbounded short-term adversaries, by using information-theoretic authentication, or
secure against bounded short-term adversaries when using a computationally secure authentication scheme
as we have shown for BB84 in Section 3.1. A key contribution of the model in Section 2 is a formalism
which captures the notion that QKD can remain secure against an unbounded adversary after the protocol
completes, provided the adversary at the time of the run of the protocol could not break the authentication
scheme.

We note that applications wishing to achieve both the long-term security properties of QKD and the
resistance to randomness revelation that eCK-secure classical AKE protocols have could do so by running
both protocols in parallel for each session, and then combining the keys output by the two protocols together;
if combined correctly, the resulting key would provide strong short-term security and strong long-term
security. This approach is indeed being used by QKD implementers, such as commercial QKD vendor ID
Quantique.5

5 Conclusions

We have presented a model for key establishment which incorporates both classical key agreement and
quantum key distribution. Our model can accommodate a wide range of practical and theoretical scenarios
and can serve as a common framework in which to compare relative security properties of different protocols.
A key aspect of our model is that restrictions on values that the adversary can compromise are not specified by
the model but by the output of the protocol. Using our model, we were able to provide a formal argument for
the short-term and long-term security of BB84 in the multi-user setting while using computationally secure
authentication.

The ability to compare various classical and quantum protocols in our model has allowed us to identify an
important distinction between existing classical key establishment and quantum key distribution protocols.
At a high level, classical protocols can provide more assurances against online adversaries who can leak
or infiltrate in certain ways, but in the long run may be insecure against potential future advances. Cur-
rent quantum protocols provide assurances against somewhat weaker online adversaries but retain secrecy
indefinitely, even against future advances in computing technology.

Since in our model the relative strength of a fresh session is specified by the conditions given in the
output vector, an interesting open problem would be to use our model develop a quantum key distribution
protocol which does retain its security attributes in the short- and long-terms even if some random values
were known before the run of the protocol. Also of interest is how to best combined keys from both quantum
and classical key exchange protocols run in parallel.

Acknowledgements

The authors gratefully acknowledge helpful discussions with Norbert Lütkenhaus, Alfred Menezes, and Kenny
Paterson.

MM is supported by NSERC (Discovery, SPG FREQUENCY, CREATE), QuantumWorks, MITACS,
CIFAR, ORF. IQC and Perimeter Institute are supported in part by the Government of Canada and the
Province of Ontario.

5http://www.idquantique.com/images/stories/PDF/cerberis-encryptor/cerberis-specs.pdf

12

http://www.idquantique.com/images/stories/PDF/cerberis-encryptor/cerberis-specs.pdf


References
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A Information reconciliation and privacy amplification

See [CRE04, §4.4.1–4.4.3] for a formal analysis of information reconciliation and privacy amplification in the
context of quantum key distribution.

A.1 2-universal hash functions

A family of 2-universal hash functions is a set of hash functions H mapping a set U to bit strings of length
r′ if, for all x, y ∈ U with x 6= y,

Pr
H∈H

(H(x) = H(y)) ≤ 2−r
′
.

An example of a 2-universal hash function is as follows. Fix r′. Let U = {0, 1, . . . , 2w − 1}, with w > r′.
Let a be a randomly chosen positive odd integer with a < 2w and let b = i2w/2 where i is chosen at random
from {0, . . . , 2w/2 − 1}. Define

Ha,b(x) = ((ax+ b) mod 2w) div 2w−r
′

where div denotes integer division. Then H = {Ha,b : a, b as above} is a family of 2-universal hash functions
[DHKP97].

A.2 Using 2-universal hash functions for information reconciliation

Let ε be the proportion of Bob’s check bits ckbB that disagree with Alice’s check bits ckbA. Set r = dnh(ε)e.
Choose r′ = r+ o(n). Choose F ∈R Hr′ . Alice sends to Bob the description of the function F and the value
F (ΨA

kAB). Bob corrects ΨB
kAB to ΨA

kAB by guessing the errors and checking based on the received value
F (ΨA

kAB).
Note that information reconciliation can also be achieved using certain types of error correcting codes.

A.3 Using 2-universal hash functions for privacy amplification

Alice chooses a random permutation P on |ΨA
kAB | elements. She also chooses a random 2-universal hash

function G that maps |ΨA
kAB | bits to s′ = n− d3nh(ε)e+ o(n) bits, where ε is (as before) the proportion of

Bob’s check bits ckbB that disagree with Alice’s check bits ckbA. Alice sends P and G to Bob authentically,
for example by signing it. Alice computes her final session key as ΨA

skAB = G(P (ΨA
kAB)) and Bob computes

his final session key as ΨB
skAB = G(P (ΨB

kAB)).
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B Proof of Theorem 1

Proof. Our proof combines an existing proof of security by Christandl et al. [CRE04] for the BB84 protocol
with the sequence-of-games technique of Shoup [Sho06].6 First we show — using techniques from classical
reductionist security — that no bounded adversary can (except with negligible probability) successfully
tamper with the classical authenticated communication. Then we show — using techniques from QKD
security proofs — that the adversary cannot distinguish the key from random.

Let Succi denote the event that, in game i, the adversary successfully guesses the bit b used in the Test
query against a fresh session.

Game 0. This is the original security experiment. Our goal is to prove an upper bound on
∣∣Pr (Succ0)− 1

2

∣∣.
From Game 0 to Game 1. In this game, we want to ensure that all parties that output session keys
receive as input over the classical c-channel exactly the messages sent by its peer’s session. We make use of
the fact that each party chooses its session identifier uniquely (within itself) and that these session identifiers
are included in every digital signature.

Let abortsig be the event that there exists an honest party P owning a fresh session ΨA that output a
session key such that

• party P received ΨB as the session identifier of the peer’s session,

• there there is no honest party P ′ with session identifier ΨB and peer session identifier ΨA,

• but the signature received by party P in either step 4(a) (if P is “Alice”), step 5(a) (if P is “Bob”),
6(a) (if P is “Alice”), or 7(a) (if P is “Bob”) verifies correctly under the long-term public key of the
party corresponding to the peer identifier pid of the session.

If abortsig occurs, the challenger aborts.
We have that |Pr (Succ0)− Pr (Succ1)| ≤ Pr (abortsig).
We now need a bound on Pr (abortsig). We will obtain such a bound by constructing a signature forger

as follows. The forger receives as input a public key pk∗ and simulates the challenger for the adversary. The
challenger guesses an index i∗ of a party, and generates all public keys / secrets for all parties except party
i∗ as before. The challenger then proceeds exactly as in game 0, except that whenever party Pi∗ is required
to generate a signature on a message m, the challenger uses the signing oracle of the signature challenger.

Suppose event abortsig occurs at some party Pi in a session with peer identifier Pj . This means that party
Pi has received as input a signature on either (ΨA,ΨB ,ΨB

bB , B) (in step 4(a)), (ΨA,ΨB ,ΨA
bA,Ψ

A
indAB ,Ψ

A
chkAB ,

A) (in step 5(a)), (ΨB ,ΨA, ε, B) (in step 6(a)), or (ΨA,ΨB , F, F ′, P,G,A) (in step 7(a)) but no session at
party Pj ever issued the corresponding signature, since there is session with identifier ΨB at Pj .

If i∗ = j, which happens with non-negligible probability 1/nP , where nP is the number of parties, then the
forger can use the signature σ received by Pi to break the existential-unforgeability-under-chosen-message-
attack of the signature scheme with success probability at least 4εsig. Thus,

|Pr (Succ0)− Pr (Succ1)| ≤ 4 · nP · εsig . (1)

Game 1. Having assured that classical communication is untampered with in honest sessions that output
session keys, we now make use of standard proofs for security of quantum key distribution. In particular, we
follow the technique of Christandl et al. [CRE04]. We provide a brief sketch of their argument.

Let ε ≥ 0 be negligible in k. The ε-smooth Rényi entropy of order ∞ of a probability distribution P
is denoted by Hε

∞(P ) [CRE04, Definition 3.5]. For intuitive purposes, we will refer to this as simply the
“sR-entropy” of P ; the detailed analysis appears in [CRE04, §4.4–5.1].

The sR-entropy of ΨA
kAB is n3 bits. After transmitting the information reconciliation value F ′ = F (ΨA

kAB)
in step 6, A reveals at most an additional r′ = n3h(ε) + o(n) bits of sR-entropy.

6In the sequence-of-games technique, we make small changes to the security experiment, one after the other, beginning with
the original security experiment. We must show that no adversary can distinguish any of the individual changes we made, and
then that the final version of the experiment that we reach is secure.
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Due to the laws of quantum mechanics, any attacker observing or modifying will alter A’s quantum
transmission in proportion to the amount of information the attacker gains. In particular, we can obtain an
upper bound on the amount of information learned by the attacker about ΨA

kAB based on the proportion of
errors in the check bits ΨA

chkAB and ΨB
chkAB . If ε is the proportion of errors, then the amount of information

learned by any attacker is (except with probability exponentially small in n3) upper-bounded by 2n3h(ε).
Thus, the attacker’s sR-entropy of ΨA

kAB conditioned on her attack is at least n3(1− 3h(ε)) + o(n3). By
applying privacy amplification in step 6(c) and 7(c), Theorem 4.7 of [CRE04] implies that the probability

distribution on the final session key ΨA
skAB is δ close to uniform, where δ ≤ 3 ·2−

n3−r−s+1
2 + negl(k), which is

negligible in k. Thus no attacker can distinguish ΨA
skAB from a uniformly random string of the same length

except with negligible probability. This argument shows that

Pr (Succ1) ≤ negl(k) . (2)

Combining equations (1) and (2), we obtain our result that
∣∣Pr (Succ0)− 1

2

∣∣ ≤ negl(k).
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