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İZMİR



We approve the thesis of Furkan Eren UZYILDIRIM

Examining Committee Members:

Prof. Dr. A. Aydın ALATAN
Department of Electrical and Electronics Engineering, Middle East Technical University

Asst. Prof. Dr. Yalın BAŞTANLAR
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Asst. Prof. Dr. Mustafa ÖZUYSAL
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Head of the Department of Dean of the Graduate School of
Computer Engineering Engineering and Sciences



ACKNOWLEDGMENTS

First of all, I would like to express my gratitude to my supervisor, Mustafa ÖZUY-
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ABSTRACT

KEYPOINT MATCHING BASED ON DESCRIPTOR STATISTICS

The binary descriptors are the representation of choice for real-time keypoint

matching. However, they suffer from reduced matching rates due to their discrete nature.

In this thesis, we propose an approach that can augment their performance by searching

in the top K near neighbor matches instead of just the single nearest neighbor one. To

pick the correct match out of the K near neighbors, we exploit statistics of descriptor bit

variations collected for each keypoint individually in an off-line training phase. This is

similar in spirit to approaches that learn a patch specific keypoint representation. Unlike

these approaches, we limit the use of a keypoint specific score only to rank the list of

K near neighbors. Since this list can be efficiently computed with approximate nearest

neighbor algorithms, our approach scales well to large descriptor collections.
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ÖZET

BETİMLEYİCİ İSTATİSTİKLERİ İLE ANAHTAR NOKTALARIN
EŞLEŞTİRİLMESİ

Gerçek zamanlı uygulamalarda, ikili betimleyiciler anahtar noktaların eşleştiril-

mesinde sıklıkla kullanılmaktadır. İkili betimleyicilerin ayrık yapıları doğru eşleşmelerin

sayısında düşüklüğe sebep olmaktadır. Bu tez çalışmasında, doğru eşleşme en yakın

komşu yerine en iyi K komşuyu içeren bir liste üzerinde aranarak ikili betimleyicilerin

performansında iyileştirme amaçlanmıştır. Bu liste üzerinde doğru eşleşmeyi seçebilmek

için, her anahtar noktanın ikili betimleyicisinin bit değişimlerinin istatistikleri çevrimdışı

eğitim aşamasında çıkarılmıştır. Bu yöntem, anahtar noktaları etrafındaki belirli bir imge

alanıyla temsil eden anahtar nokta özgü yaklaşımlara benzerlik göstermektedir. Bu yaklaşı-

mlardan farklı olarak, anahtar noktaya özgü skor sadece en yakın K komşuyu içeren listeyi

sıralamak için kullanılmıştır. Bu liste yaklaşık en yakın komşuyu bulma algoritmalarıyla

birlikte hızlı ve verimli olarak hesaplanabileceği için, geliştirilen yöntem büyük betim-

leyici kümelerine ölçeklendirilebilir.
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CHAPTER 1

INTRODUCTION

Many of the Computer Vision applications include any of the processes of im-

age matching and identification, object recognition and tracking, image retrieval, and so

on [2, 21, 13, 11]. These tasks extract distinctive features in an image as the first step.

Keypoints are point-based features which are able to be detected in a computationally

efficient way. Generally, they are only composed of location, scale and orientation infor-

mation. This cannot be enough for establishing correspondences between images which

is the crucial part of the real-time vision systems. This problem can be solved by rep-

resenting each keypoint with the patch surrounding it which is invariant to deformations

such as viewpoint and illumination changes. This representation is called a descriptor

which is usually a high dimensional binary or floating-point vector.

Thanks to important developments in mobile platforms, computer vision applica-

tions which are worked on devices with high processing power and quite enough memory

can be adapted to mobile devices. These devices have limited memory and low process-

ing power. Transmission of large-sized data through mobile network is also not feasible.

In order to deal with these concerns, several binary descriptors have been introduced in

the recent years as an alternative to floating-point ones which require high-performance

processors for execution and high amount of memory for storage.

Binary descriptors are simply bit-streams. Correspondences between the points

on the variously deformed images can easily be obtained with binary descriptors based

on the Hamming distance which is computed by bit-wise operations. The aim of binary

descriptors is to obtain the small distance between the keypoints in different images that

are belong to the same scene point. This requires to have as few as possible number of

different bits between the descriptors of these keypoints. Each bit of the binary descriptor

is computed based on intensity comparison of two pixels on the given patch. Points that

are selected for the computation of descriptor bits are the same for all patches specifically

to the descriptor type. However, these points represent different textures for different

views of the keypoint so that the same point pair might not give the same bit value for the

resultant descriptor. Moreover, with various deformations, the number of different bits

1



and also the invariant bits are dependent on the texture in the patch which is unique for

each keypoint. These variations adversely affect the performance of binary descriptors

and make establishing correct matches between images difficult with them.

In this thesis, we focus on improving the robustness of the keypoint matching

with binary descriptors by taking into account the bit variations for each keypoint under

deformations besides the distance information that can be obtained by highly efficient

computation.

1.1. Motivation

As mentioned previously, keypoint matching can be achieved with binary descrip-

tors based on the Hamming distance between descriptor vectors. In real-time vision sys-

tems, the reference keypoint whose descriptor gives the smallest distance to the descrip-

tor of the query keypoint is assigned as match. In other words, the nearest neighbour is

searched for the query descriptor over the set of reference descriptors. This way of match-

ing leads to obtain incorrect matches even the distance for the correct match of the given

query descriptor is only one more than the distance given by the nearest neighbour. How-

ever, when we observe the top K near neighbours by ranking the matches based on the

Hamming distance between their descriptors, we notice that this set of matches is more

likely to contain the correct match. Figure 1.1 illustrates the existence of correct matches

beyond the nearest neighbor. It shows the number of correct matches between BRIEF [7]

descriptors that fall into the first ten near neighbors. Although most of the BRIEF matches

obtained by the nearest neighbour matching are wrong, the correct ones are not very far

away in the near neighbor list. The recognition rate over the first ten near neighbors is 61

percent and over only the nearest neighbor is 19 percent. The matches beyond the nearest

neighbor are only reachable if there is a way of correctly reranking the matches to bring

the correct one to the top.

Under different viewpoint changes, variations in descriptor bits occur due to the

change in texture on the patch in which descriptor computation is done. Since each key-

point has its own texture, the effect of deformations is specific for the descriptor of each

keypoint which is discussed in Chapter 4 in detail. In order to handle this, instead of

representing each keypoint with a single reference patch, each can be represented by mul-

tiple patches by simulating various viewpoints. Binary descriptors which are computed

2
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Figure 1.1. The near neighbor rank distribution of the correct matches between BRIEF
descriptors extracted from the first and the third images of the Graffiti
data set. The nearest neighbor obtained by ranking matches according to
Hamming distance captures only 159 of the 848 possible correspondences.
Meanwhile, the first ten near neighbors include 517 correct matches, a po-
tential improvement by a factor of more than three.

from this set of patches provide to obtain overall bit variations under various deformations

specifically to the each keypoint. These observations give intuition to us for reordering

the list of top K matches based on the keypoint-specific representations.

1.2. Thesis Goals and Contributions

This thesis aims to develop an approach to enlarge the matching range of the bi-

nary descriptors. We require to use generic descriptors to make the approach scalable for

3



large descriptor sets and keypoint specific representations to make it robust for under var-

ious viewpoints. This requirement is fulfilled by extracting the statistics for the descriptor

variations of each keypoint in an offline training phase to reorder match hypotheses in the

list of K near neighbours at run-time.

Our main contributions in this thesis can be summarized as follows:

• We develop a two-step approach for keypoint matching by combining the generic

keypoint descriptors and keypoint specific representations.

• We propose a method that is able to find keypoint matches within the list of K near

neighbors at negligible additional computational cost at run-time.

• We develop a training procedure that covers various deformations which provides

to exploit the texture characteristics around individual keypoints that yields a more

robust and distinctive description.

• We develop the keypoint specific and probabilistic score for reranking the keypoints

within the list of K near neighbours.

• We demonstrate that, despite learning a separate representation for each individual

keypoint, our approach does not require a brute-force search in a large descriptor set

when coupled with the LSH [3] approach to compute the list of K near neighbors.

• We also show that our approach is relatively descriptor independent and it ex-

tends the matching range of several binary descriptors beyond the nearest neigh-

bor: BRIEF [7], ORB [29], BRISK [16], FREAK [1], and LATCH [17], which has

recently been shown to outperform state-of-the-art binary descriptors.

1.3. Outline of Thesis

This thesis is organized as follows. The next chapter provides a literature overview.

Chapter 3 gives a background information about keypoints, descriptors, and their appli-

cations. Chapter 4 includes the detailed research for the stability of keypoints and binary

descriptors under various viewpoint changes. In Chapter 5, we propose an approach for

keypoint matching with binary descriptors. Finally, Chapter 6 provides final remarks and

discusses future research.

4



CHAPTER 2

RELATED WORK

As mentioned previously, representing features extracted from the images with

a distinctive and robust descriptors is one of the essentials for most of the vision sys-

tems. The correspondences between features from different images are found by feature

descriptors. Keypoints which are point-like features are represented with the descriptor

vectors computed from the patch surrounding them.

Keypoints can be represented by floating-point descriptor vectors such as SIFT [19].

It computes the keypoint descriptors based on the histogram of gradients in order to make

the descriptor rotation invariant. With SIFT, keypoint matching is done based on the

Euclidean distance between the descriptor vectors. It performs well in most of the match-

ing tasks and widely used in computer vision applications such as image retrieval [26]

and panoramic image stitching [6]. Although some extensions for SIFT are introduced

[5, 22, 14] for more efficient computation or dimensionality reduction, such type of

floating-point descriptors suffer from their requirement for high processing power and

high amount of memory to store them. However, Chandrasekhar et. al. [8] proposed an

approach that compress the floating-point descriptors [19, 5] to store and transmit them ef-

ficiently. They encode feature descriptors by applying the invertible linear transform since

the descriptor is decompressed by the decoder at run-time. They obtain image matching

and retrieval performance that is close to the conventional floating-point representations

by encoding each feature dimension approximately with 2 bits.

In order to provide efficiently computed and less amount of sized keypoint rep-

resentations, several binary descriptors have been proposed [7, 29, 16, 1, 17] in recent

years. These are efficiently computed by intensity comparisons of two pixels on the patch

centred by the keypoint and the resultant descriptor vector is a simply bit string. This

simplicity and compactness of the binary descriptors make them appropriate for real-time

vision systems especially work on mobile devices which have low amount of memory

and low-performance processors. Visual SLAM applications such as [30] aim at keeping

track of the camera location and updating the 3D map of the scene points simultaneously.

To construct the 3D map of the scene points, keypoint correspondences are established
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between two frames. These correspondences are found by binary descriptors in such ap-

plications.

Unfortunately, binary descriptors cannot reach the matching performance pro-

vided by floating-point ones due to some properties of their nature which is discussed

in Chapter 4 in detail. In order to improve the performance of the binary descriptors,

some approaches are proposed so that patch specific binary descriptors are computed

which provides to represent each keypoint in a more distinctive and robust way. In our

approach, this is provided by computing keypoint spesific score obtained from the bit

variations under different views of the patch surrounding the keypoint.

There are a few existing approaches that using binary feature descriptors by learn-

ing and using keypoint specific representations [4, 12, 15, 27]. Mikolasjczyk et. al. [4]

proposed a keypoint specific matching approach by computing a binary descriptor specif-

ically adapted to a given image patch. They learn a combined set of generic features and a

locally optimized binary mask that picks the best features depending on the image patch.

The details of this approach is given in the Section 3.4.2.

Mittal et. al. [12] proposed selecting a patch specific set of binary features that

are robust to changes in intensity levels as well as small translation and rotations. They

split each patch into two regions by setting a certain intensity level as a threshold. Points

that have intensity level that is bigger than the threshold form a region while others are

included into the other region. To determine binary tests, they select points from differ-

ent regions and points which are far away from the boundary of their own region. For

different intensity level thresholds, they obtain binary tests with the same procedure. To

compute the feature descriptor, they eliminate point pairs which possibly are not invariant

to illumination changes or some spatial degradations such as translations and rotations.

Remaining ones form the feature descriptor of the corresponding patch. They compute

a score between two feature descriptors for matching. This score is obtained by testing

the stability of the each binary test of the query descriptor in the patch of each reference

descriptor by concerning order flips.

Both [4] and [12] greatly improve the matching performance, they both require a

brute-force search in the reference collection, therefore they are not suitable for real-time

operation on large data sets.

Lepetit et. al. [15] proposed a keypoint classification approach by using random-

ized trees. In an off-line training phase, they select robust keypoints for perspective

changes and assign each of it as a class with the set of patches surrounding them un-
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der different viewpoints. They create the set of randomized trees as an classifier so that

each node represents the single binary test. For each keypoint , the node checks whether

the intensity level of the first pixel of the binary test is smaller than the second one or not.

If it is, the keypoint is then assigned to the left child, otherwise to the right child. These

node tests are applied until it reaches a leaf. Each leaf node of the trees stores the number

of patches of each class and also the total number of patches reaches to it as the posterior

probabilities. At runtime, the same node tests with the ones in the training are applied for

each query keypoint in each of the trees. For each class, the probability of reaching leaf

nodes that are hit by the query keypoint is then computed. Finally, the query keypoint is

assigned to the class that gives the highest probability.

Ozuysal et. al. [27] proposed keypoint classification approach by training keypoint

specific classifiers. They select a subset of the keypoints extracted on the reference im-

ages by applying affine deformations to the image in order to determine stable keypoints.

Each selected keypoint is assigned as class. In order to obtain the training set of the each

class, multiple views of the patch centred by the keypoint are generated under different

distortions. They select the binary features randomly from the patch at the beginning of

the training phase. These features are split into the groups which are independent from

each other and statistics for each are computed during training. For the given patch sur-

rounding a keypoint, the same binary features with the ones used for training are selected

on the patch and they are split into the groups by the same way used in training. For each

class, the probability of observing the given keypoint is calculated based on independent

groups of binary features. The keypoint is then assigned to the class that gives the highest

probability.

Both [15] and [27] compute a probability distribution over all reference keypoints

at run-time. Moreover, they require large amounts of memory per keypoint to store the

learned probabilities. As a result, they are not suitable for large keypoint data sets.

The combination of a generic query step to create a short list of candidates fol-

lowed by candidate specific filtering is quite common in the image retrieval literature [10,

18] due to the large size of the image collections. For image retrieval, the filtering in the

second stage depends on the geometric consistency of keypoint correspondences between

the query image and the candidate query results. Our approach has a very similar pipeline

where the geometry check is replaced by a probabilistic observation probability.
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CHAPTER 3

RESEARCH BACKGROUND

3.1. Keypoint as an Image Feature

In most of the computer-vision systems, the first step is extracting the features of

an image. These features should be distinctive and stable in order to make an image iden-

tifiable under distortions such as viewpoint and illumination changes. An image feature

can be a single pixel such as corners or a group of contiguous pixels like edges. Keypoints

are point-like features on an image. A keypoint can be a corner or any other pixel which

has a strong intensity difference with its neighbour points. Keypoints are highly prefer-

able image features for most of the real-time applications since they are fast to extract and

robust to various deformations which is shown in Chapter 4.

3.2. Keypoint Detection

As it is discussed in Section 3.1, keypoints are distinguishing features on an image.

Keypoint detection is the process of extracting the keypoints and its main purpose is to

localize characteristic features of an image under various distortions.

There are several keypoint detection algorithms. Generally, keypoint detectors

determine keypoints based on intensity comparisons. Most of the algorithms have two-

step process. In the first step, all points that satisfy the condition of being a keypoint are

determined. This set of features is then pruned in order to keep keypoints which have

more potential to be robust to deformations and to represent the same scene points on an

image in different views.

In the following, we describe the one of the computationally efficient keypoint

detection algorithms which is called Features from Accelerated Test (FAST) [28].
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3.2.1. FAST Keypoint Detector

Figure 3.1. Keypoint extraction with FAST. For each pixel p in an image, FAST makes
comparison with 16 pixels locate on the circle with a radius of 3, centred
by the point p based on their intensity levels. The intensity level of point
p should be bigger or smaller than the 12 consecutive pixels with a preset
intensity level threshold t on the circle in order to point p become a key-
point candidate. FAST first compares pixels in the compass directions of
the point p which are illustrated with filled coloured pixels. Three of them
should have intensity level that is either smaller or bigger than the point p’s
with a threshold t in order to point p is assigned as a keypoint candidate.

As in the most of the keypoint detectors, FAST initially searches keypoint candi-

dates through all of the pixels in an image. It fits a grid on an image so that each cell of a

grid belongs to an individual pixel. In order to decide whether a point p has potential to

be a keypoint or not, FAST compares it with 16 pixels based on intensities. These pixels

reside on the circle with a radius of 3 centred by the p as it is illustrated in Figure 3.1.

The intensity comparisons are done with preset intensity level threshold t. If the intensity

level of the center pixel Ip is either bigger or smaller than the intensity level of 12 con-

secutive pixels on the circle by the value of t, then p is assigned as keypoint candidate.

For faster implementation, FAST first checks the pixels in the circle reside in the four

compass directions of the point p which are shown with filled color in Figure 3.1. If three

of them does not satisfy the condition based on intensity levels then point p is rejected as

a possible keypoint.
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FAST can assign two or more adjacent pixels as keypoint candidates. Assigning

these successive candidates as keypoints leads to problems in matching between different

views of the scenes on the image. So, in order to select the more distinctive features over

the set of keypoint candidates, non-maxima suppression is applied. For each candidate, a

score is computed. This score is the sum of the absolute difference between the intensity

level of the keypoint candidate and each of contiguous 12 pixels. Candidates which have

an adjacent keypoint candidate with higher score are eliminated. Remaining ones are then

assigned as keypoints.

Beginning the comparison with the pixels of compass directions brings computa-

tional efficiency. Most of the points that cannot be a keypoint are excluded in a fast way

by making comparison only with 4 pixels of 16. On the other hand, there are some re-

jected points whose pixels in compass directions satisfy the condition but one of the other

consecutive pixels on the circle makes the point p be rejected. So, until this pixel on the

circle is taken into account the algorithm makes unnecessary comparisons which leads to

have more execution time. In order to accelerate the speed of the computation, FAST uses

machine learning approaches to obtain the order that 16 pixels on the circle are selected

for comparison.

3.3. Keypoint Description

As it is stated in Section 3.2, keypoint detection is finding distinctive features of

an image that represents the different views of the scenes on the image. After keypoint

detection, keypoints are represented with their locations and some of the detectors also

provides scale and orientation information.

In real-time applications, the location information cannot be enough for deciding

whether two points in different images are belong to the same scene point or not. So,

each keypoint is represented with its descriptor vector that is computed from the patch

surrounding it. In other words, each region around keypoint locations is converted into a

descriptor vector by targeting to make it invariant under various distortions.

Descriptor vector of a keypoint can be computed based on histogram of gradients

as in [19]. For computation, the gradients of each pixel in the patch need to be computed.

Such descriptor computation leads to have high processing time. It also results in con-

suming high level of the memory since each descriptor vector consists of 128 floats. So, it
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cannot be feasible for applications that have real-time constraints and need to store large

number of descriptors.

Binary descriptors are efficient alternatives for floating point ones like [19, 5].

They are more computationally efficient and require less amount of memory to be stored.

Real-time systems such as mobile applications has limited size of memory and low com-

putational power. So, representing keypoints with binary descriptor vectors is advanta-

geous especially for using resources efficiently in real-time vision applications.

In the following, computation of binary descriptor vectors is described and also

several binary descriptors are introduced.

3.3.1. Binary Descriptor Computation

The binary descriptor vector is computed from the patch P with a size of SxS

around the keypoint. The resultant vector is a binary string in which each bit is computed

from the pair of pixels that are selected from the patch P . These pairs are also called

binary tests. In each binary test, intensity level comparison is done. If the intensity of

the first point in the pair is higher than the second one’s then this test gives 1 to the

descriptor vector otherwise it gives 0 as it is illustrated in Figure 3.2. To build a binary

descriptor vector of length N , the same number of pair of pixels are selected in the patch

P . Generally, N is equal to 256 or 512.

There are several binary descriptors which differ from each other in the following

properties [33]:

• Sampling Pattern: The method for selecting points in the patch surrounding the

keypoint.

• Orientation Compensation: The method for estimating orientation of the keypoint.

• Sampling Pairs: The method for determining pairs of pixels from the set of points

obtained by the sampling pattern.

BRIEF [7] is the first binary descriptor that was introduced. It does not have a

sampling pattern and orientation estimation mechanism. It determines binary tests that

are the pairs of pixels in the patch randomly by selecting any of the point in the patch. In

order to reduce the effect of the noise, BRIEF smooths the patches before the computation.
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Figure 3.2. Binary descriptor vector computation with two binary tests in the patch
with a size of SxS centred by the keypoint . For the first one, the intensity
level of the first point I1’ is lower than than the intensity level of the second
point I1”. So, this test gives 0 to the resultant vector. In second binary test,
the first point has higher intensity level than the second one(I2’ > I2”)
which results to give 1 to the descriptor vector.

ORB [29] does not have a sampling pattern like BRIEF but it has an orientation

estimation mechanism. It estimates the orientation of the patch according to local first or-

der moments within the patch and rotate each binary test by the corresponding orientation

in order to be rotation invariant. ORB uses unsupervised learning in order to determine

sampling pairs from the set of sampling points. By running each possible binary test on

all training patches, sampling pairs which have few correlation with the other binary tests

and ones that have high variance with the other tests are selected in order to make the

feature vector discriminative.

BRISK [16] has a sampling pattern which is composed of concentric rings. For

each sampling point, Gaussian smoothing is applied to a patch around it and the size

of the standard deviation increases from inner to outer rings. From the points on the

sampling pattern, BRISK obtains sampling pairs. These sampling pairs are separated

into two groups according to spatial distance between pixels of a sampling pair. Short

pairs which have a distance between pixels that is smaller than a certain spatial distance

threshold are used for building the descriptor vector. Long pairs which have a distance

between pixels that is higher than a threshold are used for orientation estimation. In order

to estimate the orientation of the patch BRISK uses local gradients between the long

sampling pairs.

FREAK [1] has a circular sampling pattern like BRISK, but unlike it, the density
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of points in inner rings is higher than the outer ones. As in BRISK, each sampling point

is smoothed with a Gaussian kernel with a size which increases from the points in inner

rings to ones in outer rings. In order to determine the sampling pairs over sampling points,

FREAK applies the same approach with ORB which uses unsupervised learning to obtain

sampling pairs which have few correlation and high variance among them. In order to

estimate the orientation of the patch, FREAK uses the same approach with the BRISK

but instead of using all sampling pairs which have large distance between corresponding

pixels, it uses 45 symmetric sampling pairs.

The simple representation for the sampling patterns of the binary descriptors ex-

plained in the above is illustrated in Figure 3.3.

Figure 3.3. Simple representation for the sampling patterns of binary descriptors.
BRIEF and ORB have no any sampling pattern so that each point(black
points) on the patch surrounding the keypoint can be used to obtain binary
tests. BRISK and FREAK have similar sampling pattern which is com-
posed out of concentric rings around the keypoint. The difference is that
unlike to BRISK( uses red and green points to obtain binary tests), FREAK
gets more samples(blue and green points) from the rings near the keypoint
than the samples on outer rings.
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LATCH [17] has a different mechanism than the descriptors which are explained

in the above. Instead of comparing sampling pairs which are composed of pixel pairs,

LATCH selects patch triplets with a small size and make comparisons on these. For each

triplet, the sum-of-squared differences are computed from the one of the patches to each

of other two patches and based on these two distances the output bit value is determined.

In order to select an optimal set of triplets, supervised learning is used unlike to ORB.

3.4. Keypoint Matching with Binary Descriptors

Figure 3.4. Hamming distance computation for two binary strings with a length of 5 bits.

Keypoint matching is the acquisition of correspondences between the images. Its

aim is correctly match the keypoints which are belong to the same scene point in dif-

ferent images. In real-time applications, keypoints are represented with their descriptor

vectors and these are generally binary vectors as it is discussed in Section 3.3. So, binary

descriptors are widely used for keypoint matching.

The image that is given to the system for identification or matching is called query

image and its descriptors are named as query descriptors. The set of descriptors in which

the match of each query descriptor is searched is called reference descriptors which are

computed from the reference images which do not have any deformation.

Binary descriptor vectors are bit-streams with a length of 256 or 512 in general.

Finding the match for the query descriptor over reference descriptors is done based on

the distance between binary descriptor vectors. The metric that is used to measure this

distance is called Hamming distance. It is computed in a computationally efficient way.
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Figure 3.5. Keypoint matching with 256-bit length binary descriptors. For the query
descriptor, the Hamming distance H is computed with each of the refer-
ence descriptors. Then the query descriptor is matched with the reference
descriptor that gives the smallest Hamming distance( H = 59 in the fig-
ure).

Firstly, exclusive or (XOR) of the two binary strings is taken and the number of 1s in

the final bit-stream gives the Hamming distance as it is illustrated in Figure 3.4 for 5-bit

length binary strings. The reference descriptor that gives the smallest Hamming distance

is assigned as match to the query descriptor as it is shown in Figure 3.5.

Searching the match for the query descriptor over the reference descriptor set by

computing the distance with each reference descriptor like in Figure 3.5 is not feasible for

some vision applications. This brute-force search approach cannot be applicable for the

vision tasks that have large reference image collection. So, approximate nearest neighbour

methods are used to find the match of the query descriptor and this approximate solution

is often enough and can be found in an efficient way .
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3.4.1. Keypoint Matching with Approximate Nearest Neighbour

Algorithms

In some vision systems, the set of reference descriptors is large and computing

the distance from the query keypoint to each reference keypoint is not practical. For such

cases, the approximate nearest neighbour(ANN) techniques are used in order to limit the

exact nearest neighbour search to the subset of reference descriptors.

3.4.1.1. Locality Sensitive Hashing

Figure 3.6. Example for LSH algorithm with hash key with a length of 4. Here, hash
functions are hyperplanes that separates the n dimensional space into two
and either 0 or 1 is assigned as corresponding hash value. The n dimen-
sional data is projected into the 4-bit vector and mapped to the correspond-
ing bucket in a hash table. For each of the N hash tables, data is given
to the such set of hash functions and hash key is computed. Then, it is
mapped to the one of the buckets of the corresponding table according to
computed hash key.

Locality Sensitive Hashing(LSH) [3] is one of the ANN algorithms that is project

the data into low dimensional binary space. Each data point is mapped to a k-bit vector

which is called as hash key. LSH algorithm uses N hash tables in which each table is

represented with a different set of hash functions S. Each S is obtained by concatenating
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Figure 3.7. The query data q is given to the each hash function S specific for each
hash table. Then, the exact nearest neighbour search is done only with
data which are in the same bucket with hashed q in each hash table.

k hash functions. The output of each hash function is a single bit so that after data is

given to each hash function, it is mapped to the one of the buckets in the hash table as it

is illustrated in Figure 3.6.

Given a query data, LSH iterates over theN hash tables. For each hash table, it re-

trieves the data that are hashed into the same bucket as query and exact nearest neighbour

search is only done for these data as it is shown in Figure 3.7.

3.4.2. Keypoint Matching with Keypoint Specific Representations

As it is stated in Chapter 2, there are a few keypoint specific representations that

use binary feature descriptors for keypoint matching. Mikolasjczyk et.al. [4] proposed

such approach which computes a binary descriptor specifically adapted to a given patch.

In an offline phase, they obtain all possible binary tests (point pairs) on the patches

which are obtained from the training patch dataset in order to select most discriminative

ones. They construct a matrix that each row represents an individual patch and each

column belongs to the feature computed from corresponding binary test. In order to

select uncorrelated features which are binary tests with high variance, they sort columns

of matrix according to occurrence of 1s since this value is directly proportional to variance

and assign top 512 binary tests as combined set of generic features.

At run-time, patch around each keypoint is represented with the set of binary tests
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learned in an offline phase and locally optimized binary mask to determine the best fea-

tures depending on the patch. To calculate the binary mask, they apply affine transforma-

tions to all selected binary tests on corresponding patch. If the given feature by the binary

test remains the same after these transformations then its value on the mask is assigned as

1 otherwise it is assigned as 0. They claim that a few affine transformations are enough

to determine whether a binary test is stable or not. With binary mask, only robust binary

tests which are specific to each keypoint are taken into account to obtain the final symmet-

ric Hamming distance between the query descriptor and each of the reference descriptors.

The matching of two keypoints with their descriptors is done by the symmetric Hamming

distance which is computed as follows:

H (Q,Ri) =
1

Nq

mq ∧ gq ⊕ gr +
1

Nr

mr ∧ gq ⊕ gr , (3.1)

where Q is the query descriptor and Ri is the descriptor for the reference keypoint i.

mq and mr are binary masks corresponding to the query and the reference descriptor

respectively. Nq and Nr are the number of 1’s in mq and mr respectively. gq and gr

are binary descriptors of the query and the reference keypoint respectively which are

computed from binary tests learned in an offline phase.
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CHAPTER 4

KEYPOINT AND BINARY DESCRIPTOR STABILITY

4.1. Introduction

Keypoints are distinctive features on the image. They have potential to represent

the same scene points in different images. Keypoint detection is the process of extracting

keypoints and it aims to localize distinctive features that belong to the image also under

various perspective changes or different environmental conditions. The main criterion for

evaluating quality of a keypoint detector is called repeatability, which is the ability of a

detector to locate keypoints of the same scene point in different images. Environment

conditions and camera positions in which repeatability is under acceptable values lead to

an insufficient number of detected keypoints. This results failure in object detection and

tracking.

Keypoint matching is finding keypoints that belong to the same scene point on

an image pair. If the geometrical relation between two images is known then keypoint

locations can be directly used for matching. In real applications, transformation details

between images is unknown. In such cases, matching can be achieved by comparing de-

scriptor vectors of keypoints computed from the patch surrounding them. Generally, these

descriptors are binary in real-time applications. Two keypoints are matched if and only if

the distance between their descriptors are small. The binary descriptors are particularly

sensitive to larger changes in viewpoint and scale. Variations on binary descriptors under

perspective transformations makes highly accurate keypoint matching difficult.

In this chapter, we measure repeatability of the keypoint detector for geometric de-

formations and also we quantify variations of binary descriptors under these deformations

separably for each keypoint.
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4.2. Approach

In contrast to 3D object space, any image pair of the planar surface has a simple

geometrical relation itself and this relation can be modelled by a homography matrix.

Scenes on an image can be sampled from different viewpoints by computing various ho-

mographies and applying these to a reference image of the surface.

Stability of keypoints is evaluated by their detectability in different views of the

scenes on the image. For this evaluation, we measure the repeatability which is the num-

ber of extractable keypoints in an another view of the scene on the image. In order to

Figure 4.1. Repeatability decision for the keypoints. Each keypoint on the refer-
ence image is warped to different viewpoint image by the corresponding
ground-truth transformation matrix. If Euclidean distance between loca-
tions of the transformed keypoint and any of the keypoints on the sampled
image is smaller than the 2 pixels then the reference keypoint is accepted
as repeatable on the different viewpoint image.

decide whether a keypoint repeats or not, each keypoint in the reference image is trans-

formed to images sampled from different viewpoints by using the ground truth transfor-

mation matrices. Euclidean distance is then computed between each reference keypoint

ki and all keypoints on the different viewpoint image according to their locations. If any

of the distances is smaller than 2 pixels then it is accepted that keypoint ki repeats on the
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sampled image as it is illustrated in Figure 4.1. Distance of 2 pixels can be used by many

object detection and image matching methods. Smaller distance thresholds are more re-

strictive and bigger ones can not be enough for accurate detection of object location.

We compute the repeatability for each different viewpoint image by formula given

in the below:

Ri = %
Ni

Ns

(4.1)

where Ri is the repeatability value of ith sampled image from different viewpoint, Ni is

the number of the keypoints that repeats in the ith sampled image and Ns is the number

of keypoints that are detected in the source image.

In order to obtain scenes on the image from different viewpoints, we generate

synthetic images by using affine deformation model proposed by [24] which computes

affine homographies by sampling different camera position parameters as illustrated in

Figure 4.2:

• Scale (λ in [24]) is the zoom parameter,

• In-plane rotation angle (ψ in [24]) represents rotation around an axis that is perpen-

dicular to the object plane,

• Tilt amount (θ in [24]) is the angle between the normal of the image plane and the

optical axis of the camera ,

• Tilt angle (φ in [24]) is the angle in which tilt is applied.

The affine deformation(homography) matrix A can be obtained by using deformation

parameters introduced above by the following equation:

A = λ

[
cosψ sinψ

−sinψ cosψ

][
t 0

0 1

][
cosφ sinφ

−sinφ cosφ

]
(4.2)

where t refers to tilt and represents the deformation degree of the image that is calculated

as follows:

t = 1/cos(θ) (4.3)

For each synthetic image, size is computed separately in order to transform each

pixel of the source image to the deformed image correctly otherwise some pixels will fall

outside of the synthetic image. Size of the synthetically generated image equals to the
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Figure 4.2. Affine deformation parameters sampled in the experiments. Each parame-
ter corresponds to a particular motion of the camera with respect to object
plane.

size of the smallest rectangle that encapsulates points which are obtained after corners of

the source image are warped with transformation matrix into the deformed image.

Transformation matrix T is then calculated by multiplying A with rotation and in-

verse rotation matrices in order to transform each point on the image correctly as follows:

T =


0 0 dw+1

2

0 0 dh+1
2

0 0 1

A

0 0 −sw

2

0 0 −sh
2

0 0 1

 (4.4)

where dw and dh represents width and height of the deformed image respectively and in

order of sw and sh represents width and height of the source image.

In order to transform keypoint p to the deformed images, coordinates of the p are

multiplied by the transformation matrix T . Since the size of T is 3x3, 2D location of
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keypoints is represented by homogeneous coordinates as a 3D vector in order to make it

appropriate for matrix multiplication as follows:

p = (x, y) −→ p = (x1, y1, z1) (4.5)

where x = x1/z1 and y = y1/z1.

Let;

T =


m0 m1 m2

m3 m4 m5

m6 m7 m8

 and p = (x, y, 1)

The location of the transformed keypoint p′ is then computed with the following

formula:

p′ = Tp (4.6)

where p′= (x′, y′, z′) is a 3D vector and its location on the projective plane is p′ =

( x′/z′, y′/z′). The x′, y′, and z′ are computed separately as follows:

x′ = x ∗m0 + y ∗m1 +m2

y′ = x ∗m3 + y ∗m4 +m5

z′ = x ∗m6 + y ∗m7 +m8

(4.7)

Some of the keypoint detectors also estimate orientation for the keypoints. For

such keypoints, the orientation angle should be calculated after the transformation to the

deformed image .

Let θ is the orientation angle of the p. The orientation angle θ′ of the p′ is then

calculated as follows:

a = (x+ cos(θ)) ∗m0 + (y + sin(θ)) ∗m1 +m2

b = (x+ cos(θ)) ∗m3 + (y + sin(θ)) ∗m4 +m5

c = (x+ cos(θ)) ∗m6 + (y + sin(θ)) ∗m7 +m8

θ′ = arctan(
( b
c
− y)

(a
c
− x)

)

(4.8)

As it is stated in the introduction, the binary descriptor for the keypoint is com-

puted from the patch surrounding it. Changes in texture of the patch lead to variations in

binary descriptors. Each keypoint has an unique texture around it. So, the deformation on

the image affects the texture of each keypoint differently. In order to observe these varia-

tions, we compute the binary descriptor for each keypoint ki and its each transformation

to synthetic images as illustrated in Figure 4.3.
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Figure 4.3. Each reference keypoint is warped to the synthetic images by ground-truth
transformation matrices. The binary descriptor vector for the patch that is
centred by the warped keypoint is then computed in each deformed image.

4.3. Experiments

To observe the keypoint stability, we measure the repeatability of the keypoint

detector under various affine deformations. For testing binary descriptor stability, we

compute the Hamming distance(introduced in Chapter 3) between descriptor of the each

reference keypoint and descriptors of its deformations. We also observe bit variations for

descriptor of the each reference keypoint per affine deformation.

4.3.1. Setup

Since only a single reference image is enough for obtaining different views of the

planar scenes by using affine deformation model, we work with the first image of the

Graffiti sequence from Oxford data sets by assuming that whole scenes are planar as in

the study of [22, 23]. We convert it to grayscale which has size of 800x640. The detailed

information about Oxford data sets is given in Section 5.3.1.

For synthetic image generation, three deformation parameters of four introduced

in Section 4.2 are sampled which are the scale, in-plane rotation and tilt amount:

24



• Scale(λ) changes between 0.5 and 1.5 with steps of 0.1 ,

• In-plane rotation angle(ψ) changes between 0 and 359 degrees with steps of 5 de-

grees,

• Tilt amount(θ) changes between 0 and 80 degrees with steps of 5 degrees.

This sampling range is enough for generating different views of scenes that are

close to the real so we do not need to sample tilt amount and also not need to sample other

parameters more frequently. We use warpPerspective() method of the OpenCV library to

generate synthetic images with randomly sampled deformation parameters in the interval

given above. Three of the images which are synthetically generated from the reference

Graffiti image by sampling different deformation parameters are shown in Figure 4.4.

(a) ψ = 90◦ (b) θ = 60◦ (c) λ = 0.5

Figure 4.4. Three of the synthetic images generated from the reference Graffiti image.
(a) is obtained by in-plane rotation of 90 degrees and its size is 640x800.
(b) is generated by sampling tilt amount as 60 degrees and has a size of
400x640. (c) is sampled by half scaling of the reference image and has a
half size of it.

As a keypoint detector, we use FAST since it is computationally efficient (Chapter

3). We detect approximately 1000 keypoints on each image. We compute BRIEF descrip-
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tor of keypoints which performs well for matching together with FAST [7]. The OpenCV

implementation is used for both FAST and BRIEF.

For quantifying descriptor variations under deformations, we compute the Ham-

ming distance between descriptor of each reference keypoint and descriptors that are com-

puted after it is transformed to each deformed image. The Hamming distance for the

descriptor of each transformed keypoint gives the total number of unstable bits under the

corresponding deformation. Moreover, in order to analyse variations in each bit of the ref-

erence descriptors under deformations, we create the binary matrix Mb for each reference

keypoint. Each row rM of matrix Mb represents a single descriptor bit individually and

each column cM belongs to one of the deformations in in-plane rotation angle. As column

indexes increase from left-to-right in matrix Mb, in-plane rotation angle is incremented

and ends up with 359 degrees. If the bit value changes under the corresponding deforma-

tion then we set entry (rM ,cM ) to 1, otherwise we set it 0. The number of 1s in a single

column gives the Hamming distance to the in-plane rotation with degrees of the column

index. For each bit, the number of 1s in the corresponding row shows the number of

deformations that its value changes. Highly variant bits under deformations per keypoint

can be found by calculating the fraction of 1s in row rM and then sort the rows according

to this measure like in the study of [4] which aims at to find discriminative binary tests

. Each matrix Mb has 256 rows and 360 columns which is illustrated in Figure 4.5. For

these experiments, in-plane rotation angle changes between 0 and 359 degrees with steps

of 1 degree and we generate synthetic image for each sampled parameter.

4.3.2. Results

We show repeatability results of FAST keypoints for deformation parameters that

we randomly sampled. We give results for in-plane rotation, scale and tilt amount in

Figure 4.6, Figure 4.7 and Figure 4.8 respectively.

Repeatability through the in-plane rotation deformations is always greater than

70 percent which is shown in Figure 4.6. For each 90 degrees period, it shows simi-

lar behaviour. As mentioned in Chapter 3, FAST fits a grid on an image and compares

each keypoint candidate with 16 pixels in its surrounding circle based on their intensities.

Since the grid fits as the same as on the reference image in 90, 180, and 270 degrees, all

reference keypoints repeat in such deformations which results in 100% repeatability.
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Figure 4.5. Visualization of binary matrix with height of 256 and width of 360 entries
for one of the reference keypoints. Each row belongs to a single bit and
columns represent in-plane rotation angle deformations for incrementing
order in the interval of [0-359] degrees. Black entries represent stable bits
and white ones belong to variant bits under corresponding deformation.

For scale variations depicted in Figure 4.7, repeatability decreases while amount

of change in scale increases and it is always above about 40 percent. The repeatability

shows very similar behaviour while scale becomes farther away from the reference in

both ways. It can be seen that approximately half of the keypoints are repeated even the

scale halved or be one-half. This shows that FAST is robust to variations in scale and has

acceptable repeatability rates for different scales.

The repeatability is above 40 percent until the tilt amount is 60 degrees. It is

inversely proportional with tilt amount and is very low from 60 degrees which is shown

in Figure 4.8. It can be stated that FAST is less robust to changes in tilt amount than

the in-plane rotation. However, if the variation in tilt amount is not too much, sufficient

number of potential matches can be provided between different views of the scenes on the

image.

We show the Hamming distance distribution of two reference keypoints ki and kj
in Figure 4.9 under the same affine deformations only include in-plane rotation angle de-

formations between 0 and 359 degrees. It can be seen that for in-plane rotation around 180

degrees, keypoints ki and kj show different behaviours. For one of them, Hamming dis-

tances increase under such deformations while the other has just the opposite behaviour.
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Figure 4.6. Repeatability of FAST keypoints for in-plane rotation angle variations.

Variations in first 10 bits of descriptors belong to keypoints ki and kj are shown

by Figure 4.10 with their Hamming distance distributions. Although they have a similar

Hamming distance distribution, changes in first 10 bits under the same deformations are

quite different from each other.

4.4. Discussion

Despite the lack of orientation estimation and detection at multi-scales, the re-

peatability of FAST is acceptable under various affine deformations. More advanced key-

point detection methods such as AGAST [20] which estimates orientation of keypoints

may have better repeatability results under the same deformations especially for in-plane

rotations.

Although the same ground-truth transformation is applied, texture on the patch of

each keypoint is affected differently since it is unique for each. This particularly leads to

changes in the binary descriptor vector specifically to each keypoint which is computed

from the corresponding patch. So, the number of unstable bits which is quantized by

Hamming distance might be different under the same deformation for the keypoints as it

is shown in Figure 4.9.
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Figure 4.7. Repeatability of FAST keypoints for scale variations.

As it is stated in Chapter 3, binary tests which are the pair of pixels on the patch

centred by the keypoint are used for binary descriptor computation by intensity compar-

isons on each test. Different tests are affected under the same deformation which leads to

changes in different bits of the descriptor for each keypoint. Although more than one ref-

erence keypoints have similar Hamming distances to their own transformations, unstable

bits of each are different which is also shown in Figure 4.10.

Due to variations in descriptors introduced in this chapter, the distance between

descriptor vectors cannot always be sufficient to match keypoints correctly. Keypoints

that belong to the same scene point in different images may have larger distance between

themselves. Moreover, more than one keypoints may have the smallest distance to the

single keypoint. These cases lead to incorrect matches between different views of the

scenes on the image. In Chapter 5, we propose an approach by supplementing the distance

information with a secondary and more distinctive score to obtain more correct matches.

4.5. Conclusion

Keypoint detection and matching are two fundamentals of the most computer vi-

sion applications. Generally, keypoint detectors have acceptable repeatability rates under
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Figure 4.8. Repeatability of FAST keypoints for tilt amount variations.

the affine deformations. This shows that sufficient number of potential matches exists

between keypoints of the same scene point in different images.

As discussed in the introduction, matching between keypoints is performed based

on the distance between their binary descriptor vectors in real-time vision applications.

Matching with binary descriptors has some difficulties due to their discrete nature. Larger

changes in viewpoint and scale causes changes in descriptor bits. These variations are

specific to each keypoint. This keypoint-based properties might be beneficial for keypoint

matching besides the distance information.

30



Figure 4.9. Hamming distance distributions of the two reference keypoints on Graffiti
image along deformations by in-plane rotation angle variations. Texture
around each keypoint is shown in the above of the corresponding Ham-
ming distance distribution. Each reference keypoint ki is transformed to
synthetically generated images. BRIEF descriptors are computed for key-
point ki and its transformations in deformed images. Hamming distance is
then computed between descriptor of keypoint ki and its each transforma-
tion. Around 180 degrees, they show quite different behaviours.
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Figure 4.10. Variations in first 10 bits of two reference descriptors of keypoints on Graf-
fiti image which show similar Hamming distance distributions along in-
plane rotation angle deformations. First 10 rows of corresponding binary
matrices(introduced in 4.3.1) are zoomed for visualization. Although they
have very similar Hamming distance distribution, unstable descriptor bits
are very different from each other under the same deformations.
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CHAPTER 5

BINARY DESCRIPTOR MATCHING BEYOND THE

NEAREST NEIGHBOUR

5.1. Introduction

Figure 5.1. Keypoint matching with binary descriptors based on Hamming distance.
For the descriptor of each query keypoint, the nearest neighbour is searched
over the descriptors of reference keypoints according to Hamming dis-
tance. The reference keypoint that gives the smallest distance which is
shown by dashed line is then assigned as match for the query keypoint.
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Keypoint matching is establishing correspondences between the points in vari-

ously deformed images. Its aim is finding keypoints that belong to the same scene point

on an image pair. Matching can be done based on keypoint locations if the geometrical

relation between images is known. Since such relation cannot be obtained in real-time

computer vision based systems, descriptors are used for keypoint matching. Matches are

found according to distance between descriptor vectors of keypoints.

The binary descriptors (such as [7, 29, 16, 1, 32, 31, 17]) are extensively used

in real-time applications for image matching and identification. Keypoint matching with

binary descriptors is done by finding the reference descriptor that gives the smallest Ham-

ming distance to the query descriptor. In other words, it is finding the nearest neighbour

of the query descriptor over reference descriptors based on the Hamming distance as it

is shown in Figure 5.1. As stated in Chapter 3, binary descriptors are fast to compute

and the distance between two descriptors can be calculated in a few machine instructions.

Given a query descriptor, the latter property greatly speeds up the search for the nearest

neighbour within a set of reference descriptors.

Unfortunately, the binary descriptors are particularly sensitive to larger changes

in viewpoint and scale. This is mainly due to their discrete nature. These variations are

specific to each keypoint and the distance between descriptor vectors cannot always give

correct matches as it is discussed in Chapter 4. For large binary descriptor data sets,

more than one reference descriptors may be the nearest neighbour of the single query

descriptor. Moreover, the distance for the correct match of the query descriptor might be

a less more than the distance given by the nearest neighbour. However, it is relatively

easy to create a list of the closest K near neighbours by ranking the matches according to

their descriptor distances. This list is more likely to contain the correct match compared

to the set that includes only the nearest neighbour as it is shown in Figure 1.1. Of course,

the matches beyond the nearest neighbor are only reachable if we have a way of correctly

reordering the match hypotheses to bring the correct one to the top. Therefore, we need

to supplement the Hamming distance with a secondary and more distinctive match score

to take advantage of these.

In designing this secondary match score, we make the following observations:

Most binary descriptors, even the ones that optimize their representation, compute the

same features for every keypoint. As shown recently by [4], while computationally

appealing, this generic nature of the descriptors results in a weakness in discriminative

power since the stability and the descriptiveness of features vary depending on the tex-
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ture around a given keypoint. Globally optimizing the features for all keypoints is not as

effective as picking unique features for each individual keypoint.

In this chapter, we propose a two step approach to keypoint matching with binary

descriptors. In the first step, for each query keypoint, we identify the list of the top K near

neighbours according to the Hamming distance. In the second step, we rank these near

neighbours according to a probabilistic and keypoint specific match quality score.

5.2. Approach

The usual approach for matching keypoints involves finding a single match hy-

pothesis by locating the nearest neighbor in the descriptor space. Instead of this one-shot

approach, we first locate possible match candidates that are near neighbors to the query in

the descriptor space. We then evaluate each match candidate based on detailed statistics

of the texture around the specific candidate keypoint. Figure 5.2 gives an overview of the

proposed approach.

We learn the statistical model for each keypoint in an offline training stage by

simulating affine deformations and observing the change in the descriptor bits. In the

following, we describe the way the descriptor statistics are collected during training and

how to score the multiple match hypotheses based on this data.

5.2.1. Modelling Descriptor Variations

Despite the robust nature of binary descriptors, the descriptor bits are not fully

invariant to changes in perspective and lighting. As viewpoint and illumination changes,

the affected bits depends on the texture around each keypoint. For a particular descriptor

bit, if there is a strong gradient near one of the pixels that are part of the computation of

the bit’s value, then that bit is more likely to flip as it is shown in Figure 5.3.

Due to the complex nature of these interactions, variations in the descriptor value

are more easily captured by a probabilistic conditional model such as

P (D | C = ki) = P (d1, d2, . . . , dS | C = ki) , (5.1)

where D and C are two random variables corresponding to the descriptor value and the

keypoint identity. C = ki means that the distribution is computed for keypoint i, dj is a
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q q

(a) Generic features (b) Patch Specific Features

q q

(c) Proposed Approach

Figure 5.2. (a) Given a query descriptor q, if the descriptor uses the same features
for each patch then it is possible to use an approximate nearest neighbour
approach to limit distance computation only to a subset of the reference
descriptors (dashed circle). (b) Some approaches learn and employ a patch
specific representation that is more distinctive and robust. (c) We propose
a two step approach that combines the advantages of both by limiting the
patch specific scoring to the list of K near neighbors.

binary random variable representing the j th descriptor bit, and S is the descriptor size in

bits.

This representation requires 2S parameters per keypoint and since S is usually

larger than or equal to 64, directly modelling the joint probability of the descriptor bits is

not feasible. Following the representation proposed by [27], we split the descriptor into

N groups of M bits such that S =M ×N and assume independence between these:

P (D | C = ki) =
N∏
j=1

P (Dj | C = ki) , (5.2)

where Dj represents the values of the bits in group j. This representation has N × 2M pa-
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Figure 5.3. Two binary tests on the patches centred by the reference keypoint and its
transformation under in-plane rotation of 90 degrees. Due to variations in
texture on the pixels that belong to binary tests, the bit value given by one
of the tests changes while the other remains stable.

rameters. We use two settings with M = 4 and M = 8. For 256 dimensional descriptors,

these yield N = 64 and N = 32, requiring 1024 and 8192 parameters respectively.

The Naive Bayes modelling of keypoint appearance is not a novelty of our ap-

proach, but of [27]. Ours is the first to exploit it in a scalable way. To the best of our

knowledge, there is no general theory that explains the efficiency of Naive Bayes, only

empirical evidence. We note that, for classification problems, the exact modelling of

probabilities is not required but only their ranks matter. As observed in [27], for keypoint

recognition, Naive Bayes seems to outperform alternatives such as model averaging given

enough training data and some regularization.

The descriptor bits can be assigned to groups in many ways. The simplest pos-

sibility is to form the bit groups by assigning the consecutive descriptor bits to the same

group. For descriptors like BRIEF [7] that exploit randomness in bit selection, this is

a natural choice as there is no reason to favor one grouping scheme over another. For

descriptors like BRISK [16] with more structured features, an optimization over possible

groupings might be beneficial. In practice, we found that the consecutive grouping works

well for all descriptors and we use it in the rest of the experiments. Figure 5.4 shows bit

grouping for M = 4 and N = 64.

For each keypoint, we generate synthetic training samples using the affine defor-

mation model (explained in detail in Section 4.2) in order to observe bit variations. We

sampled all parameters of the model as follows:

• Scale varies between 1√
2

and
√
2.

• In-plane rotation angle varies between −30 and +30 degrees.
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Figure 5.4. Splitting 256 dimensional descriptor into 64 groups of 4 bits. Each con-
secutive 4 bits form a group. Bit groups are independent from each other
which results in 1024 parameters require per keypoint.

• Tilt amount varies between 0 and 60 degrees.

• Tilt angle varies between 0 and 180 degrees.

We generate roughly 200000 synthetic training images, yielding the same number

of training descriptors for each keypoint. For each bit group, the observation probabilities

of Equation 5.2 are inferred from the training set by counting the number of times training

descriptors assume a particular value. For example, for bit groups of size 4, we have 16

possible outcomes for each group. We just count the number of times each outcome is

observed within the training set and normalize by the total number of training samples

as it is illustrated in Figure 5.5. To counter the adverse effect of zeros in the estimated

probabilities, we start counting from one as suggested by [27], which is equivalent to

Laplace smoothing with the smoothing parameter set to 1.

5.2.2. Keypoint Specific Scoring of Match Hypotheses

For each keypoint to be matched, we first obtain the list of K near neighbors based

on the Hamming distance to the query descriptor. This short list of K descriptors is then

sorted according to a score specific to the particular candidate keypoint each near neighbor

represents.

We have experimented with various functions to score each hypothesis by com-

bining the descriptor statistics and the original Hamming distance in several different

ways. The best results have been obtained when the score is the negative Hamming dis-

tance between the query and reference descriptor plus the logarithm of the probability of
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Figure 5.5. Obtaining observation probabilities for each reference keypoint ki in train-
ing phase. 256 dimensional descriptors are split into groups of 4 bits which
results in 64 different groups per keypoint ki. For each bit group of key-
point ki, there are 16 possible outcomes. The number of occurrence is
counted for each possible outcome during offline training. Finally, each of
them is normalized by the number of training samples to get observation
probabilities.

observing the query descriptor according to Equation 5.2:

score(Q, ki) = −
∣∣Q−Di

∣∣
H
+ log

N∏
j=1

P (Qj | C = ki) , (5.3)

where Q is the query descriptor, Di is the descriptor for the reference keypoint i, and

|X − Y |H is the Hamming distance between X and Y .

39



5.3. Experiments

To test the ability of our approach in recovering the correct matches from the near

neighbour list, we have performed five sets of experiments. The first one is to measure

the effect of the near neighbour list length K on the recognition performance. The sec-

ond one measures the recognition rate performance with different weighted components

of keypoint specific and probabilistic score(Equation 5.3). The third one measures the

recognition rate over ground truth correspondences. The fourth one measures the inlier

ratio as a function of the number of keypoints matched in the test images. The final exper-

iment measures the recognition rate when there are a large number of reference images

and an approximate nearest neighbour algorithm is used to compute the near neighbour

list.

Figure 5.6. Reference images in the Oxford dataset.
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5.3.1. Setup

(a) Graffiti (b) Graffiti-2 (c) Graffiti-3

(d) Graffiti-4 (e) Graffiti-5 (f) Graffiti-6

Figure 5.7. Graffiti image sequence in the Oxford dataset. (a) is the reference image
and the others are test images. The geometrical relation between the refer-
ence image and test images are known. From (b) to (f), the deformation on
the reference image increases.

In all experiments we worked with Oxford datasets by converting images to gray

scale. Oxford dataset has 8 different image sequences and the reference image of each

sequence is shown in Figure 5.6. Each image sequence contains the reference image

and five test images. Ground-truth homography is also provided between the reference

image and each test image. Test images are labelled from 2 to 6. As the identifier of the

test image increments, the level of the deformation also increases as it is shown for the

Graffiti sequence in Figure 5.7.
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5.3.1.1. Effect of the Near Neighbour List Length

To demonstrate the effect of the near neighbor list length K on the recognition

performance, we perform an experiment on the Graffiti and Wall sequences of the Oxford

datasets. We detect approximately 1000 keypoints on the reference image of the sequence

and transform their coordinates to the rest of the images using the provided ground truth

homography. We compute BRIEF descriptors around the reference and the test keypoints.

For each test descriptor, we compute the K near neighbors using Hamming distance and

then pick the best match according to Equation 5.3. We then measure and report the

recognition rate as the percentage of test keypoints that are matched to the correct refer-

ence keypoints for various K values with bit groups size M set to 8.

5.3.1.2. Effect of the Weighted Keypoint Specific Scoring

As it is explained in Section 5.2.2, our keypoint specific and probabilistic score(see

Equation 5.3) is composed of two components. In order to observe the effect of the dif-

ferent weights of these components in score computation, we perform recognition rate

experiments on Graffiti and Wall image sequences for different weights with BRIEF cor-

respondences by using top 10 near neighbours with 8 bit grouping. The weighted score is

shown by the following equation:

score(Q, ki) = (1− α) ∗ (−
∣∣Q−Di

∣∣
H
) + α ∗ (log

N∏
j=1

P (Qj | C = ki)) , (5.4)

where α represents the weight, Q is the query descriptor, Di is the descriptor for the

reference keypoint i, and |X − Y |H is the Hamming distance between X and Y .

5.3.1.3. Recognition Rate over Ground Truth Correspondences

We measure the recognition rate over ground truth correspondences for four image

sequences which are Boat, Bikes, Graffiti, and Wall. We preferred these sequences since

different type of deformations are applied for each as follows:

• For the Bikes sequence, test images are blurred.
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• In-plane rotation angle and scale varies for the test images of the Boat sequence.

• In-plane rotation angle, scale and tilt parameters are sampled for the test images of

Graffiti sequence.

• For the Wall sequence, only tilt parameter is sampled for the test images.

We perform recognition rate experiments for five different binary descriptors which

are BRIEF [7], BRISK [16], FREAK [1], LATCH [17], and ORB [29]. BRIEF, ORB,

and LATCH are 256 dimensional descriptors, while others are 512-bit long. We set near

neighbour list length K ∈ {5, 10, 20} but we concentrate on the results with the K = 10

according to result of the previous experiment which is shown in Section 5.3.2 and we

used three values for the bit group size (M ∈ {4, 6, 8}). We obtain correspondences by

the same procedure that we apply for measuring the effect of the near neighbour list length

in Section 5.3.1.1.

5.3.1.4. Improving the Inlier Ratio Characteristics

The previous experiments only measure the classification performance of the key-

point matching over ground truth correspondences. As a more realistic test, we detect

keypoints in the test images and we match each one to the reference keypoints to yield a

list of potential correspondences. To obtain correspondences from test image to reference

image, we take the inverse of the ground truth homography and transform each keypoint

in the test image to the reference image by inverse homography as it is illustrated in Fig-

ure 5.8. For each transformed test keypoint, the Euclidean distance is then computed with

all reference keypoints. The reference keypoint is assigned as potential match of the test

keypoint if its distance is the smallest and less than 2 pixels. For some test keypoints,

any of the reference keypoints might not be potential match. After we determine poten-

tial correspondences, we rank them by their negative descriptor distance and measure the

ratio of the correct matches.

This inlier ratio changes as more correspondences are included from the ranked

list. Since some test keypoints have no potential match in the reference image, they can

never be correctly matched. Ideally, these should have the largest descriptor distances and

end up at the bottom of this list.

43



Figure 5.8. Obtaining correspondences from test image to reference image. We warp
keypoints on the test image to the reference image by taking the inverse
of the ground-truth homography. For each transformed test keypoint, the
Euclidean distance is computed with all keypoints on the reference image.
The reference keypoint which gives the distance that is the smallest and
less than 2 pixels is is assigned as potential match.

The inlier ratio curve obtained as above is what matters for algorithms such as

PROSAC[9] that estimates a geometric model for 3D registration or augmented reality

applications. To show the benefits of our approach, we perform three sets of measure-

ments. First, as a baseline, we rank the nearest neighbor matches using the descriptor

Hamming distance and record the inlier ratios. Then we measure the inlier ratios using

only the nearest neighbour match but rank the matches according to the keypoint specific

score obtained from the Equation 5.3. This shows the effect of keypoint specific scoring

without increasing the final inlier count. Finally, we both pick the best match in the ten

near neighbor list and rank these correspondences according to scores of Equation 5.3.

We perform experiments on the test image three of each sequence, since it is challenging

enough without being too hard. The same binary descriptors are used with experiments

for the recognition rate over ground-truth correspondences explained in Section 5.3.1.3.

44



5.3.1.5. Keypoint Matching with Locality Sensitive Hashing

For some vision tasks, such as augmented reality on multiple pages of a magazine,

the reference image collection is larger than a single image. In this case, the number of

reference descriptors also increases and therefore it is impractical to match keypoints with

brute force descriptor search.

To evaluate the performance of our approach for such a case, we concatenate

the descriptors from all reference images from Graffiti, Boat, Bikes, Wall, plus the four

remaining images in the Oxford datasets. The total number of reference descriptors is

around 8000. As in the experiments of Section 5.3.1.4, we compute the inlier ratio curves

on the third test image but this time we compute the list of ten near neighbors with Lo-

cality Senstive Hashing (LSH) instead of brute-force search. We use the FLANN [25]

implementation of LSH that is available in OpenCV with 12 tables, a key length of 20,

and a multi-probe level of 2.

5.3.2. Results

Effect of near neighbour list length to the recognition rate is shown in Figure 5.9.

For the test image 2 and 3 of Wall sequence, extending the near neighbour list length K

does not effect the recognition rate which is already close to 100%. For the other test

images, expanding the near neighbour list provides to have more correct matches. After

K = 10, it can be seen that there is no significant improvement for the recognition rate for

these images. For the test image 4, the recognition rate is increased from 75% to 83% with

K = 10 and remains stable while K extends. As it can be observed, enlarging K yields

improved recognition rates especially for the Graffiti. We have significant improvement

for the recognition rate with K = 10 and there is no important increase with K more than

10 like Wall . With K = 10, recognition rate for the test image 2,3, and 4 is improved to

76%, 45%, and 5% respectively which is more than two times of the K = 1 performance.

So, since the improvement is less pronounced after K = 10, we set K to 10 for the

remaining experiments. We also perform and show all experiments by setting K to 5 and

20, but we concentrate on the results obtained with K = 10.
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Figure 5.9. The recognition rates for the BRIEF (without orientation estimation) de-
scriptor increase as we consider more near neighbors. This is especially
true for Graffiti, where the baseline performance (K = 1) is low and the
test images exhibit both scale and rotation changes. The difference be-
tween considering the first ten near neighbors or all reference keypoints
is relatively low. At K = 10, the number of correct BRIEF matches for
Graffiti–3 increases to 385. This is still less than the maximum potential
number 517 (See Figure 1.1), but substantially better than 159, the baseline
number achieved by just the nearest neighbor.
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Effect of the different weights of components in keypoint specific score to the

recognition rate is shown in Figure 5.10. α around 0.5 gives the best recognition rate

results in most of the cases. So, we set α = 0.5 that is two components in keypoint

specific score have equal weight in computation.

Figure 5.11 - 5.14 show the recognition rate results for four image sequences (Bikes,

Boat, Graffiti, Wall) and five descriptor types (BRIEF, BRISK, FREAK, LATCH, ORB) by

using K = 10 and the bit group size of 4, 6 and 8. We also show recognition rate results

for using K = 5 in Appendix A between Figure A.1 - A.4 and K = 20 in Appendix A

between Figure A.5 - A.8. For each bin of histogram, the leftmost column shows the

result for the nearest neighbour(baseline), the second, the third, and the rightmost column

represents the recognition rates obtained by using Equation 5.3 with bit group size of 4,6,

and 8 respectively.

For 1000 reference and 928 query keypoints, the total brute-force search time for

the nearest neighbour is 4.0 milliseconds using the POPCNT 1 instruction on a 64-bit

laptop CPU. At K = 10, brute-force search with our approach takes 4.2 milliseconds

irrespective of the value of size of the bit groups.

As it is shown in Figure 5.11, for the Bikes sequence, our recognition rate results

are very close to the nearest neighbour results for BRIEF, LATCH, and ORB correspon-

dences. Except the test image 6, almost all correspondences are correct matches. For

BRISK and FREAK correspondences, we increase the recognition rate for all test im-

ages and generally 8-bit length grouping gives the best results. For the test image 4 with

FREAK correspondences, we improved the recognition rate from 77% to 84% by our

approach using groups of 8 bits.

For the Boat sequence, it can be seen from the Figure 5.12 there is no improvement

after the test image 2 with BRIEF correspondences. For the other descriptors, the results

are improved by a large amount for the test image 2 and 3 except for the second test image

with ORB correspondences. For example, we increase the recognition rate from 34% to

61% for the test image 3 with LATCH correspondences by bit grouping of 6 or 8 bits.

However, even the ten near neighbour list does not include any correct matches for the

test image 5 and 6 with any of the descriptors.

1The POPCNT instruction computes the number of bits that are set to 1.
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Figure 5.10. The effect of the weighted keypoint specific scoring on recognition rate.
The recognition rate is obtained by using only the nearest neighbour when
α = 0. For the other weights, recognition rate is measured by using the
top 10 near neighbours and reranking these near neighbours by weighted
keypoint specific score(Equation 5.4). In most cases, weights of two com-
ponents that are equal or close to each other give better recognition rate
results than the ones are far away from each other. Generally, α around 0.5
results in higher recognition rates than the other weights.
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We increase the recognition rate for the Graffiti sequence with all descriptors

which is depicted in Figure 5.13. Especially for test image 2,3, and 4 we have signif-

icant improvement. With BRIEF correspondences, we at least doubled the recognition

rate for these images by using 8 bits per group. For example, recognition rate of test im-

age 3 is increased from 18% to 45%. For the test image 5 and 6, it can be seen that the

number of correct matches is very low even with the ten near neighbours but we generally

have better results than the baseline performance with any of the descriptors.

As it can be seen from the Figure 5.14, for the test image 2 of the Wall sequence,

recognition rate performance of the baseline and our approach are close to each other and

nearly 100% with BRIEF, LATCH, and ORB correspondences. For the other test images,

we have an important improvement especially for 8-bit grouping with all descriptors. For

example, the recognition rate is increased from 52% to 66% for the test image 4 with

LATCH descriptors.

Inlier ratio values for the third test image with a single reference image and brute-

force matches are shown for four images and five descriptors in Table 5.2 and graphs are

depicted separately in Appendix B between Figure B.1 - B.16. We perform two sets of

inlier ratio experiments as we explained in Section 5.3.1. We measure the inlier ratio

by ranking the nearest neighbour matches by the keypoint specific score of Equation 5.3

with bit groups of 4, 6, and 8 (named as Reweighted NN). Moreover, we measure the

inlier ratio by ranking the top K = {5, 10, 20} near neighbour matches by the keypoint

specific score of Equation 5.3 with bit groups of 4, 6, and 8 (named as K NNs). For

both experiments, we make comparison with the inlier ratio that is measured by ranking

the nearest neighbour matches only by the descriptor distance. Table 5.1 gives figure

numbers in Appendix B corresponding to different inlier ratio experiments with various

image sequences.

Table 5.1. Figure numbers belong to the inlier ratio experiments for the third test with
a single reference image and brute-force matches.

Experiment / Image Sequence Boat Bikes Graffiti Wall

Reweighted NN Figure B.1 Figure B.2 Figure B.3 Figure B.4

Five NNs Figure B.5 Figure B.6 Figure B.7 Figure B.8

Ten NNs Figure B.9 Figure B.10 Figure B.11 Figure B.12

Twenty NNs Figure B.13 Figure B.14 Figure B.15 Figure B.16
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Figure 5.11. Recognition rates for the Bikes sequence with various descriptors obtained
by using just the nearest neighbour and by ranking the ten near neighbours
with keypoint specific scoring (Equation 5.3).
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Figure 5.12. Recognition rates for the Boat sequence with various descriptors obtained
by using just the nearest neighbour and by ranking the ten near neighbours
with keypoint specific scoring (Equation 5.3).
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Figure 5.13. Recognition rates for the Graffiti sequence with various descriptors ob-
tained by using just the nearest neighbour and by ranking the ten near
neighbours with keypoint specific scoring (Equation 5.3).
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Figure 5.14. Recognition rates for the Wall sequence with various descriptors obtained
by using just the nearest neighbour and by ranking the ten near neighbours
with keypoint specific scoring (Equation 5.3).
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In each graph, the green curve shows the inlier ratio obtained by ranking the near-

est neighbour matches only by the descriptor distance(baseline). The yellow, the red,

and the blue curves represent the inlier ratio obtained by using keypoint specific score

computed from the Equation 5.3 with bit grouping of 4, 6, and 8 bits respectively.

Except with BRIEF correspondences, we increase the total number of inliers and

obtain higher inlier ratio over all correspondences for the Boat as it is shown in Fig-

ure B.10. For example, the overall inlier ratio with FREAK correspondences is increased

from 22% to 35% and 37% by groups of 4 and 8 bits respectively. Also the reweighted

nearest neighbour curves have the improvement brought only by using the scores of Equa-

tion 5.3. As it can be seen from the Figure B.2, we improve the inlier ratio to 70% and

72% from 43% for the best 300 FREAK correspondences with grouping of 4 and 6 bits

respectively.

For Graffiti, the baseline inlier ratio among the best 250 BRIEF correspondences

is 21%. This rate is increased to 32%, 33%, and 34% by our approach with bit grouping

of 4, 6, and 8 bits respectively which can be seen from the Figure B.3. With other de-

scriptors, inlier ratio for the best few hundred correspondences and overall inlier ratio are

also improved like BRIEF. As it is illustrated in Figure B.11, the overall inlier ratio for

the BRISK correspondences is increased from 14% to 22% with 4-bit grouping.

We have significant improvement in inlier ratio for less number of top-ranked cor-

respondences and overall inlier ratio with BRISK and FREAK correspondences for the

Bikes. For example, we increase the inlier ratio among the best 300 BRISK correspon-

dences from 57% to 67% which can be seen from the Figure B.1 with grouping of 6 bits.

Moreover, the overall inlier ratio with FREAK correspondences is increased from 30%

to 39% by our approach with grouping of 8 bits as it is illustrated in Figure B.9. For the

other descriptors, we also have improvement for inlier ratios but not too much.

As it is shown in Figure B.12, we have approximately 5% increase in inlier ratios

for the Wall with BRISK, FREAK, LATCH, and ORB correspondences. For example, we

increase the overall inlier ratio with ORB correspondences from 33% to 37% with 8-bit

length groups. With BRIEF correspondences our performance is slightly better than the

baseline performance in which inlier ratios are very close to the each other.
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Table 5.2. Inlier ratio values when matching the third test image to the reference im-
age in each image sequence. Results are obtained by ranking the nearest
neighbor matches only by the descriptor distance (NN), by the keypoint
specific score of Equation 5.3 (Reweighted NN→ RNN), or ranking theK
near neighbor list matches by Equation 5.3 (KNN, with K ∈ {5, 10, 20}).
For each dataset and descriptor combination, inlier ratios at 100, 250, and
500 keypoint matches are listed. In general, keypoint specific ranking im-
proves the inlier ratio for the best few hundred correspondences and look-
ing inside the ten near neighbor list yields improved inlier ratio at 500
keypoint matches.

Descriptor BRIEF BRISK FREAK LATCH ORB
# of Matches 100 250 500 100 250 500 100 250 500 100 250 500 100 250 500

B
ik

es

NN 0.97 0.97 0.88 0.78 0.61 0.46 0.86 0.72 0.53 0.99 0.95 0.70 0.99 0.97 -

RNN-4 bits 0.93 0.90 0.85 0.84 0.73 0.51 0.85 0.79 0.58 0.96 0.95 0.70 0.98 0.97 -
RNN-8 bits 0.94 0.91 0.87 0.81 0.70 0.51 0.86 0.79 0.59 0.98 0.96 0.70 0.98 0.97 -
5NN-4 bits 0.94 0.91 0.86 0.84 0.74 0.59 0.84 0.80 0.62 0.96 0.96 0.72 0.99 0.97 -
5NN-8 bits 0.95 0.92 0.88 0.80 0.76 0.60 0.85 0.81 0.63 0.98 0.96 0.72 0.99 0.98 -

10NN-4 bits 0.94 0.91 0.86 0.84 0.74 0.60 0.84 0.80 0.62 0.96 0.96 0.72 0.99 0.97 -
10NN-8 bits 0.95 0.92 0.88 0.80 0.77 0.60 0.85 0.81 0.63 0.98 0.96 0.72 0.99 0.98 -
20NN-4 bits 0.94 0.91 0.86 0.84 0.74 0.60 0.84 0.80 0.63 0.96 0.96 0.72 0.99 0.97 -
20NN-8 bits 0.95 0.92 0.88 0.80 0.77 0.60 0.85 0.81 0.63 0.98 0.96 0.72 0.99 0.98 -

B
oa

t

NN 0.00 0.00 0.00 0.65 0.44 0.29 0.60 0.45 0.37 0.40 0.22 0.13 0.13 0.14 0.11

RNN-4 bits 0.00 0.00 0.00 0.94 0.63 0.35 0.87 0.75 0.48 0.54 0.27 0.14 0.51 0.28 0.15
RNN-8 bits 0.00 0.00 0.00 0.96 0.65 0.35 0.90 0.77 0.49 0.61 0.27 0.14 0.55 0.28 0.15
5NN-4 bits 0.00 0.00 0.01 0.96 0.78 0.52 0.85 0.80 0.65 0.66 0.44 0.23 0.64 0.46 0.29
5NN-8 bits 0.00 0.00 0.01 0.98 0.82 0.53 0.89 0.83 0.67 0.71 0.44 0.24 0.72 0.50 0.29

10NN-4 bits 0.00 0.00 0.02 0.96 0.80 0.56 0.85 0.81 0.67 0.68 0.50 0.27 0.67 0.50 0.34
10NN-8 bits 0.01 0.01 0.03 0.98 0.86 0.59 0.89 0.83 0.70 0.74 0.52 0.29 0.76 0.54 0.36
20NN-4 bits 0.00 0.00 0.01 0.96 0.80 0.59 0.85 0.81 0.67 0.69 0.51 0.29 0.67 0.50 0.37
20NN-8 bits 0.01 0.02 0.03 0.98 0.86 0.63 0.89 0.83 0.71 0.76 0.56 0.32 0.75 0.55 0.39

G
ra

ffi
ti

NN 0.28 0.21 0.16 0.61 0.36 0.23 0.53 0.40 0.30 0.43 0.27 0.17 0.37 0.26 0.18

RNN-4 bits 0.49 0.32 0.20 0.70 0.44 0.26 0.70 0.54 0.34 0.54 0.36 0.19 0.55 0.38 0.22
RNN-8 bits 0.54 0.34 0.20 0.72 0.44 0.26 0.72 0.54 0.35 0.53 0.37 0.19 0.59 0.39 0.22
5NN-4 bits 0.54 0.44 0.34 0.70 0.50 0.33 0.72 0.57 0.43 0.51 0.37 0.22 0.52 0.40 0.27
5NN-8 bits 0.67 0.52 0.37 0.72 0.53 0.35 0.73 0.61 0.43 0.54 0.39 0.24 0.54 0.42 0.29

10NN-4 bits 0.54 0.44 0.35 0.70 0.50 0.34 0.73 0.58 0.44 0.51 0.40 0.23 0.52 0.40 0.27
10NN-8 bits 0.68 0.54 0.41 0.72 0.53 0.36 0.74 0.62 0.46 0.55 0.41 0.26 0.53 0.42 0.30
20NN-4 bits 0.54 0.46 0.38 0.70 0.50 0.35 0.73 0.59 0.45 0.51 0.39 0.24 0.52 0.40 0.28
20NN-8 bits 0.69 0.56 0.45 0.72 0.54 0.38 0.74 0.62 0.47 0.55 0.41 0.27 0.53 0.43 0.31

W
al

l

NN 0.99 0.99 0.88 1.00 0.96 0.67 0.97 0.86 0.56 0.90 0.78 0.47 1.00 0.95 0.62

RNN-4 bits 0.99 0.99 0.90 1.00 0.97 0.73 0.98 0.91 0.61 0.89 0.84 0.52 1.00 0.96 0.64
RNN-8 bits 0.99 0.99 0.92 1.00 0.98 0.74 0.97 0.91 0.61 0.91 0.85 0.52 1.00 0.96 0.64
5NN-4 bits 1.00 0.99 0.89 1.00 0.97 0.75 0.98 0.90 0.64 0.90 0.84 0.56 1.00 0.96 0.65
5NN-8 bits 1.00 0.99 0.92 1.00 0.98 0.78 0.97 0.92 0.66 0.92 0.87 0.56 1.00 0.96 0.67

10NN-4 bits 1.00 0.99 0.89 1.00 0.97 0.75 0.98 0.90 0.65 0.90 0.84 0.55 1.00 0.96 0.65
10NN-8 bits 1.00 0.99 0.92 1.00 0.98 0.79 0.97 0.92 0.67 0.92 0.87 0.57 1.00 0.96 0.67
20NN-4 bits 1.00 0.99 0.89 1.00 0.97 0.76 0.98 0.90 0.65 0.90 0.84 0.55 1.00 0.96 0.65
20NN-8 bits 1.00 0.99 0.92 1.00 0.98 0.79 0.97 0.92 0.67 0.92 0.87 0.56 1.00 0.96 0.67
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Inlier ratio values for the third test image with eight reference images are shown in

Table 5.4 and graphs are depicted separately in Appendix C between Figure C.1 - C.16. In

these experiments, matches are obtained by LSH instead of in a brute-force way as in the

previous experiments. With parameters given in the Section 5.3.1.5, the LSH precision is

around 90% in these experiments. In other words, the nearest neighbour found by LSH is

the same as found by the brute force nine out of ten times. Table 5.3 gives figure numbers

for different inlier ratio experiments with various image sequences.

Table 5.3. Figure numbers belong to the inlier ratio experiments for the third test
image with eight reference images and LSH matches.

Experiment / Image Sequence Boat Bikes Graffiti Wall

Reweighted NN Figure C.1 Figure C.2 Figure C.3 Figure C.4

Five NNs Figure C.5 Figure C.6 Figure C.7 Figure C.8

Ten NNs Figure C.9 Figure C.10 Figure C.11 Figure C.12

Twenty NNs Figure C.13 Figure C.14 Figure C.15 Figure C.16

In general, the inlier ratios obtained by LSH matches with eight reference images

are lower than the ones obtained by brute-force matches with a single reference image but

in many cases our approach recovers many matches that would have been lost if only the

nearest neighbour had been used. For most of the cases, the behaviour of the inlier ratio

curves are very similar to the curves obtained by the brute-force matches with a single

reference image.

For Graffiti, the baseline inlier ratio for the top-ranked 250 BRISK correspon-

dences is 33%. This ratio is increased to 47% and 48% by our approach with bit grouping

of 4 and 8 bits respectively which is shown in Figure C.3. With other descriptors, we have

also significant improvement in inlier ratios for best few correspondences and also overall

inlier ratio. As it is illustrated in Figure C.11, the overall inlier ratio is increased from

13% to 24% with FREAK correspondences with bit groups of 6 or 8.

For Bikes, we have an important improvement in inlier ratios with BRISK and

FREAK correspondences. For the top-ranked 300 FREAK correspondences, we increase

the inlier ratio from 55% to 66% and 68% by groups of 4 bits and 8 bits respectively

which is shown in Figure C.1. With BRISK correspondences, the overall inlier ratio is

increased from 17% to 25% as it is illustrated in Figure C.9. For other descriptors, we

also have improvement both in inlier ratio for the best few hundred correspondences and
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the overall inlier ratio but not as much as BRISK and FREAK.

We have significant improvement for the Boat with any of the descriptors except

BRIEF. For example, among the top-ranked 250 ORB correspondences, almost none of

the nearest neighbour matches is inlier. By our approach, 30% of the best 250 correspon-

dences are correctly matched that is shown in Figure C.2. We have also improvement in

the overall inlier ratio. As it is illustrated in Figure C.10, with BRISK correspondences,

the overall ratio is increased from 7% to 18% by our approach with grouping of 8 bits.

We have great improvement for the Wall especially for the best few hundred corre-

spondences. For example, the inlier ratio for the top-ranked 300 FREAK correspondences

is increased from 63% to 77% and 80% by our approach with groups of 4 and 8 bits re-

spectively which is shown in Figure C.4. The overall inlier ratios are also improved for all

descriptors. For example, the overall inlier ratio is increased from 22% to 27% by 8-bit

length groups with LATCH correspondences as it illustrated in Figure C.12.
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Table 5.4. With eight reference images, we measure the inlier ratio values when
matching the third test image of each image sequence and LSH is used to
compute the near neighbor list. Similar to the results of Table 5.2, ranking
the correspondences by Equation 5.3 improves the overall values. Search-
ing in the first ten near neighbors further increases the number of inliers
that can be obtained.

Descriptor BRIEF BRISK FREAK LATCH ORB
# of Matches 100 250 500 100 250 500 100 250 500 100 250 500 100 250 500

B
ik

es

NN 0.97 0.96 0.87 0.53 0.37 0.27 0.81 0.59 0.40 0.99 0.95 0.69 0.99 0.94 .
RNN-4 0.93 0.90 0.84 0.66 0.49 0.33 0.84 0.68 0.46 0.96 0.95 0.69 0.98 0.96 .
RNN-8 0.94 0.91 0.86 0.64 0.47 0.33 0.86 0.70 0.47 0.98 0.96 0.69 0.98 0.96 .
5NN-4 0.94 0.91 0.84 0.70 0.52 0.40 0.83 0.71 0.51 0.96 0.96 0.71 0.99 0.97 .
5NN-8 0.95 0.92 0.87 0.71 0.55 0.40 0.84 0.72 0.52 0.98 0.96 0.71 0.99 0.98 .

10NN-4 0.94 0.91 0.83 0.70 0.52 0.40 0.83 0.71 0.51 0.96 0.96 0.71 0.99 0.97 .
10NN-8 0.95 0.92 0.86 0.70 0.56 0.41 0.84 0.72 0.53 0.98 0.96 0.71 0.99 0.97 .
20NN-4 0.94 0.91 0.83 0.70 0.52 0.41 0.83 0.71 0.51 0.96 0.96 0.71 0.99 0.96 .
20NN-8 0.95 0.92 0.86 0.70 0.56 0.42 0.84 0.72 0.53 0.98 0.96 0.71 0.99 0.97 .

B
oa

t

NN 0.01 0.01 0.00 0.40 0.25 0.15 0.35 0.28 0.20 0.21 0.13 0.08 0.04 0.04 0.04
RNN-4 0.00 0.01 0.00 0.72 0.34 0.17 0.74 0.48 0.27 0.41 0.18 0.09 0.25 0.12 0.06
RNN-8 0.01 0.00 0.00 0.71 0.34 0.17 0.76 0.49 0.27 0.45 0.18 0.09 0.26 0.12 0.06
5NN-4 0.00 0.00 0.00 0.88 0.56 0.32 0.76 0.66 0.44 0.53 0.26 0.14 0.42 0.24 0.14
5NN-8 0.00 0.00 0.00 0.91 0.58 0.32 0.80 0.70 0.45 0.59 0.27 0.14 0.47 0.26 0.14

10NN-4 0.00 0.00 0.00 0.88 0.59 0.35 0.76 0.68 0.50 0.59 0.31 0.17 0.46 0.28 0.17
10NN-8 0.00 0.00 0.00 0.91 0.64 0.36 0.82 0.74 0.51 0.64 0.32 0.17 0.49 0.30 0.17
20NN-4 0.00 0.00 0.00 0.89 0.61 0.37 0.76 0.70 0.53 0.63 0.35 0.19 0.49 0.29 0.19
20NN-8 0.00 0.00 0.00 0.92 0.66 0.39 0.82 0.76 0.56 0.67 0.37 0.20 0.54 0.33 0.19

G
ra

ffi
ti

NN 0.14 0.10 0.07 0.59 0.34 0.21 0.47 0.31 0.22 0.39 0.21 0.13 0.32 0.20 0.15
RNN-4 0.27 0.16 0.10 0.65 0.39 0.23 0.64 0.42 0.27 0.46 0.26 0.14 0.46 0.31 0.17
RNN-8 0.29 0.18 0.10 0.69 0.41 0.23 0.66 0.43 0.27 0.47 0.26 0.14 0.48 0.31 0.17
5NN-4 0.36 0.24 0.18 0.66 0.45 0.29 0.67 0.48 0.33 0.44 0.26 0.16 0.42 0.31 0.20
5NN-8 0.43 0.28 0.19 0.70 0.47 0.30 0.68 0.51 0.35 0.46 0.28 0.17 0.46 0.32 0.20

10NN-4 0.35 0.24 0.19 0.66 0.47 0.31 0.67 0.49 0.34 0.42 0.26 0.17 0.42 0.30 0.20
10NN-8 0.46 0.33 0.23 0.70 0.48 0.32 0.68 0.52 0.37 0.49 0.29 0.17 0.46 0.33 0.21
20NN-4 0.35 0.26 0.22 0.66 0.47 0.31 0.67 0.49 0.35 0.42 0.27 0.17 0.42 0.30 0.20
20NN-8 0.50 0.38 0.27 0.70 0.48 0.33 0.68 0.53 0.39 0.49 0.29 0.18 0.46 0.34 0.22

W
al

l

NN 0.99 0.98 0.80 1.00 0.88 0.56 0.92 0.68 0.45 0.90 0.69 0.41 0.98 0.82 0.52
RNN-4 0.99 0.96 0.86 1.00 0.97 0.60 0.96 0.80 0.52 0.89 0.81 0.45 0.98 0.94 0.56
RNN-8 0.99 0.98 0.88 1.00 0.98 0.61 0.95 0.83 0.52 0.91 0.82 0.45 0.99 0.94 0.56
5NN-4 1.00 0.96 0.86 1.00 0.95 0.66 0.96 0.82 0.58 0.90 0.83 0.50 0.98 0.93 0.58
5NN-8 1.00 0.98 0.89 1.00 0.97 0.67 0.95 0.83 0.59 0.92 0.85 0.51 0.99 0.94 0.59

10NN-4 0.99 0.96 0.86 1.00 0.95 0.66 0.96 0.81 0.59 0.90 0.83 0.50 0.98 0.92 0.59
10NN-8 1.00 0.98 0.88 1.00 0.97 0.68 0.95 0.84 0.60 0.92 0.85 0.52 0.99 0.94 0.59
20NN-4 0.99 0.96 0.86 1.00 0.95 0.66 0.96 0.81 0.59 0.90 0.84 0.52 0.98 0.92 0.59
20NN-8 1.00 0.98 0.88 1.00 0.97 0.68 0.95 0.84 0.61 0.92 0.86 0.53 0.99 0.94 0.59
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5.4. Discussion

As it can be seen from the Figure 5.11 - 5.14, we have significant improvement

in recognition rate except some cases. The improvement is less pronounced for the Bikes

sequence with only changes in blur level. This is expected since the observation probabil-

ities represent behaviour under perspective changes. We have tried including blur in the

training data, but this did not yield noticeable improvement, possibly because blur causes

loss of discriminative power. The BRIEF descriptor lacks orientation estimation, as a re-

sult there is no improvement after the test image 2 of the Boat sequence. This indicates

that even the ten near neighbour list does not include enough correct matches. For the

other descriptors with orientation estimation, the results are improved by a large amount

for the test image 3 and 4.

Reweighted nearest neighbour curves which are illustrated in Figure B.1 - B.4

show that keypoint specific scoring brings the inliers closer to the top of the ranked cor-

respondence list. This provides to have higher inlier ratios at the level of first several

hundred correspondences without increasing the final inlier count. Algorithms like [9]

use a few top-ranked correspondences for keypoint matching and keypoint specific scor-

ing might provide to have more correct matches in this small set of best correspondences.

Our approach has also significant improvement in the overall inlier ratios in most of the

cases. This means that more correct matches can be obtained between the different views

of the scenes belong to a single image.

The number of inliers that can be obtained is increased by our approach even we

compute the near neighbour list with the LSH as it is illustrated in Figure C.9 - C.12. This

is important since the reference image collection is larger than the single image for some

vision applications and approximate nearest neighbour methods are used to find possible

matches. It can be stated that our approach scales well to larger reference descriptor

collections since we only compute keypoint specific score for the top ten near neighbours

instead of all reference keypoints and these match hypotheses can be efficiently computed

with approximate nearest neighbour methods.

As it is stated in the Section 5.3.2, the difference is negligible for timing between

the brute-force search time for the nearest neighbour and establishing correspondences

with our approach. Therefore, computing the ten near neighbour list and reranking these

top-ranked matches according to keypoint specific and probabilistic score is both com-

putationally efficient and provides better keypoint matching. It can be seen from the all
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experiments, our approach is relatively descriptor independent and it extends the matching

range of several binary descriptors beyond the nearest neighbour.

5.5. Conclusion

Binary descriptors are widely used for keypoint matching in real-time vision ap-

plications. The common approach for matching keypoints is to find the nearest neighbour

in the set of descriptors according to Hamming distance. Perspective changes cause spe-

cific variations in descriptor of each keypoint and this leads to obtain incorrect matches

with the nearest neighbour.

For better keypoint matching, we first identify the list of the top ten near neigh-

bours according to the Hamming distance. These matches are then reranked based on the

keypoint specific and probabilistic match quality score obtained from the texture char-

acteristics around individual keypoints. This two-step approach provides to have more

correct matches regardless of type of the binary descriptor. Our approach scales well

to large descriptor sets with approximate nearest neighbour search algorithms and also

represent each keypoint with a robust and distinctive description.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1. Conclusion

In this thesis, we proposed an approach that can be used in conjunction with the bi-

nary descriptors to search for keypoint matches beyond the nearest neighbour. We showed

that binary descriptors are not fully invariant to perspective changes and variations in bits

are dependent on texture in the patch surrounding to keypoint. We also showed that cor-

rect matches which cannot be found by searching the nearest neighbour is more likely

to be in list of top K near neighbours. By combining these properties, we developed an

approach for keypoint matching with binary descriptors.

We proposed a training procedure that covers various deformations by simulating

different viewpoints which are close to the real scenes that provides to exploit the tex-

ture characteristics around individual keypoints in an off-line training phase. We captured

these keypoint specific descriptor variations with probabilistic conditional model. In or-

der to make our approach feasible, we split the binary descriptor vector into groups of

bits and assumed that these groups are independent from each other instead of accepting

independence of each bit which leads to have a large number of parameters to represent

the model.

We developed a two step approach for keypoint matching. For each given query

keypoint, we first computed the top K near neighbours based on the Hamming distance

with a negligible difference in time which is needed to search only the nearest neighbour.

We then reranked keypoints in the top K near neighbours list by targeting to bring the

correct match to the nearest neighbour with a keypoint specific and probabilistic score.

We computed this score by combining the Hamming distance and the probability of the

observing the query descriptor which is obtained from the probabilistic model.

Our approach increases the robustness of state-of-the-art binary descriptors under

most of the affine deformations. With BRIEF descriptors, there is no improvement under

high level of rotations since there is no orientation estimation mechanism. For scale and
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tilt variations, we have important improvement especially for the images that have both

scale and tilt changes with a less amount rotation. BRISK and FREAK show similar be-

haviour. We extend the matching range of them for all type of affine deformations and

blur changes. We have significant improvement with BRISK and FREAK especially un-

der scale and rotation changes. Our approach also increases the robustness of the LATCH

and ORB descriptors under rotation,scale, and tilt deformations. Since we extract texture

characteristics by simulating real scenes on an image from different viewpoints, we have

great improvement in recognition performance for rotation, scale, and tilt changes. For

blur changes, there is no improvement with BRIEF, LATCH, and ORB descriptors since

observation probabilities that we compute in an offline phase represents bit variations

under only affine deformations.

Our approach strikes a balance between the keypoint specific representations and

the generic keypoint descriptors. The former approaches exploit the texture characteristics

around individual keypoints to yield a more robust and distinctive description. The latter

ones scale well to large data sets thanks to the efficient approximate neighbour search al-

gorithms. By using a two step approach, we combine the advantages of both and improve

the robustness of binary descriptors for real-time vision applications.

6.2. Future Work

The idea of searching the match in the list of K near neighbours is rarely exploited

in practice. This approach can be combined with different keypoint matching approaches

especially for the ones that use keypoint specific representations for better matching.

Observation probabilities which are obtained in an off-line training phase are

needed to be stored and this may be problematic for some applications due to memory

concerns. Instead of simulating thousand number of different viewpoints and observing

descriptor variations in an off-line training phase, extraction of observation probabilities

with a few number of synthetic images at run-time might make our approach feasible to

more vision applications.

We have achieved good matching performance with binary descriptors for 2D

planar objects and we would like to apply our approach to the 3D objects. With some

adaptations such as taking into account epipolar constraints, our approach might provide

robust keypoint matching.
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APPENDIX A

RECOGNITION RATE EXPERIMENTS WITH FIVE AND

TWENTY NEAR NEIGHBOURS

Figure A.1. Recognition rates for the Bikes sequence with various descriptors obtained
by using just the nearest neighbour and by ranking the five near neighbours
with keypoint specific scoring (Equation 5.3).
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Figure A.2. Recognition rates for the Boat sequence with various descriptors obtained
by using just the nearest neighbour and by ranking the five near neighbours
with keypoint specific scoring (Equation 5.3).
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Figure A.3. Recognition rates for the Graffiti sequence with various descriptors ob-
tained by using just the nearest neighbour and by ranking the five near
neighbours with keypoint specific scoring (Equation 5.3).
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Figure A.4. Recognition rates for the Wall sequence with various descriptors obtained
by using just the nearest neighbour and by ranking the five near neighbours
with keypoint specific scoring (Equation 5.3).
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Figure A.5. Recognition rates for the Bikes sequence with various descriptors obtained
by using just the nearest neighbour and by ranking the twenty near neigh-
bours with keypoint specific scoring (Equation 5.3).
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Figure A.6. Recognition rates for the Boat sequence with various descriptors obtained
by using just the nearest neighbour and by ranking the twenty near neigh-
bours with keypoint specific scoring (Equation 5.3).
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Figure A.7. Recognition rates for the Graffiti sequence with various descriptors ob-
tained by using just the nearest neighbour and by ranking the twenty near
neighbours with keypoint specific scoring (Equation 5.3).
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Figure A.8. Recognition rates for the Wall sequence with various descriptors obtained
by using just the nearest neighbour and by ranking the twenty near neigh-
bours with keypoint specific scoring (Equation 5.3).
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APPENDIX B

INLIER RATIO EXPERIMENTS BY USING

BRUTE-FORCE MATCHES

Figure B.1. Inlier ratio curves for the third test image of the Bikes sequence with a
single reference image and brute-force matches. These curves obtained
by ranking the nearest neighbour matches only by the descriptor dis-
tance (NN) and by the keypoint specific score of Equation 5.3 (Reweighted
NN) with bit groups of 4,6, and 8.
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Figure B.2. Inlier ratio curves for the third test image of the Boat sequence with a single
reference image and brute-force matches. These curves obtained by rank-
ing the nearest neighbour matches only by the descriptor distance (NN)
and by the keypoint specific score of Equation 5.3 (Reweighted NN) with
bit groups of 4,6, and 8.
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Figure B.3. Inlier ratio curves for the third test image of the Graffiti sequence with a
single reference image and brute-force matches. These curves obtained
by ranking the nearest neighbour matches only by the descriptor dis-
tance (NN) and by the keypoint specific score of Equation 5.3 (Reweighted
NN) with bit groups of 4,6, and 8.
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Figure B.4. Inlier ratio curves for the third test image of the Wall sequence with a single
reference image and brute-force matches. These curves obtained by rank-
ing the nearest neighbour matches only by the descriptor distance (NN)
and by the keypoint specific score of Equation 5.3 (Reweighted NN) with
bit groups of 4,6, and 8.
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Figure B.5. Inlier ratio curves for the third test image of the Bikes sequence with a
single reference image and brute-force matches. These curves obtained
by ranking the nearest neighbour matches only by the descriptor dis-
tance (NN) and ranking the five near neighbour list matches by Equa-
tion 5.3 (Five NNs) with bit groups of 4,6, and 8.
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Figure B.6. Inlier ratio curves for the third test image of the Boat sequence with a single
reference image and brute-force matches. These curves obtained by rank-
ing the nearest neighbour matches only by the descriptor distance (NN) and
ranking the five near neighbour list matches by Equation 5.3 (Five NNs)
with bit groups of 4,6, and 8.
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Figure B.7. Inlier ratio curves for the third test image of the Graffiti sequence with a
single reference image and brute-force matches. These curves obtained
by ranking the nearest neighbour matches only by the descriptor dis-
tance (NN) and ranking the five near neighbour list matches by Equa-
tion 5.3 (Five NNs) with bit groups of 4,6, and 8.
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Figure B.8. Inlier ratio curves for the third test image of the Wall sequence with a single
reference image and brute-force matches. These curves obtained by rank-
ing the nearest neighbour matches only by the descriptor distance (NN) and
ranking the five near neighbour list matches by Equation 5.3 (Five NNs)
with bit groups of 4,6, and 8.
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Figure B.9. Inlier ratio curves for the third test image of the Bikes sequence with a
single reference image and brute-force matches. These curves obtained
by ranking the nearest neighbour matches only by the descriptor dis-
tance (NN) and ranking the ten near neighbour list matches by Equa-
tion 5.3 (Ten NNs) with bit groups of 4,6, and 8.
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Figure B.10. Inlier ratio curves for the third test image of the Boat sequence with a single
reference image and brute-force matches. These curves obtained by rank-
ing the nearest neighbour matches only by the descriptor distance (NN)
and ranking the ten near neighbour list matches by Equation 5.3 (Ten NNs)
with bit groups of 4,6, and 8.
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Figure B.11. Inlier ratio curves for the third test image of the Graffiti sequence with a
single reference image and brute-force matches. These curves obtained
by ranking the nearest neighbour matches only by the descriptor dis-
tance (NN) and ranking the ten near neighbour list matches by Equa-
tion 5.3 (Ten NNs) with bit groups of 4,6, and 8.
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Figure B.12. Inlier ratio curves for the third test image of the Wall sequence with a single
reference image and brute-force matches. These curves obtained by rank-
ing the nearest neighbour matches only by the descriptor distance (NN)
and ranking the ten near neighbour list matches by Equation 5.3 (Ten NNs)
with bit groups of 4,6, and 8.
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Figure B.13. Inlier ratio curves for the third test image of the Bikes sequence with a
single reference image and brute-force matches. These curves obtained
by ranking the nearest neighbour matches only by the descriptor dis-
tance (NN) and ranking the twenty near neighbour list matches by Equa-
tion 5.3 (Twenty NNs) with bit groups of 4,6, and 8.
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Figure B.14. Inlier ratio curves for the third test image of the Boat sequence with a single
reference image and brute-force matches. These curves obtained by rank-
ing the nearest neighbour matches only by the descriptor distance (NN) and
ranking the twenty near neighbour list matches by Equation 5.3 (Twenty
NNs) with bit groups of 4,6, and 8.

88



Figure B.15. Inlier ratio curves for the third test image of the Graffit sequence with a
single reference image and brute-force matches. These curves obtained
by ranking the nearest neighbour matches only by the descriptor dis-
tance (NN) and ranking the twenty near neighbour list matches by Equa-
tion 5.3 (Twenty NNs) with bit groups of 4,6, and 8.
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Figure B.16. Inlier ratio curves for the third test image of the Wall sequence with a single
reference image and brute-force matches. These curves obtained by rank-
ing the nearest neighbour matches only by the descriptor distance (NN) and
ranking the twenty near neighbour list matches by Equation 5.3 (Twenty
NNs) with bit groups of 4,6, and 8.
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APPENDIX C

INLIER RATIO EXPERIMENTS BY USING LSH

MATCHES

Figure C.1. Inlier ratio curves for the third test image of the Bikes sequence when LSH
is used to compute the near neighbour list over eight reference images.
These curves obtained by ranking the nearest neighbour matches only by
the descriptor distance (NN) and by the keypoint specific score of Equa-
tion 5.3 (Reweighted NN) with bit groups of 4,6, and 8.
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Figure C.2. Inlier ratio curves for the third test image of the Boat sequence when LSH
is used to compute the near neighbour list over eight reference images.
These curves obtained by ranking the nearest neighbour matches only by
the descriptor distance (NN) and by the keypoint specific score of Equa-
tion 5.3 (Reweighted NN) with bit groups of 4,6, and 8.
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Figure C.3. Inlier ratio curves for the third test image of the Graffiti sequence when
LSH is used to compute the near neighbour list over eight reference im-
ages. These curves obtained by ranking the nearest neighbour matches
only by the descriptor distance (NN) and by the keypoint specific score of
Equation 5.3 (Reweighted NN) with bit groups of 4,6, and 8.
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Figure C.4. Inlier ratio curves for the third test image of the Wall sequence when LSH
is used to compute the near neighbour list over eight reference images.
These curves obtained by ranking the nearest neighbour matches only by
the descriptor distance (NN) and by the keypoint specific score of Equa-
tion 5.3 (Reweighted NN) with bit groups of 4,6, and 8.

94



Figure C.5. Inlier ratio curves for the third test image of the Bikes sequence when
LSH is used to compute the near neighbour list over eight reference im-
ages. These curves obtained by ranking the nearest neighbour matches
only by the descriptor distance (NN) and ranking the five near neighbour
list matches by Equation 5.3 (Five NNs) with bit groups of 4,6, and 8.
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Figure C.6. Inlier ratio curves for the third test image of the Boat sequence when
LSH is used to compute the near neighbour list over eight reference im-
ages. These curves obtained by ranking the nearest neighbour matches
only by the descriptor distance (NN) and ranking the five near neighbour
list matches by Equation 5.3 (Five NNs) with bit groups of 4,6, and 8.
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Figure C.7. Inlier ratio curves for the third test image of the Graffiti sequence when
LSH is used to compute the near neighbour list over eight reference im-
ages. These curves obtained by ranking the nearest neighbour matches
only by the descriptor distance (NN) and ranking the five near neighbour
list matches by Equation 5.3 (Five NNs) with bit groups of 4,6, and 8.
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Figure C.8. Inlier ratio curves for the third test image of the Wall sequence when
LSH is used to compute the near neighbour list over eight reference im-
ages. These curves obtained by ranking the nearest neighbour matches
only by the descriptor distance (NN) and ranking the five near neighbour
list matches by Equation 5.3 (Five NNs) with bit groups of 4,6, and 8.
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Figure C.9. Inlier ratio curves for the third test image of the Bikes sequence when
LSH is used to compute the near neighbour list over eight reference im-
ages. These curves obtained by ranking the nearest neighbour matches
only by the descriptor distance (NN) and ranking the ten near neighbour
list matches by Equation 5.3 (Ten NNs) with bit groups of 4,6, and 8.
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Figure C.10. Inlier ratio curves for the third test image of the Boat sequence when
LSH is used to compute the near neighbour list over eight reference im-
ages. These curves obtained by ranking the nearest neighbour matches
only by the descriptor distance (NN) and ranking the ten near neighbour
list matches by Equation 5.3 (Ten NNs) with bit groups of 4,6, and 8.
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Figure C.11. Inlier ratio curves for the third test image of the Graffiti sequence when
LSH is used to compute the near neighbour list over eight reference im-
ages. These curves obtained by ranking the nearest neighbour matches
only by the descriptor distance (NN) and ranking the ten near neighbour
list matches by Equation 5.3 (Ten NNs) with bit groups of 4,6, and 8.
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Figure C.12. Inlier ratio curves for the third test image of the Wall sequence when
LSH is used to compute the near neighbour list over eight reference im-
ages. These curves obtained by ranking the nearest neighbour matches
only by the descriptor distance (NN) and ranking the ten near neighbour
list matches by Equation 5.3 (Ten NNs) with bit groups of 4,6, and 8.
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Figure C.13. Inlier ratio curves for the third test image of the Bikes sequence when LSH
is used to compute the near neighbour list over eight reference images.
These curves obtained by ranking the nearest neighbour matches only by
the descriptor distance (NN) and ranking the twenty near neighbour list
matches by Equation 5.3 (Twenty NNs) with bit groups of 4,6, and 8.
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Figure C.14. Inlier ratio curves for the third test image of the Boat sequence when LSH
is used to compute the near neighbour list over eight reference images.
These curves obtained by ranking the nearest neighbour matches only by
the descriptor distance (NN) and ranking the twenty near neighbour list
matches by Equation 5.3 (Twenty NNs) with bit groups of 4,6, and 8.
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Figure C.15. Inlier ratio curves for the third test image of the Graffiti sequence when
LSH is used to compute the near neighbour list over eight reference im-
ages. These curves obtained by ranking the nearest neighbour matches
only by the descriptor distance (NN) and ranking the twenty near neigh-
bour list matches by Equation 5.3 (Twenty NNs) with bit groups of 4,6,
and 8.
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Figure C.16. Inlier ratio curves for the third test image of the Wall sequence when LSH
is used to compute the near neighbour list over eight reference images.
These curves obtained by ranking the nearest neighbour matches only by
the descriptor distance (NN) and ranking the twenty near neighbour list
matches by Equation 5.3 (Twenty NNs) with bit groups of 4,6, and 8.
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