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Abstract

Studies about freight distribution modeling are limited due to the limitations in data availability. Existing studies in this subject,

generally either use the conventional gravity models or the regression based models as modeling techniques. The present study, using

the 1993 US Commodity Flow Survey Data, models inter-regional commodity flows for 48 continental states of the US with three

different artificial neural networks (ANN). The results are compared with those of Celik and Guldmann’s (2002) Box–Cox

Regression Model. The ANN using conventional gravity model variables provides a slight improvement with respect to this Box–

Cox model. However, the ANNs using theoretically relevant variables provide surprising improvements in comparison to the Box–

Cox model. It is concluded that ANN architecture is a very promising technique for predicting short-term inter-regional commodity

flows.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

‘‘Spatial Interaction Modeling’’ in transportation

planning is used for modeling of passenger and freight

distributions over space. Passenger flows have been
studied more extensively than freight distribution due to

the fact that the availability of suitable data for mod-

eling the freight distribution has been more limited.

While it is relatively easier to obtain data to model

passenger flows through an O–D survey among rela-

tively homogenous households at both the inter- and

intra-city levels, data to model freight movements may

involve many shippers and receivers in the form of firms
(producers, wholesalers, and retailers) and households.

This makes data gathering and tracking more difficult

and costlier.

The movement of freight is also about more than the

opportunities available at the origins and destinations in

the form of employment, schools, and residences, as is

the case of passenger movements. Since the flows of

commodities are a reflection of all economic activities
over space, not only transportation planners, but econ-

omists and geographers are also deeply concerned with

the commodity flows over space and among industries.
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For this reason, commodity flows require establishing

elaborate models that take account of the structure of

the economy.

Taking the advantage of the 1993 Commodity Flow

Survey data from the US Bureau of Transportation
Statistics, this paper attempts to empirically model inter-

regional commodity flows with an Artificial Neural

Network (ANN), in connection with the theoretical

spatial price equilibrium framework (Samuelson, 1952;

Br€ocker, 1989). Using the same framework, Celik and

Guldmann (2002) have specified and estimated a flexible

Box–Cox model with a set of explanatory variables that

characterize the economic structures of the origins and
destinations, and their spatial configurations. The pres-

ent study extends this earlier work by inputting the same

set of variables into two separate feed-forward Back-

prob ANNs for 15 commodity groups, and evaluates the

performances of these new models using Celik and

Guldmann Model, and a base ANN model using con-

ventional Gravity Model variables (zonal totals and

distance) as benchmarks.
The relevant literature is reviewed in the next section.

Section 3 discusses the modeling methodology in terms

of theoretical background, variables, and the structure

of ANN models. Description of data is included in

Section 4. Section 5 presents the results of the proposed

model. The last section is devoted to conclusions and

further research directions.
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2. Literature review

The flow of commodities over space has been

studied by many researchers, ranging from regional

scientists and geographers (Isard, 1951; Bon, 1984) to

international trade theorists (Frankel and Wei, 1998;

Krugman, 1980), transportation planners and spatial

interaction modelers. Beyond intervening opportunities

models, optimization models, and data-hungry general
equilibrium models such as inter- and multi-regional

input–output models, the movement of freight can

also be modeled using two main techniques: conven-

tional gravity models and regression based models.

Gravity models, being heuristic in nature, are mainly

concerned with replicating the observed flows between

each and every pair of origin and destination with

minimum error. In this family of models, the flow is a
function of some proxy variables of the origin and

destination magnitudes (in general, total zonal pro-

duction of the origin and total zonal attraction of the

destination), some measure of origin and destination

accessibilities, and the distance, in either power or

exponential form (Fotheringham and O’Kelly, 1989).

Furthermore, it has been shown that it is possible to

represent the geographic configuration of origins and
destinations in the model by inclusion of two addi-

tional variables representing intervening opportunities

and competing destinations (Fotheringham, 1983;

Guldmann, 1999). In situations where the researcher is

more concerned with the possible determinants of flow

variations beyond pure replication, regression-based

models may be preferable. This family of models may

give decision makers the ability to control the flow
since it may unveil the causative relationship of the

flow with a set of policy variables. Furthermore, a

well-specified regression model can also be used for

predictive purposes. As it is mentioned earlier, there

are relatively few commodity flow studies in the lit-

erature (Reed, 1967; Black, 1971, 1972; Chisholm and

O’Sullivan, 1973; Ashtakala and Murthy, 1988), and

they employ a basic gravity model focusing on best fit
with little theoretical foundation. On the other hand,

using a regression model, Celik and Guldmann (2002)

determine significant sets of variables for each of

the 16 commodity groups for 48 continental states of

the US using the 1993 Commodity Flow Survey and

the Box–Cox functional form. Reviewing all the above

studies, it is possible to say that there are no uni-

formly good or bad models in replicating the flow of
commodities. However, it is possible to say that the

more homogenous the product group, the higher the

goodness of fit of the models. This implies that, since

it is not practically possible to obtain data with the

desired level of disaggregation, there remains a lack of

highly dependable forecasting methods for commodity

flows.
Recent years have seen the evolution of a new and
promising technique called ‘‘Artificial Neural Net-

works’’ (ANN). Within a relatively short period, ANN

has outperformed many conventional computing meth-

ods in many disciplines, as well as in transportation

planning and spatial interaction modeling. Dougherty

(1995) gives a short list of ANN applications in trans-

port, and urges a closer examination of the relationship

between statistics and neural networks. Since then, the
number of applications of ANN has been increasing

geometrically, and it is not possible to present and dis-

cuss them exhaustively here.

From our point of interest, one of the pioneering

studies of ANN (Black, 1995) modeled (a) seven groups

of commodity flows between nine census regions of the

US in 1977 and (b) 1965–1970 US migrations, and

compared the results with those of a doubly constrained
gravity benchmark model. Using zonal totals and dis-

tance as inputs into ANN, Black concluded that the

prediction error with ANN is significantly lower than

that of the counterpart benchmark model. In other

words, ANN outperforms the conventional doubly

constrained gravity model. A similar result in spatial

interaction modeling is reported by Fisher and Gopal

(1994). Using a logarithmic regression function as a
benchmark model with three variables (two zonal

magnitudes measured by gross regional products; and a

friction variable), they conclude that the ANN outper-

forms the benchmark model. However, Mozolin et al.

(2000) note the underperformance of ANN prediction in

comparison to the maximum likelihood doubly con-

strained gravity models in spatial interaction modeling

of passenger flows among counties of the Atlanta
Metropolitan Statistical Area in 1990. According to

Mozolin et al., even if the literature reports calibration

superiority of ANN in comparison to conventional

models, an ex-post prediction of the conventional

gravity model outperforms those of ANN.

These variations in the results of ANN modeling of

spatial interactions may stem from the very nature of the

phenomena as well as from the different specifications of
network architecture used in these studies. Unfortu-

nately, we do not yet have enough empirical and theo-

retical studies to reach conclusive evidence about these

variations since we are at the very outset of a new era of

modeling.

Like conventional gravity models, ANN can also be

considered quite heuristic, since it does not provide any

insight in terms of causative relationship between the
constituting parts of a system. Also it does not provide

an elasticity as clear as from regression based models. It

is of course possible to obtain a set of parameters in

terms of weights; however, they are not as distinct as we

are used to. As noted by many authors, ANN still suffer

black-box phenomenon, and it stands as a good pattern-

imitating algorithm.
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3. Modeling methodology

3.1. Theoretical background

The Spatial Price Equilibrium Model developed by

Samuelson (1952) provides a consistent theoretical

framework for the flow of commodities in a multi-

regional spatial configuration, where the flows take

place from high-price regions to low-price regions until
equilibrium is reached, with price differentials between

regions equal to transportation costs. This basic prin-

ciple is valid for all commodities among all regions as

long as the regions are economically and geographically

connected.

Despite its sound theoretical framework, Samuel-

son’s, 1952 formulation presents three important prac-

tical problems: ‘‘first, the problem of specifying
functional forms, . . .; second, the problem of estimating

the model parameters with available data; and third, the

problem of designing efficient algorithms for a numeri-

cal approximation of the equilibria’’ (Br€ocker, 1989, p.
8). First and second problems are related to the speci-

fication of the excess supply functions of regions while

the third problem is related to the solution of maximi-

zation of net social pay off among the regions.
Br€ocker (1989) attempts to connect theory and

empirical research in trade modeling and shows that all

forms of the gravity model (constrained, unconstrained,

and elasticity constrained) are reduced forms of spatial

price equilibria of interregional trade, using a modified

version of the Spatial Price Equilibrium (Samuelson,

1952). A spatial price equilibrium is characterized by

prices and quantities satisfying supply and demand
conditions corresponding to the explicit (or structural)

form of the trade model, with both prices and quantities

as endogenous variables. Eliminating prices leads to the

reduced form of the model, where equilibrium flows are

directly assigned to the vector of exogenous variables:

ðs;w; d; cÞ ¼ ðs1; . . . ; sI ;w1; . . . ;wI ; d1; . . . dj; c11; . . . ; cijÞ

where the vector s represents prices of other commodi-
ties; w measuring the supply characteristics influencing

purchase choices; d measuring demand characteristics;

and c the transportation costs between regions. Even-

tually, Br€ocker (1989) shows that the generalized gravity

form

xijðs;w; d; cÞ ¼ aiðs;w; d; cÞf ðcijÞbjðs;w; d; cÞ ð1Þ

is consistent with the trade equilibrium situation. Eq. (1)

suggests that the origin and destination factors, ai and
bj, may be functions of the whole vectors ðs;w; d; cÞ, and
not only of the components of these vectors associated

with i or j, exclusively. It further requires the specifica-

tion of relevant variables such as characterizing origins

and destinations demand and supply conditions and the
geography; and the specification of a best fitting func-
tional form.

3.2. Variables

In accordance with the framework explained above,

three groups of variables are used in this study: the

variables characterizing supply and demand conditions
at the origin, the variables characterizing demand con-

ditions at the destination, and the variables specifying

the geography.

3.2.1. Origin variables

(1) Sectoral employment, and (2) sectoral value-

added in that product group are used as two proxy
variables for sectorial production at the origin. To

capture the effect of redistribution activities on com-

modity out-shipments, (3) wholesale employment is used

as another origin variable. (4) The average plant size is

intended to capture scale or diversification effects in the

product group. Theoretically, as the plant scale of an

industrial sector increases, total production and total

out-shipments in that industry are supposed to increase
due to increased production efficiency. It is estimated by

dividing total sectoral employment by the total number

of establishments in that sector. (5) Total population,

and (6) personal income per-capita are two proxy vari-

ables of demand conditions at the origin. Even though

the origins are supposed to be associated with supply

conditions for commodity out-shipment, local final de-

mand at origins may have significant effects. As local
consumption increases, the out-shipment of the com-

modity may decrease.

3.2.2. Destination variables

Since the destinations are mainly demand points, the

variables are expected to be proxies for commodity

demand at intermediate and final levels. (7) Total
manufacturing employment at the destination is used as

a proxy variable for intermediate demand. (8) Personal

income per-capita, and (9) total population are used to

capture final demand effects at the destination. (10)

Wholesale employment is again used to measure redis-

tribution effects at the destination.

3.2.3. Geographical variables

(11) The average distance of all commodities shipped

is used as the basic friction variable. Two additional

variables are used to include spatial configuration of the

study area: (12) competing destinations, and (13) inter-

vening opportunities variables. The competing destina-

tions variable measures the accessibility of a specific

destination to all other destinations (Celik and Guld-
mann, 2002; Fotheringham, 1983), while the intervening

opportunities variable defines the concept that flows to a

destination decrease when the opportunities between the
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origin and destination increase (Celik and Guldmann,
2002; Guldmann, 1999). Finally, three dummy variables

are used to capture geographical effects better. (14) One

of the dummy variables indicates if trading states share a

common physical border. It is expected that trade flows

between neighboring states increase because of better

business information, cultural commonalities, etc. Two

other dummy variables are used to capture the effects of

international trade on inter-regional commodity flows.
(15) If the destination state has a customs district, then

some of the commodities moving to the destination state

may be oriented to foreign export via that customs

district. On the other hand, (16) some of the commod-

ities originating from an origin state including a customs

district may be generated by foreign import through that

customs district.

The commodity flow between two points, can then,
be written with the variables specified and numbered

above, and may be expressed in the framework of Eq.

(1) as follows.

Fij ¼ aiðorigin variablesÞfijðgrographical variablesÞ
� bjðdestination variablesÞ ð2Þ

where ai is the supply point factor, bj the demand point

factor, and f ij the interaction factor.

3.3. The Box–Cox model

Celik and Guldmann (2002) use a flexible Box–Cox

regression equation as the functional form of Eq. (2)
with the specified set of 16 variables. Their model is

formulated as follows:

Y h � 1

h
¼ a0 þ a1X1 þ a2

X k
2 � 1

k
þ � � � þ an

X k
n � 1

k
þ e

ð3Þ

where, h, k, and an are the parameters to be determined

endogenously, –C is assumed to be a normally distributed

error term, with EðeÞ ¼ 0 and Eðee0Þ ¼ d2I . The Box–

Cox transformation (3) is continuous at k ¼ 0, because

X k tends toward LnX when k ! 0. Thus, the linear and

log-linear functional forms are simply specific points

(k ¼ 1 and 0) on a continuum of forms allowing for

different degrees of independence and interaction among
the variables. In other words, with a maximum likeli-

hood estimator, the Box–Cox formulation determines a

best fitting functional form endogenously in any range

between linear and log-linear functional forms (Box and

Cox, 1964).

Celik and Guldmann’s (2002) estimated model for 15

different commodity groups establishes the benchmark

for the present study. For a complete list of estimated
parameters and significant variables among the original

variable set for each commodity group, see Celik and

Guldmann (2002).
3.4. Artificial neural network

Given all the drawbacks just mentioned, this study

attempts to fill a gap between regression based-models

and the ANN by combining the strengths of the two

approaches. Three different ANN models are specified

in this study: (1) using three conventional gravity

model variables (zonal totals and average distance);

(2) using only the statistically significant variables, at
the 95% confidence level among the set of variables

identified by Celik and Guldmann’s (2002) Box–Cox

model of 15 commodity groups; (3) using all the 16

theoretically relevant variables used by Celik and

Guldmann (2002). All three models use a Feed-For-

ward Backprob ANN Architecture with a supervised

training and learning algorithm. The results are eval-

uated comparatively with respect to the benchmark
Box–Cox model.

The purpose of a significant-variables ANN model is

to see whether it performs better than a statistically

estimated model using the same set of variables. Since

ANN models still suffer from the so called ‘‘Black Box’’

phenomenon, it is possible to select the significant set of

variables using a statistical procedure, then use this set

as inputs to an ANN architecture, which is known to
have a significant superiority in pattern recognition. In

this way, the advantages of both procedures are com-

bined. This is, in a sense, a sequential approach to

modeling.

The purpose of the all-variables ANN model, on the

other hand, is twofold: First, the benchmark model

(Celik and Guldmann, 2002) uses the maximum likeli-

hood estimation for determining the endogenous
parameters. For this reason, eliminating the insignificant

variables from the Box–Cox equation could cause sig-

nificant prediction errors, as eventually predictions of

the Box–Cox model are estimated using all the variables.

Thus, to obtain a better comparative basis, an all vari-

able ANN model is estimated. Furthermore, compari-

son of significant-variables ANN and all-variables ANN

models could provide some insight about whether the
additional insignificant variables improve model per-

formance at the margins.

Finally, one more ANN model with three conven-

tional variables is also estimated to serve as another

benchmark model. These variables are the flow totals of

the origin and destination, and the average distance

between them. The purpose of this model is to compare

the performance of the ANNs using conventional vari-
ables as input and that of the ANN using theoretically

sounder variables.

ANN is, in a sense, a simulator of biological learning

and cognitive processes. Neurons of a biological nervous

system are represented by artificial neurons in the form

of layers; the input of this neuron layer is the weighted

sum of data. In matrix form:



Table 1

Commodity groups codes and definitions

Codes Definitions

20 Food and Kindred Products
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I ¼ WX ð4Þ

where I is the input vector, W the weight matrix, and X
the input data vector. Then, this weighted sum is fed

into a transfer function producing an output.

Y ¼ f ðIÞ ð5Þ

The estimated output is compared with the observed

system data, and the error is back propagated through

the ANN and new set of weights are obtained. This

process continues iteratively up to the point where the
error is at a minimum.

The numbers of layers and neurons in these layers,

the form of the transfer functions, and the learning

algorithms (which propagate the error back through the

network) vary, depending on the network architecture.

Since, there have been great many numbers of studies,

explaining the basics of and advances in ANN, a de-

tailed explanation of ANN is not included here. (see
Munakata (1998), and Hagan et al. (1996) for basic and

in-depth explanations of ANN).

A feed-forward backpropagation ANN with two

hidden layers is employed in this study. The number of

neurons in the first hidden layer is the same as the

dimension of the input data vector for each commodity

group (i.e. if we have nine variables determining the

output, we use nine neurons in the first hidden layer).
The transfer function for the first hidden layer is a non-

linear sigmoid function:

Y ¼ 1=½1þ expðIÞ� ð6Þ

In the second hidden layer, only one neuron is em-

ployed. The transfer function of the second hidden layer

is the same sigmoid function. The learning method is

supervised learning, by which ‘‘an input is presented to

one side of the feed forward network, and an output is
computed. This is compared with the output desired for

these inputs, and a global error function is computed.

This is then, used to update the weights in order to move

the outputs towards the desired output’’ (Dougherty,

1995, p. 249). The ‘‘Levenberg–Marquardt’’, learning

algorithm is chosen to assure a fast convergence and

save computer time (see Hagan et al., 1996, for details).
24 Lumber or Wood Products

25 Furniture or Fixture Products

26 Pulp, Paper, or Allied Products

28 Chemicals or Allied Products

30 Rubber of Plastics Products

32 Clay, Concrete, Glass or Stone Products

33 Primary Metal Products

34 Fabricated Metal Products

35 Machinery, excluding electrical, Products

36 Electrical Machinery Products

37 Transportation Equipment

38 Precision Instruments

39 Miscellaneous Freight Shipment

75 Textile, Apparel and Leather Products
4. Data

Four main data sources are used: the 1993 Com-

modity Flow Survey, CFS, (Bureau of Transportation

Statistics); the 1993 County Business Patterns; the 1992

Censuses of Manufactures (Bureau of the Census); and

the Annual State Personal Income (Bureau of Economic
Analysis). The CFS provides the data for the dependent

(flow) and distance variables. The other sources provide

the data for the independent variables.
Prior to 1993, the most recent commodity flow survey
performed in the US was for the year 1977, with data

difficult to access and not in electronic format. There has

been a dearth of such data in other countries, as dem-

onstrated by the very limited number of related empir-

ical studies described earlier (e.g. India; Great Britain;

Alberta, Canada). However, the Bureau of Transpor-

tation Statistics, a joint unit of the US Department of

Transportation and the US Bureau of Census, has re-
leased the results of the 1993 and 1997 Commodity Flow

Survey, making them widely available in electronic

form. The structure of these data is very suitable for

empirical origin-destination analyses of commodity

flows, and makes it feasible to develop and test new

empirical models aimed at explaining the variations of

these flows. The 1993 CFS data with a 200,000 sample

size is preferred for model calibration and training as the
1997 data used a different commodity classification

system less consistent with the employment classification

and a smaller sample of 100,000. The trained or cali-

brated model can be used for the 1997 CFS data as an

ex-ante analysis of the model performance and a future

study.

Data for the dependent variable are drawn from File

9 of the 1993 CFS, and measure the value (Million $) of
out-shipments from each origin state to every other

state, for each of 15 commodity groups (see Table 1),

primarily defined at the two-digit SIC level (the highest

level of disaggregation for O–D flows in the CFS).

Missing observations are eliminated from the database.

The geographical coverage is the 48 US continental

states (Alaska, Hawaii, and District of Columbia are

eliminated from the data set). Imported products ship-
ments are included after they leave the importer’s

domestic location for another location. Export ship-

ments are also included until they reach the port of exit

from the US Shipments through a foreign country, with
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both the origin and destination in the US, are included.
Definitions of commodity codes are given in Table 1.

All the employment variables are drawn from the

County Business Patterns (CBP) database, and include

origin sectoral employment, origin wholesale employ-

ment, destination manufacturing employment, and

destination wholesale employment. The origin average

establishment size variable is estimated by dividing the

origin sectoral employment by the number of estab-
lishments in that sector. The numbers of establishments

are drawn from the CBP. The value-added variable is

drawn from the 1992 Census of Manufactures. The

state personal income per-capita variables and the state

population variables are drawn from the Annual State

Personal Income database of the Bureau of Economic

Analysis (BEA). The distance variable is directly derived

from the 1993 CFS as average hauled distance. File 9 in
the 1993 CFS has both tonnage and ton-miles values for

each commodity group. Dividing ton-miles by ton val-

ues, the average hauled distance for each commodity

group between each O–D pair is estimated. The com-

peting destinations variable and the intervening oppor-

tunities variable are estimated using distance and total

employment (Celik and Guldmann, 2002; Guldmann,

1999; Fotheringham, 1983).
5. Results

The results of One Box–Cox Regression (BCM) and

three ANN models; Conventional Variables (CVM);

Significant Variables (SVM); and All Variables (AVM)

models are compared and evaluated using the root mean

squared error (RMSE) and the R2 statistics. The RMSE

is defined as
Table 2

Models’ goodness of fit measurements

Codes BCM CVM

R2 RMSE R2 RMSE

20 0.796 208.7 0.770 221.6

24 0.593 56.2 0.834 35.8

25 0.247 44.2 0.739 26.0

26 0.779 63.0 0.726 70.2

28 0.671 222.1 0.752 192.8

30 0.776 51.4 0.791 49.5

32 0.353 39.7 0.831 20.3

33 0.778 104.1 0.860 82.6

34 0.775 70.9 0.783 69.7

35 0.665 172.6 0.758 146.7

36 0.666 196.9 0.817 145.9

37 0.544 436.4 0.724 339.5

38 0.642 91.2 0.766 73.8

39 0.589 80.2 0.666 72.3

75 0.508 362.2 0.796 233.4
RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðyi � ŷiÞ2
s

for i ¼ 1; 2; . . . ; n ð7Þ

where yi is the observed and ŷi is the model-predicted

value of flow. The other performance measure, the R2

goodness of fit statistics is defined as

R2 ¼
Pn

i¼1ðŷi � �yÞ2Pn
i¼1ðyi � �yÞ2

for i ¼ 1; 2; . . . ; n ð8Þ

where �y is the average of the observed flows.

The first question in this study is to test whether an

ANN model using the three conventional gravity model

variables outperforms the regression-based spatial

interaction model of Celik and Guldmann (2002). The
second question tested is that whether this performance

can be improved by inputting only the statistically sig-

nificant variables into another ANN. In the final step,

all the theoretically relevant variables used in Celik and

Guldmann (2002) are fed into an ANN. The perfor-

mance measurements of these models are presented in

Table 2.

The R2 statistics for BCM varies between 0.247 for
the commodity group 25 (furniture or fixture products);

and 0.796 for the commodity group 20 (food and kin-

dred products). With this level of performance, it can be

said that Celik and Guldmann’s model is comparable

with previous studies in the literature. In general,

goodness of fit for the CVM increases with respect to

BCM. Its R2 varies between 0.666 for the commodity

group 39 (miscellaneous freight shipment); and 0.860 for
the commodity group 33 (primary metal products).

However, this increase in CVM is not absolute in the

sense that BCM outperforms CVM for two products

groups; 20 (food and kindred products), and 26 (pulp

paper or allied products). SVM outperforms both BCM

and CVM for each commodity group. Its R2 statistics
SVM AVM

R2 RMSE R2 RMSE

0.982 61.7 0.987 53.3

0.962 17.3 0.991 8.3

0.883 17.4 0.987 5.7

0.939 33.1 0.981 18.4

0.903 120.7 0.979 56.1

0.940 26.7 0.975 17.1

0.930 13.1 0.983 6.4

0.955 46.6 0.993 19.0

0.960 29.9 0.983 19.6

0.947 68.6 0.984 38.1

0.971 58.2 0.989 35.0

0.967 116.7 0.990 65.4

0.961 30.1 0.990 15.6

0.953 27.0 0.987 14.4

0.971 87.5 0.999 11.2



Table 3

Error reductions of the model with respect to BCM

Codes CVM SVM AVM

20 )0.06 0.70 0.74

24 0.36 0.69 0.85

25 0.41 0.61 0.87

26 )0.11 0.48 0.71

28 0.13 0.46 0.75

30 0.04 0.48 0.67

32 0.49 0.67 0.84

33 0.21 0.55 0.82

34 0.02 0.58 0.72

35 0.15 0.60 0.78

36 0.26 0.70 0.82

37 0.22 0.73 0.85

38 0.19 0.67 0.83

39 0.10 0.66 0.82

75 0.36 0.76 0.97

Avg 0.18 0.62 0.80
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are significantly improved and vary between 0.883 for

the commodity group 25, and 0.982 for the commodity

group 20. The performance of AVM is greatly im-

proved, and it significantly outperforms all other models

for each commodity group. Its R2 vary between 0.975 for
the commodity group 30(rubber and plastic products);

and 0.999 for the commodity group 75 (textile apparel

and leather products).

Table 3, which presents the error reductions of the

models with respect to benchmark BCM, confirms the

above findings. The maximum error reduction of CVM

with respect to BCM is 49% for the commodity group

32, (clay concrete, and glass or stone products). The
average error reduction for 15 commodity groups is 18%

for CVM. This average is 62% for SVM with 76% for

the commodity group 75, and 80% for AVM, with 97%

the same group 75.
6. Conclusions

The theoretical framework outlined above states that

with a fine level of product disaggregation, given supply

and demand functions, and associated transportation

costs for each O–D pair, one should be able to predict
freight flows with a very acceptable level of accuracy.

However, real-life applications do not allow researchers

to work with such perfect information especially in the

area of freight modeling. Depending on the policy

perspective expected from a study, either determination

of policy variables, or predictive accuracy of modeling

(or both) may become important. The findings of this

study suggest that ANN may improve the performance
of the predictive models in freight distribution model-

ing, in the same way as they have for passenger flows.

An ANN with conventional flow distribution variables
may provide moderate performance improvement in
comparison with a regression based statistical model or

a gravity model as suggested by Black (1995), and

Fisher and Gopal (1994). However, an ANN with

statistically significant variables among a set of theo-

retically sound variables increases the model perfor-

mance surprisingly. If all of the variables which are

thought theoretically relevant in explaining the flows,

are fed into the ANN, the performance of the model is
greatly increased.

At this point, it could be claimed that increasing the

number of variables in any model would improve the

model performance. This fact stands as a mathematical

property especially for the ordinary least square esti-

mator. On the other hand, if there were no theoretical

relevance between dependent and independent variables,

this improvement resulting from increased number of
independent variable set would remain only marginal.

Evidently, this is not the case concerning the findings of

this study. Even if the subsequent improvements in the

ANN models tested here had been resulted from in-

creased number of variables, the ANN proved immense

calibration superiority with respect to a benchmark

regression model using the same set of variables.

As it was stated earlier, the main limitation of ANN
models is that it suffers from the so called ‘‘black-box’’

phenomenon. It fails to establish a causal relationship

between the constituting parts of a system. Thus, it is

not possible to select the significant policy variables

among a set of hypothesized variables. Furthermore, the

obtained weights for a variable do not provide a clear

elasticity measure unlike regression models.

Another limitation of ANN for predictive purposes
lies in very structure of the model; when new origin and

destination pairs are added to the existing network for

prediction, the model will not be able to obtain results

for the extended part of the network since it would not

have estimated parameters from the calibration phase.

In other words, an ANN model is not flexible to net-

work changes. This indicates a future research direction

to obtain strategies to adopt network changes.
The results of this study indicate that a theoretically

sound regression model (to select significant policy

variables) and an ANN (to obtain a predictive superi-

ority) can be combined successfully as a sequential

modeling approach. An ANN using theoretically rele-

vant variables as input is a very promising tool for short-

term forecasting of interregional freight distribution

modeling.
This sequential modeling framework can be used for

any type of spatial interaction modeling such as tele-

communication, shopping, migration, and input–output

modeling. Beyond spatial interaction, ANN is a very

promising technique in any type of pattern recognition.

It can be used in trip/freight generation, mode choice,

cost estimation, and project scheduling. Obviously,
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more elaborate studies are needed in all of these areas
using ANN.

Of course, this improvement is obtained for repli-

cating a set of observed flows, and this result does not

necessarily suggest that ANN will produce superior

results for prediction, as indicated by Mozolin et al.

(2002). This issue obviously remains as another research

question.
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