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Abstract. The purpose of this paper is to extend a previously published beam model of a turbine blade including the centrifugal
force field and root flexibility effects on a finite element model and to demonstrate the performance, accuracy and efficiency of
the extended model for computing the natural frequencies. Therefore, only the modifications due to rotation and elastic root are
presented in great detail. Considering the shear center effect on the transverse displacements, the geometric stiffness matrix due
to the centrifugal force is developed from the geometric strain energy expression based on the large deflections and the increase
of torsional stiffness because of the axial stress. In this work, the root flexibility of the blade is idealized by a continuum model
unlike the discrete model approach of a combination of translational and rotational elastic springs, as used by other researchers.
The cross-section properties of the fir-tree root of the blade considered as an example are expressed by assigning proper order
polynomial functions similar to cross-sectional properties of a tapered blade. The correctness of the present extended finite
element model is confirmed by the experimental and calculated results available in the literature. Comparisons of the present
model results with those in the literature indicate excellent agreement.

1. Introduction

Pre-twisted beams with aerofoil cross-section are used in several types of engineering structures, such as turbine
blades, helicopter blades, aircraft propellers, and wind turbine blades. If the centroid and shear center are not
coincident as in the pre-twisted beam with an aerofoil cross-section, the flexural vibrations in two planes and torsional
vibrations are inevitably coupled. Blade failure due to vibrations at or near a resonant condition has led to appreciable
research in this field to avoid such undesired results. Many researchers have reported results on the vibrations of
rotating pre-twisted beams of rectangular cross-section but few have discussed the same problem for an asymmetrical
aerofoil cross-section. Furthermore, coupled bending-bending-torsion vibration of a blade with elastic support has
received considerably less attention. Since there is no analytical solution for the vibration of rotating pre-twisted
beam with an aerofoil cross-section, semi-analytical or numerical methods are utilized to solve this problem.

Houbolt and Brooks [11] developed the differential equations of motion for the lateral and torsional deformations
of twisted rotating beams and used a Rayleigh-Ritz approach to compute the solution. Carnegie [3] formulated
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the total potential energy and kinetic energy of a rotating cantilever blade for small vibrations. Later, Carnegie [5]
presented a derivation of the equation of motion (dynamics) of a pre-twisted cantilever blade mounted on the
periphery of a rotating disc allowing for shear deflection, rotary inertia and torsion bending by use of the variational
procedure. Also, Carnegie [6] reported a more detailed derivation for the kinetic energy of a rotating cantilever
blade. Montoya [15] derived the equations of motion for a rotating pre-twisted cantilever beam with an aerofoil
cross-section, including shear center and higher order effects, and solved these by Runge-Kutta numerical integration
method. In his theoretical and experimental study, he obtained the natural frequencies of a blade with flexible
root and showed satisfactory agreement between his experimental and calculated results. Fu [9] transformed the
Carnegie’s formulation for a rotating pre-twisted non-uniform Timoshenko beam in coupled bending-bending-torsion
vibration into a set of recursion formulas as the basis of a lumped parameter approach. Karadag [12] developed
a thick beam finite element with eighteen degrees of freedom including the shear center effect to determine the
vibration characteristics of a rotating non-uniform aerofoil cross-sectioned blade. Abbas and Kamal [1] presented a
finite element model having twenty-four degrees of freedom for the same problem, additionally, taking into account
the root flexibility idealized as translational and rotational elastic springs. Sabuncu and Thomas [17] studied the
vibration characteristics of pre-twisted aerofoil cross-section blade packets under rotating conditions using thin beam
finite element model. As a new approximate method, Surace et al [18] presented an integral approach based on
Green functions following Houbolt and Brooks’ work. As a relevant contribution on this topic, Choi and Chou [8]
proposed the modified differential quadrature method for vibration analysis of elastically supported turbomachinery
blades, referring to the studies presented by Carnegie [4] and Fu [9] for the energy expressions. Using the mode
expansion method, Lin et al [13] derived a closed form solution of the dynamic and static systems related to the
differential equations for the coupled bending-bending vibration of a rotating non-uniform beam with tip mass,
arbitrary pre-twist and an elastically restrained root. Recently, Yardimoglu and Inman [20,21] proposed a finite
element model having fourteen degrees of freedom for coupled bending-bending-torsion vibration of a pre-twisted
thick beam with varying aerofoil cross-section, following the Timoshenko beam finite element model for untwisted
case [19]. Inthe present paper, as an extension of the previous paper [20,21], the modifications due to the centrifugal
force field and elastic root are presented in great detail. Considering the shear center effect, a geometric stiffness
matrix due to the centrifugal force field is developed from the geometric strain energy [10] based on both large
deflections [16] and the increase of the torsional stiffness [15] because of the axial stress. The elastic root of the blade
is modelled by using the continuum model approach. Thus, the same finite element model formulation derived for a
blade is employed to determine the stiffness and mass matrices of elastic root. An illustrative example is considered
allowing a comparison to the experimental and theoretical results by Montoya [15] in order to demonstrate the
performance, accuracy and efficiency of the present finite element model, and also to clarify the influence of the root
flexibility effects on the natural frequencies. In this example, cross-section properties of the fir-tree root of the blade
are expressed by assigning proper order polynomial functions similar to the cross-section properties of a tapered
blade as reported in the previous paper. Comparisons of the present finite element results with the experimental and
theoretical results in the literature (for simpler cases) indicate excellent agreement.

2. Rotational effectson finite element modelling

A blade with fir-tree root mounted on the periphery of a rotating disk as shown in Fig. 1 is considered. The view
of the pre-twisted blade from tip toward root is also given in Fig. 2 to help visualize the configuration. The notation
used through this paper is listed in Appendix A.

The longitudinal displacement of the beam is ignored [14] and the gyroscopic forces are neglected [10] to add
the rotational effects on the finite element model derived in [20]. The axial load acting on the cross-section at
the distanceR,., shown in Fig. 1, due to the centrifugal force field of the beam is obtained by using the following
equation:

Ry Ry+Ly
P, = / pAN(Z2)Q:ZdZ + / pAW(Z2)02ZdZ (1)
R, Ry

Therefore, the axial load acting at any sectidmlue to the centrifugal force field of the beam segment between

the section and the tip of the blade is written depending on the location of the section as follows:
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Fig. 2. View of pre-twisted blade from tip toward root.

Z

P(Z)=F —/ pA(2)Q%2ZdZ if R, < Z < Ry )
R,
Ry, A4

P(Z) = P, 7/ pA(2)Q2ZdZ 7/ pAL(Z2)02ZdZ if Ry < Z < Ry + Ly 3)
R, Ry

In Sections 4 and 6, the axial lodel(Z) will be expressed in the element local co-ordinate systen?(@s.
However, the co-ordinate transformation basedos Z.; + z is used in computer program.

On the other hand, the moment about the blade axis due to the axial stress arising from the centrifugal force is
given in [15] by

Mot = olppl, (4)

In this work, all parameters in Eq. (4) are functionsbf

3. Root flexibility effect on finite element modelling

The root of a blade have a little flexibility due to the disk on which blade is mounted and the root attachment (such
as fir-tree, T, pin-joint, etc) used to fix the blade onto the disc. These (disk and root attachment) can all be idealized
as continuum models or discrete models to take the additional flexibility into account in finite element modelling.
In this section, only the fir-tree type root attachment shown in Figs 1 and 3 is considered.

In the continuum model approach utilized in this step, the portion of the fir-tree type root attachment frtom
Ry, is treated in the usual manner used in the blade portion. Hence, cross-sectional properties of this portion can
be formulated for finite element modelling by using proper order polynomial functions considering the dotted curve
indicated in Fig. 3 for geometrical approximation. However, in the discrete model approach, the above mentioned
portion is assumed as springs which offer flexibility in or about certain directions depending on the nodal freedoms
chosen in finite element model.
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Fig. 3. Fir-tree root of the blade.
4. Strain energy

The elastic strain energy of a pre-twisted Timoshenko beam element derived in [20] is written as follows:
L L L
U. =05 / E(Igzat? + Igy,0,2)dz + / ElGqy0,0,dz +0.5 / kAG (2 + ¢2)dz
0 0 0
5)

L L
+/ Ba(J,0, + J,0,)0.dz + 0.5/ (GIr + EJo?)0.2dz
0 0
where
Yp =0 —0, and ¢, =u — 0, (6)

The symbol 7 " used in Egs (5) and (6) represents differentiation with respect to
The geometric strain energy [10] of a pre-twisted beam element due to centrifugal force is written by considering
Egs (1) and (4) as follows:

U, =05 /L P(2)(d@, +d&,)dz +0.5 /L o(2)Irpb.2dz @)
where i i

dgz =u—ry0, (8)

doy =v+10. (9)

o(z) = P(2)/A(z) (10)

in whichr,(z),,(z) and their differentiation () andr, (=) are given explicitly in [20].

5. Kinetic energy

Kinetic energy of an element is given in [20] as follows:

L L L
T = 0.5/ pA(VE, + Véy)dz + 0.5/ p(IGzaw? + Igyywi)dz + 0.5/ p(2IGaywewy + Igpw?)dz  (11)
0 0 0

where

UGy = U — 140, (12)

Vgy = U+ 150, (13)
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Table 1
Dimensional data of root shown in Fig. 2 [15]

Section number 0 1 2 3 4

R (cm) 64.89 65.605 66.32 67.035 67.75

A (cm?) 50.8 55.75 66 84.8 97

TGz (cm) 40.12 53 88 186.5 279

IGyy (cmt) 1152 1265 1498 1925 2200

I7 (cm?) 142 184.5 298.5 600 870
Wy =0, +10, +17,0, (14)
wy =y =y, — 70 (15)
Wy = éz (16)

The overdot used in Egs (12) to (16) is the usual compact notation for differentiation with respect to time.

6. Finite element formulation

The element employed in this section, derived in [20], has two nodes, with seven degrees of freedom at each
node. The nodal variables are transverse displacements, cross section rotations and shear angles in two planes and
torsional displacement. Hence, the nodal displacement vector is given by

{Qn} = {U v Oy 9y Vg wy ez}T (17)
Therefore, the element displacement vector is expressed as follows
{qnl} }
= 18
{ge} {{61”2} (18)

Substituting the assumed polynomial functions for the displacements with coefficients expressed in terms of nodal
displacements into Eqgs (5), (7) and (11), the elastic strain energy and kinetic energy are written as follows:

Ue = 0'5{(16}T[Ke]{qe} (19)
T = 0'5{Qe}T[Me]{Qe} (20)
where

L
(K] =[C]"" < A [@]dz) ! (21)

and
L
[M]=[C]" ( /0 [me]dz> (! (22)

Here the matricesi] and [m.] are reported in reference [20].
The element geometric stiffness matrix is found by following the same procedure used in order to obtain the
element elastic stiffness and mass matrices as follows:

Uy = 0.5{ge} " [Sel{ge} (23)
where

[Se]=[C17" </0 P(Z)[se]d2> (o (24)
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Table 2
Comparison of fundamental frequencies
Rotation Natural frequencies (Hz)
speed (rpm)  Experimental [15] Calculated [15] Present

0 82.25 80.25 78.98

500 83.25 80.5 80.45
1000 86.75 84 84.67
1500 91.75 89.75 91.21
2000 98.25 96.5 99.51
2500 105.5 104 109.10
3000 113.75 112.25 119.60

Table 3
Comparison of first harmonic frequencies
Rotation Natural frequencies (Hz)
speed (rpm)  Experimental [15] Calculated [15] Present

0 174 181.75 179.20

500 175 183.25 180.43
1000 179 187 184.07
1500 185.25 192.75 189.91
2000 200.75 197.67
2500 209.75 207.00
3000 220 217.56

in which

[se] = [PLTIP] + [P (B + (4 ) Po. )T [Po.] + (5 + 1) [P, 1T [Py, ] + o ([P) [Po.]

+Po. )" [P)]) = 7y (P [Po.] + [Po.) " [P.]) + ra (BT [Py ) + [Py 1T (R = ry ([P [P.] (25)

174

P )T [PL) + (rore +1yry)[Po )T [Py ] + (ryra + 7yry) [Po) T [Po.) + (Irp /A) Py [Py ]
The polynomial vectorgP, |, [P, ], and[P,_] in Eq. (25) are given explicitly in [20] using the compact fofRy,;.|.
All parameters in Eq. (25) are functions af

7. Dynamic equilibrium equation

To form the global matrices, element elastic stiffness, geometric stiffness and mass matrices given in the previous
section are assembled in the usual way, then boundary conditions are applied as claRpeeat In order to
obtain the natural frequencies, the dynamic equilibrium equation is reduced to eigenvalue problem given below,

(([K]+[8]) — @*[M]){q} = 0 (26)
The eigenvalue problem is then solved numerically.

8. Analysisand discussion

As an illustrative example, the rotating aerofoil cross-sectioned pre-twisted beam with rectangular cross-sectioned
fir-tree root, shown in Figs 1 and 2, analyzed experimentally and theoretically (by means of Runge-Kutta numerical
integration) by Montoya [15] is considered. Cross-section properties of the pre-twisted part of the blade given in
tabular form at nine discrete cross-sections alongataxis in [15,20] are formulated by assigning the polynomial
functions as given in [20] (and therefore not repeated here). However, the cross-sectional properties of the fir-tree
root from R, to R, considering the dotted curve shown in Fig. 3 are given in Table 1 at five discrete cross-sections
along theZ-axis. The cross-sectional data of the root are expressed as fourth-order polynomial functions determined
by curve fitting. These functions are carefully checked by computing the coefficients of determination [7], which
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Table 4
Effect of root flexibility on frequencies (Hz)

Root type rigid elastic
Frequency fundamental first harmonic  fundamental  first harmonic
Experimental [15] 83.4 184.8 82.25 174
Calculated [15] 80.3 185.5 80.25 181.75
Present 79.70 183.27 78.98 179.2
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Fig. 4. Fundamental frequencies of blade in terms of the rotation speed.
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Fig. 5. First harmonic frequencies of blade in terms of the rotation speed.

are equal to unity, and also by inspecting the plots of functions and the data. The fixing radius of the blade denoted
by R, is assumed to be at the narrowest section of the first scallop. For the sake of accuracy, the plot given for
experimental and theoretical blade frequencies in terms of speed in [15] is scanned, and then this image is resized
by utilizing an image editor to read the data as 0.25 Hz per pixel.

Developing a computer program in MATLAB, confirmation of the present finite element model is achieved.

The mass, elastic and geometric stiffness matrices in this program are computed by Gauss-Legendre numerical
integration [2,22].

For sake of comparison the present results obtained by employing eight elements for pre-twisted part and one
element for root part of the blade are computed. These results are then compared to the experimental and calculated
results plotted by Montoya [15] in Tables 2 and 3, which compare the frequencies numerically. Also, the same
numerical values are plotted and shown in Figs 4 and 5 to observe the trend of discrepancies visually. Itis clear from
Tables 2 and 4, and also from Figs 4 and 5 that the present results are in excellent agreement with the experimental
and theoretical results reported in [15] for a simpler system.

Further validation of the present model taking the elastic root effect into consideration is accomplished by
comparing the present results found for a non-rotating blade with rigid and elastic root to the results reported by
Montoya [15] in Table 4. Again, excellent agreement can be seen from Table 4.

9. Conclusion

The present finite element is an excellent model for coupled bending-bending-torsion vibration analysis of a
rotating varying aerofoil cross-sectional pre-twisted beam with flexible root. The comparisons of the present model
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results with previously published experimental and theoretical results show the superior performance of the present
model. Also, the advantage of the present finite element formulation is the utilization a quite modest number of
the degrees of freedom. Furthermore, the continuum model approach for elastic root of the pre-twisted blade in the
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finite element model is validated by considering the non-rotating blade frequencies.

Appendix A: Notation

A

Ay

Ar

[C]

dGa;7 de
E

G
Igp,ITp
IG:vz ) Iny
IG;cy

It

[Pdr]

{q}

{an}

{qnl}; {%2}
{g.}

Cross-sectional area of the beam element

Cross-sectional area of the blade portion

Cross-sectional area of the root portion

Element nodal co-ordinate matrix

Transverse displacements of the centroidirandyz planes, respectively
Modulus of elasticity

Modulus of rigidity

Polar moments of inertia about centroid and shear center, respectively
Area moments of inertia of the cross-section ablGut: andGyy axes, respectively
Product moment of inertia of the cross-section ali@ut-Gyy axes
Saint-Venant torsion constant

Coefficients of coupling aboutz, yy andzz axes, respectively

Shear coefficient

Global elastic stiffness matrix

Element elastic stiffness matrix

Length of beam element

Length of pre-twisted portion

Length of elastic portion of the attachment

Total elastic length

Moment about blade axis due to rotation

Global mass matrix

Element mass matrix

Centrifugal force at co-ordinateof element/

Centrifugal force at the distande,

Polynomial vector for nodal variabté- (see Eq. (30) in [20])

Global displacement vector

Nodal displacement vector

First and second nodal displacement vectors

Element displacement vector

Centroid co-ordinates with respect to shear center thrauglyy axes, respectively (see Fig. 2

in [20])

Minimum radius of pre-twisted portion (see Fig. 1)
Minimum radius of elastic portion of attachment (see Fig. 1)
Global geometric stiffness matrix

Element geometric stiffness matrix

Kinetic energy

Transverse displacement of the shear centetiplane

Elastic and geometric strain energies

Transverse displacement of the shear centgeiplane

Linear velocities of centroid inz andyz planes, respectively
Co-ordinate system through the shear center at root section
Global co-ordinate system

local co-ordinate distance measured along beam element
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Ze Left node co-ordinate of element

e Twist angle per unit length

0z,0y,0, angular displacements about they andz axes, respectively
p Density

o Axial stress due to centrifugal force

Y,y Shear angles aboutandy axes, respectively

W, Wy, W Angular velocities about the, y andz axes, respectively
Q Natural circular frequency of a pretwisted beam

Qq Rotation speed of disk

“) Differentiation with respect to time

(n) Differentiation with respect te

Appendix B:

In this appendix, the misprints found in reference [20] are given. _
In Eq. (19), angular velocity about y axis shoulddg = 0,, — 0, — r,0, instead of

wy = 0y — 0.+ 1.0

In Eq. (35), element stiffness matrix should[#&.] = [C]*T(foL [ke]d2)[C]~1 instead of
[Ke] = [C] " kel [C]

Similarly, in Eq. (38), element mass matrix shouldbé.] = [C]*T(fOL [m.]dz)[C]~! instead of
[M.] = [C]"[mc][C] !
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