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Abstract

In this paper, results of a project aimed at modelling the compressive strength of cement mortar under standard curing conditions are

reported. Plant data were collected for 6 months for the chemical and physical properties of the cement that were used in model construction

and testing. The training and testing data were separated from the complete original data set by the use of genetic algorithms (GAs). A GA–

artificial neural network (ANN) model based on the training data of the cement strength was created. Testing of the model was also done

within low average error levels (2.24%). The model was subjected to sensitivity analysis to predict the response of the system to different

values of the factors affecting the strength. The plots obtained after sensitivity analysis indicated that increasing the amount of C3S, SO3 and

surface area led to increased strength within the limits of the model. C2S decreased the strength whereas C3A decreased or increased the

strength depending on the SO3 level. Because of the limited data range used for training, the prediction results were good only within the

same range. The utility of the model is in the potential ability to control processing parameters to yield the desired strength levels and in

providing information regarding the most favourable experimental conditions to obtain maximum compressive strength.
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1. Introduction

Compressive strength of Portland cement mortar is the

major property that defines its quality and depends on

several factors that need to be controlled during manufac-

ture. These factors range from the C3S content to the

fineness of the milled product and have varying degrees

of effect on strength. An analytical model to describe the

effects of each of these factors on strength can be very

complex. Artificial neural networks (ANNs) can be used

for this purpose as a tool for prediction modelling of

strength. Its use for concrete strength prediction was

previously studied [1], but the use of genetic algorithms

(GAs)–ANNs for prediction of the strength of cement

mortar has not yet been reported. Other modelling studies

involved extrapolation method, regression analysis methods

and fuzzy logic.

The extrapolation method proposed by de Siquera Tango

[2] involves the prediction of 28-day strength based on the

2- and 7-day strengths via the use of the AMEBA method.

Tsivilis and Parissakis [3], on the other hand, applied

stepwise regression analysis techniques to develop a math-

ematical model. The predicted variables in that study were

2-, 7- and 28-day strengths as a function of chemical and

physical parameters. In a recent paper of Fa-Liang [4], fuzzy

logic was proposed as a modelling technique of compressive

strength development of cement. Sensitivity analysis and the

resulting response plots of the prediction models were not

performed in these studies.

Data from a local cement plant for standard curing were

employed in this research by feeding them to a GA-based
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ANN to create a model to describe the cement strength.

(Because testing the strength of cement is ordinarily per-

formed by mixing cement with sand and water [5], the

cement mortar is also commonly referred to as cement.) The

data were collected during 6 months of plant operation.

Because the plant operational parameters occasionally vary,

the data had some variations that must be taken care of

before modelling. In other words, the average strength of the

shipped product varied as a function of time. Therefore,

modelling the system for the data for the first 4 months and

testing the quality of the model for the remaining 2 months

could produce a biased model. To alleviate this issue, a GA-

based neural network simulator algorithm for the prediction

of cement strength is developed in this study. ANNs are

extensively used to model complex systems in a wide range

of fields [6–9].

2. Artificial neural networks

In this study, the common three-layer feed-forward type

of ANNs, as shown in Fig. 1, is considered. In a feed-

forward network, the input quantities are first normalized

to a range of 0.1 to 0.9 via Eq. (1), and then fed into input

layer neurons, which in turn pass them on to the hidden

layer neurons after multiplying by a weight. A hidden

layer neuron adds up the weighted input received from

each input neuron, associates it with a bias, if any, and

then passes the result on through a nonlinear transfer

function. The output neurons do the same operation as

that of a hidden neuron.

Xi ¼ 0:1þ 0:8ðXi � XminiÞ=ðXmaxi � XminiÞ ð1Þ

where Xmaxi and Xmini are the maximum and minimum

values of the ith node in the input layer for all the feed

data vectors, respectively. The weights were assigned a

random value between � 1 and 1.

Before its application to any problem, the network is first

trained, whereby the difference between the target output

and the calculated model output at each output neuron is

minimized by adjusting the weights and biases through

some training algorithm. During training, a neuron receives

inputs from a previous layer, weights each input with a

prearranged value, and combines these weighted inputs. The

combination of the weighted inputs is represented as:

netj ¼
X

xivij ð2Þ

where netj is the summation of the weighted input for the jth

neuron, xi is the input from the ith neuron to the jth neuron,

and vij is the weight from the ith neuron in the previous layer

to the jth neuron in the current layer.

The netj is passed through a transfer function to deter-

mine the level of activation. If the activation of a neuron is

strong enough, it produces an output that is sent as an input

to other neurons in the successive layer. In this study,

sigmoid function is employed as an activation function in

the training of the network:

f ðnetjÞ ¼
1

1þ e�netj
ð3Þ

The learning of ANNs is accomplished by a back-

propagation algorithm where information is processed in

the forward direction from the input layer to the hidden

layer and then to the output layer (Fig. 1). The objective of a

back-propagation network is, by minimizing a predeter-

mined error function, to find the optimal weights that would

generate an output vector Y=( y1, y2, . . ., yp) as close as

possible to target values of output vector T=(t1, t2, . . ., tp)
with a selected accuracy.

A predetermined error function has the following form

[9]:

E ¼
X

P

X

p

ðyi � tiÞ2 ð4Þ

where yi is the component of an ANN output vector Y, ti is

the component of a target output vector T, p is the number

of output neurons; and P is the number of training

patterns.

The least square error method, along with a generalized

delta rule, is used to optimize the network weights. The

gradient descent method, along with the chain rule of

derivatives, is employed to modify network weights as:

vnewij ¼ voldij � d
BE

Bvij
ð5Þ

where d is the learning rate that is used to increase the

chance of avoiding the training process being trapped in a

local minima instead of a global minima.

The details of ANNs can be obtained from the literature

[6–7].

3. GA as an average equalizer

3.1. Description of the problem

In ANN programming, the data is unequally divided in

two; the first batch is used for training and the rest is forFig. 1. A typical back-propagation ANN model with four neurons.
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testing of the model. For robust modelling, the network

needs to be fed with a statistically balanced data. That is, the

training and testing data sets should have approximately the

same minimum to maximum range and average strength

values as in the parent data set. In this study, there were a

total of 150 data sets with minimum, average and maximum

strength values of 47.6, 53.14 and 58.4 MPa, respectively.

We initially used the first 100 of these data sets, in

chronological order, for training of the model and the

remaining 50 for testing. We found out that the resulting

model was biased due to the different average strength

values between the training (52.47 MPa) and testing

(54.49 MPa) data sets. This difference was about 4%. We

eliminated this bias problem by the use of GAs, which

sorted the training and testing data set in a balanced manner.

The resulting data sets had the same average strength of

53.14 MPa.

The data sorting for equalizing the averages can be done

manually only if the number of data is limited. When more

data are involved, a separate GA program may be employed

before the application of NN. This code may also be thought

of as an average filter.

3.2. Genetic algorithms

In nature, the species are evolved to survive under the

harshest conditions. This evolution (survival of the fittest)

process has attracted the attention of computing society for

solving problems in various disciplines. As a result, GAs

that mimic the evolution process were developed in the last

decade of the 20th century.

The GAs employ Darwinian selection and Mendelian

crossover principles. GAs contain steps that range from

simulating fertilization of any diploid organism to the

extinction of a certain species during a computing session.

Because GAs are robust and guided random search

methods, they have found a niche in the nonlinear

programming field. An in-depth analysis is given in

Ref. [7].

4. Data collection

The data used in GA-ANNs modelling were collected

from a local cement plant that uses strength testing for

process control. The data belonged to the period between

the months of January and July 2001. Cement strength

testing is carried out according to European standard EN

196-1[5]. Premanufactured sand with controlled particle

size distribution and chemical composition is mixed with

known amounts of cement and water. The mixture is

molded into rectangular shapes (4� 4� 16 cm) and

stored in a humidity cabinet at >90% relative humidity

and 20 ± 1 �C for 24 h. Standard curing samples are

stored in a water bath for 1, 6 and 27 more days for

compressive strength testing. The type of cement used in

this research was Cem I 42.5R European standard EN

197-1 [10]. In all types of strength tests, six identical

sample bars were tested for better statistics.

5. Model construction

In this study, the ANN architecture was of feed-forward

type composed of three layers (Fig. 1). There were 20

neurons in the input layer for the 20 input variables. The

middle layer had 20 neurons although different numbers

of neurons were also tested. In the output layer, one

neuron was used for the output variable of cement

strength. The input variables, their means and ranges are

listed in Table 1.

Bias term was not used during modelling but a mo-

mentum term was used to help obtain faster convergence

during iterations. This helped the iteration process not to

get stuck in local minima, but rapidly reach the desired

global minima. There were a total of 150 data sets each

with 21 components (x1, x2, . . ., x20; y) 20 of which are

the input variables whereas the 21st one is the output

variable (Table 1). The program was instructed to run for

40000 iterations and the optimal weights were calculated

with an average percentage training error of 1.88% for the

Table 1

The input variables used in model construction

Code Input variable Data used in model building

Minimum Average Maximum

x1 SiO2 (%) 18.60 19.54 20.40

x2 Al2O3 (%) 4.60 5.07 5.70

x3 Fe2O3 (%) 3.50 3.64 4.00

x4 CaO (%) 62.7 64.1 65.3

x5 SO3 (%) 2.2 2.7 3.1

x6 Loss on ignition (%) 1.30 1.87 2.70

x7 Free lime (%) 0.60 1.13 1.70

x8 C3S (%) 51.70 60.96 68.30

x9 C2S (%) 3.60 10.01 18.30

x10 C3A (%) 6.30 7.29 8.90

x11 C4AF (%) 10.60 11.05 11.80

x12 Aluminate modulus

(Al2O3/Fe2O3)

1.30 1.39 1.60

x13 Silicate modulus

(SiO2/(Al2O3 + Fe2O3))

2.00 2.24 2.50

x14 Na2O (%) 0.10 0.21 0.30

x15 K2O (%) 0.70 0.78 0.80

x16 Initial setting time

(min)

95.00 156.77 225.00

x17 Final setting time

(min)

150.0 248.0 365.0

x18 Specific surface

(cm2/g)

3120.0 3657.8 4100.0

x19 Sieve residue on

90 mm (%)

0.10 0.72 2.40

x20 Sieve residue on

32 mm (%)

8.20 15.52 25.50

y Compressive strength

(MPa (or N/mm2))

47.60 53.14 58.40
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output variable whereas the maximum percentage training

error was 6.30% (Fig. 2). As can be seen in Fig. 2, the

training of the model was successfully accomplished. The

model was very close to the actual data and was able to

follow the trend. The extreme values of the targeted

strengths, on the other hand, could not be obtained from

the model. This was to be expected because the model

was conservative and needed more extreme training data

to learn the extremes.

The trained model was tested by comparing it to

actual measured data that forms a group of 50 data sets

sorted after the application of GAs, and the testing results

are given in Fig. 3. As can be seen in Fig. 3, the

performance of the model was very good with an average

error of 2.24% and a maximum error of 8.67%. The

model was able to closely follow the trend of the actual

data.

6. Results of sensitivity analysis and discussion

Sensitivity analysis is performed by feeding input pa-

rameters at varying levels into the developed model and

producing prediction outputs of cement strength. The whole

range of each input factor is divided into 10 equal parts to

have a continuous plot for factor effects. These ranges are

listed in Table 2 and are the same as for training data

because the model cannot be used to predict strength values

for input parameter ranges for which it is not trained. For

example, the SO3 range of 2.25–3.12 is divided into 10

Fig. 3. Results of testing of the model.

Fig. 2. Results of training of 100 data sets.
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subdivisions and the surface area (Blaine = 3150–4080)

divided into 10 subdivisions, and a total of 100 predicted

percent cement strength values are obtained (Fig. 4). The

utility of sensitivity analysis in this research is that it enables

researcher or plant operators to easily identify the experi-

mental conditions for higher cement strength.

Figs. 4–9, based on the results of prediction runs of the

model, show the effects of two factors at a time on each

surface plot of the cement strength. We preferred paired-

variable plots to single-variable plots for the sake of brevity.

In addition, one can see the effects of two variables at once

on a single surface plot. We plotted a fraction of all possible

variable pair combinations to save space in the paper.

However, the selections adequately represent the critical

parameters. The effects of SO3 and surface area (Blaine) on

cement strength are shown in Fig. 4. As can be seen in Fig.

4, increasing Blaine leads to a gradual increase of cement

strength at all levels of SO3. The effect of increasing SO3,

likewise, results in increasing strength at all levels of Blaine.

There is no interaction between the two factors, that is, the

rate of increase of strength with Blaine was the same at all

levels of SO3. Because of the limited range of factors

covered during training, the surface plot of Fig. 4 was a

slightly inclined surface without much topographical vari-

ation. In short, the effects of Blaine and SO3 were both

linear. According to Czernin [11], the effect of increasing

Blaine on strength is countered by the slowdown of hydra-

tion due to decelerated water diffusion through the gels. He

also suggests that the fineness of grinding is less important

than the chemical composition of the cement when final

strength is considered. A wider test range for the effect of

Blaine could have produced the slowdown predicted by

Czernin. A further study by Tsivilis et al. [12] stated that the

Blaine should be considered along with the particle size

distribution data (uniformity factor). Lea [13] suggested that

addition of gypsum has a positive effect on mechanical

properties of cement up to a certain optimum content.

The effects of C3S and SO3 are plotted in Fig. 5. As can

be seen in Fig. 5, slightly higher strengths could be obtained

when C3S was increased at low levels of SO3. The effect of

Table 2

Factor ranges that are used for sensitivity analysis

Factor effect Range studied in

sensitivity analysis

SO3 2.25–3.12

Free CaO 0.58–1.64

Na2O 0.1–0.3

K2O 0.7–0.8

C3S 51.66–68.35

C2S 3.63–18.28

C3A 6.26–8.86

Surface area (Blaine) 3120–4080

CPCT 32 mm 8.2–25.5

Fig. 4. Combined effects of SO3 and Blaine on cement strength.

Fig. 5. Combined effects of SO3 and C3S on cement strength.

Fig. 6. Combined effects of C3S and Blaine on cement strength.
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C3S was insignificant when SO3 levels were high. Increas-

ing C3S is normally expected to provide higher strength

[11,13]. However, the narrow margin of C3S levels used in

modelling might explain the reason for this insignificant

contribution from C3S.

The combined effects of C3S and Blaine on strength are

shown in Fig. 6. Again C3S has little effect on strength

whereas Blaine significantly increases the strength. The same

effect was observed for Blaine in Fig. 4, but here it was

observed to be much more effective in increasing strength.

Fig. 7 shows the effects of SO3 and C3A on strength.

Increasing SO3 increases strength at all levels of C3A but at

different rates, suggesting the presence of interaction

between the two factors. The effect of C3A, however, was

to increase strength at low levels of SO3 and to decrease

strength at high levels of SO3. This is negative interaction

between the two factors. Lea [13] suggested that increasing

content of C3A increases the strength to a certain degree.

Decreasing strength at high levels of SO3 could be ex-

plained by the excessive amount of gypsum in the cement

that may have led to expansion of the cement mortar [14].

The effects of SO3 and C2S are also plotted based on the

model as shown in Fig. 8. Increasing amount of C2S leads to

a decrease in strength at low levels of SO3. This was to be

expected because the C2S level is not measured but calcu-

lated from C3S percentages. The effect of SO3 was similar to

the previous plots. Again, the two factors were found to be

interacting. The effect of SO3 was again to produce in-

creased strength.

Fig. 9 shows the effects of alkali content of cement on its

strength. The graph is saddle shaped but the trend is in

increasing strength with decreasing K2O at high levels of

Na2O. The effect of varying K2O was always concave

whereas that of Na2O was convex. Maximum strength

appeared to be obtained at low K2O and moderately high

Na2O (0.28–0.20) levels. Osbaeck [15] reported that the

effect of alkalis on strength was significant and that the

effect of soluble alkalis correlated better with strength than

Fig. 7. Combined effects of SO3 and C3A on cement strength.

Fig. 8. Combined effects of SO3 and C2S on cement strength.

Fig. 9. Combined effects of Na2O and K2O on cement strength.

Fig. 10. Effect of CPCT 32 mm on strength.
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the total alkalis. The saddle shape of the graph may perhaps

be explained by the effects of soluble and insoluble parts of

alkalis.

Figs. 10 and 11 show the effects of CPCT 32 mm
(cumulative percent coarser than) and free lime on strength,

respectively. The effect of free lime was only a minor effect

that led to a slight linear decrease in strength with increasing

free lime. Similarly, CPCT 32 mm was also slightly effective

in decreasing strength at higher fractions of coarse particles.

These are the expected results and there is a widely

documented literature on these effects [11–13].

7. Conclusions

In this study, a three-layer GA-ANN model is developed

for the prediction of 28-day cement strength. Input param-

eters used in the model creation process included the

chemical composition of cement, surface area, particle size

distribution, and C3S and silicate moduli. The model is

created for a local cement plant process control data. GAs

provided a balanced means of separating training and testing

data at the beginning of the modelling task. The learning

rate, momentum term and the number of hidden layer

neurons were adjusted to yield a model with the least error.

Sensitivity analysis was performed on the model to

predict strength values for selected combinations of factor

effects. These predictions were then shown on surface plots.

The effects of varying SO3, C3S, C2S, C3A, K2O, Na2O and

surface area (Blaine) were plotted on surface graphs based

on the developed model. The effects of free lime and CPCT

32 mm were plotted on linear plots, which showed that their

effects are limited to very low levels. The effect of increas-

ing the C3A level was found to produce higher strength at

low levels of SO3, and lower strength at higher levels of

SO3. A similar interaction was observed for the effects of

SO3 and C2S. Other factors showed the expected results.

The satisfactory predictions of the observed cement

strength by the model indicates that ANNs could be a useful

tool for understanding such systems. Consequently, the

model could be utilized by plant operators to optimally

choose strength as a function of measured cement prop-

erties.
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