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Hamilton functions of classical deformed oscillators (c-deformed oscillators) are derived
from Hamiltonians of q-deformed oscillators of the Macfarlane and Dubna types. A new
scale parameter, lq, with the dimension of length, is introduced to relate a dimensionless
parameter characterizing the deformation with the natural length of the harmonic oscillator.
Contraction from q-deformed oscillators to c-deformed oscillators is accomplished by keeping
lq finite while taking the limit � → 0. The c-deformed Hamilton functions for both types
of oscillators are found to be invariant under discrete translations: the step of the transla-
tion for the Dubna oscillator is half of that for the Macfarlane oscillator. The c-deformed
oscillator of the Macfarlane type has propagating solutions in addition to localized ones.
Reinvestigation of the q-deformed oscillator carried out in the light of these findings for
the c-deformed systems proves that the q-deformed systems are invariant under the same
translation symmetries as the c-deformed systems and have propagating waves of the Bloch
type.

§1. Introduction

Macfarlane first formulated a coordinate representation of quantum deformed os-
cillators (q-deformed oscillators) in terms of difference operator.1) Around the same
time, the Dubna group derived a coordinate representation of q-deformed oscillators
as an exactly solvable model2) for the difference Schrödinger equation in the rela-
tivistic configurational space.3) Detailed analyses of the Macfarlane type oscillators
were carried out by Shabanov and Rajagopal.4)–6) In particular, Shabanov obtained
the Hamilton function of a classical deformed oscillator (c-deformed oscillator) on a
unit circle from the q-deformed oscillator using path integral formalism.

In a previous paper,7) we investigated q-deformed oscillators of the Macfarlane
type1), 4), 5) and the Dubna type3), 8)–10) in a unified way. The aims of this paper are
to derive c-deformed oscillators from q-deformed oscillators of the Macfarlane and
Dubna types using the WKB method11) and to reinvestigate the q-deformed systems
using knowledge obtained here regarding the c-deformed systems. Henceforth, we
call oscillators of the Macfarlane type “M-oscillators” and oscillators of the Dubna
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type “D-oscillators”.
In §2 we outline the unified theory of M- and D-oscillators.7) The distinction be-

tween these two types of oscillators originates in the structure of difference operators
[see Eq. (2.7)]. With the aid of basic formulas concerning the difference operators of
M- and D-oscillators, we derive explicit forms of the ladder operators of the harmonic
oscillators and examine the symmetry structures of the q-deformed systems in §3.

In §4, a new scale parameter, lq, with the dimension of length4) is introduced
to relate a deformation parameter q with the natural length l =

√
�/mω, where m

and ω are mass and angular frequency of the oscillator. The Hamilton functions
of c-deformed harmonic oscillators are derived from the Hamiltonian of q-deformed
harmonic oscillators by keeping lq finite while taking the limit � → 0. In c-deformed
oscillators, the deformation causes the state of the system to be repeated infinitely
many times along the coordinate axis. The period of the Hamilton function of the D-
oscillator is half of that of the M-oscillator. Both circulation and libration behavior
appear in the c-deformed M-system.

The results obtained for the c-deformed systems lead us to reinvestigate the
q-deformed systems studied previously.7) In §5, the Hamiltonians of q-deformed
oscillators are proved to be invariant under symmetries of discrete translations with
steps that are identical to the periods of the c-deformed oscillators. Propagating
waves of the Bloch type are shown to exist in §6 and Appendix A.

§2. Unified description of q-deformed oscillators

The lowering operator Â and the raising operator Â† of q-deformed harmonic
oscillators are postulated to satisfy the so-called q-mutator relation7)–9)

[Â, Â†]q ≡ qÂÂ† − q−1Â†Â = 1, (2.1)

where q is the deformation parameter expressed by

q = exp
(
s2 + t2 + 3st

)
(2.2)

in terms of the real parameters s and t.7) The Hamiltonian of the system given by

Ĥq =
1
2
{Â, Â†}q ≡ 1

2
(qÂÂ† + q−1Â†Â) (2.3)

possesses the energy eigenvalues

En =
q + q−1 − 2q−2n−1

2(q − q−1)
(2.4)

corresponding to the localized eigenstates (A†)n|0〉, where |0〉 is the lowest energy
state characterized by the condition A|0〉 = 0. As shown in Fig. 1, while the energy
spectrum is bounded and there exists the upper bound E = (q + q−1)/2(q − q−1)
in the case of the M-oscillator (q > 1), the spectrum is unbounded and increases
exponentially in the case of the D-oscillator (q < 1).12)
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Fig. 1. The energy spectra of the M-oscillator (q = es2
> 1) and the D-oscillator (q = e−s2

< 1).

The energy spectrum is bounded for the M-oscillator and unbounded for the D-oscillator. The

dotted line represents the upper bound of the energy for the M-oscillator. Here we use s = 0.2.

The lowering and raising operators in the coordinate representation, A(x) and
A†(x), are postulated to have the separable forms

A(x) =
f(x)
g(x)

exp[−ih(x)]D
(

1
i

d

dx

)
1

f(x)g(x)
(2.5)

and

A†(x) = − 1
f(x)g(x)

D

(
1
i

d

dx

)
f(x)
g(x)

exp[ih(x)], (2.6)

where D
(

1
i

d
dx

)
is the difference operator defined by

D

(
1
i

d

dx

)
=

i

(s− t)

[
exp

(
−is d

dx

)
− exp

(
−it d

dx

)]
(2.7)

and f(x), g(x) and h(x) are functions that take real values for x ∈ R. We call these
functions “part-functions”7) and assume that all of them are continued analytically
in the complex x plane. These functions are determined by the conditions that the
ladder operators satisfy the q-mutator relation in Eq. (2.1) and reduce to those of
the ordinary (non-deformed) harmonic oscillator in the limit q → 1 [see Eqs. (7.1)
and (7.2)]. By definition, the function f(x) is intrinsically uncertain by an arbitrary
quantity that commutes with the difference operator D, and the sign of the function
g(x) also is indeterminate. With the operators A(x) and A†(x), the x-representation
of the Hamiltonian Ĥq is given by

Hq(x) =
1
2
[qA(x)A†(x) + q−1A†(x)A(x)]. (2.8)

For the q-mutation relation given in Eq. (2.1) to hold, the parameters s and t
must satisfy either the conditions

s �= 0 and t = 0 (s = 0 and t �= 0) (2.9)
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or
s+ t = 0. (2.10)

The former and latter conditions correspond, respectively, to the M- and D-oscillators.
The part-function f(x) is represented as a superposition or a smooth connection of
the Gaussian functions7)

fk(x) = exp

[
−1

2

(
x− 2kπ

s

)2
]
, (2.11)

which are centered at the positions x = (π/s)×(even integers).∗)

Different global structures of the system are realized with different choices of the
superposition and connection. As shown in Appendix B, the ladder operators are
independent of the global structure of the part-function f(x). Therefore, for brevity,
we use the single peak Gaussian factor fk(x) for the part-function in the arguments
given in §§ 3 and 4.

The part-functions g(x) and h(x) of the M- and D-oscillators are expressed in a
unified way by using parametric representations as

g(x) =
(
q − q−1

ln q

) 1
4

√
cos
(

2st
s− t

x

)
(2.12)

and
h(x) = −2(s+ t)x+ a0, (2.13)

where a0 is an arbitrary constant.
The eigenfunction belonging to the eigenvalue En of the Hamiltonian Hq(x) is

given by

ψn(x) = K0s
nf(x)g(x) exp{in[h(x) + (s+ t)x]}

×
n−1∏
j=0

{
e(s+t)2

[
1 − e−2s2(j+1)

]}−1/2
Hn(x; e−s2

), (2.14)

where

Hn(x; e−s2
) =

(
i

s

)n n∑
k=0

(−1)k

[
n
k

]
e−s2

× exp
{

(2k − n)
[
isx− 1

2
(s+ t)2

]}
, (2.15)

[
n
k

]
e−s2

=

n−1∏
k=0

[1 − e−2(k+1)s2
]

n−m−1∏
k=0

[1 − e−2(k+1)s2
]
m−1∏
k=0

[1 − e−2(k+1)s2
]

(2.16)

∗) In §5 and Appendix A, additional Gaussian functions centered at the positions x = (π/s)×
(odd integers) are proved to exist for the part-function f(x) in the case of D-oscillator.
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q-Deformed Harmonic Oscillators 823

and K0 is a normalization constant. For the D-oscillator, our q-Hermite function
Hn(x; e−s2

) defined by Eqs. (2.15) and (2.16) is related to the q-Hermite function
Hn(sin sx | e−2s2

), which was studied by Atakishyeva et al.,13) as follows:

Hn(x; e−s2
) = s−nHn

(
sin
[
sx+

i

2
(s+ t)2

]∣∣∣∣e−2s2

)∣∣∣∣∣
s�=0, t=0 or t=−s

. (2.17)

Our q-Hermite function reduces to the ordinary Hermite function in the limit s→ 0.
While the M-oscillator is not invariant under spatial reflection, the D-oscillator is,
and the q-Hermite function of the D-oscillator has definite parity defined by

Hn(−x; e−s2
) = (−1)nHn(x; e−s2

). (2.18)

§3. Common symmetry of q-deformed M- and D-oscillators

In order to examine the symmetry structure of q-deformed systems, it is con-
venient to use the following formulas concerning the difference operators of the M-
and D-oscillators:

exp
(nπ
s
x
)[

exp
(
−is d

dx

)
− 1
]

=
[
(−1)n exp

(
−is d

dx

)
− 1
]

exp
(nπ
s
x
)

(3.1)

and

exp
(nπ
s
x
)[

exp
(
−is d

dx

)
− exp

(
is
d

dx

)]

= (−1)n

[
exp

(
−is d

dx

)
− exp

(
is
d

dx

)]
exp

(nπ
s
x
)
, (3.2)

where n is an arbitrary integer. These formulas are readily proved by noting the
action of the difference operator on an arbitrary function F (x) of the C∞ class:
exp(±isd/dx)F (x) = F (x± is).

With these formulas, we are able to considerably simplify the ladder operators.
Let us separate the Gaussian factor centered at the origin from the factor fk(x)
centered at x = 2kπ/s as

f(x) ≡ fk(x) = exp
(
−1

2
x2

)
f∗(x), (3.3)

where

f∗(x) = exp
(

2kπ
s
x− 2k2π2

s2

)
. (3.4)

The formulas given in Eqs. (3.1) and (3.2) enable us to prove that the function f∗(x)
commutes with the difference operator D, i.e.,[

D

(
1
i

d

dx

)
, f∗(x)

]
= 0, (3.5)
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for both the M- and D-oscillators.
Due to this property expressed by Eq. (3.5), the function f∗(x) does not affect

the local structure of the ladder operators A(x) and A†(x). The Gaussian factor
centered at the origin alone determines the ladder operators as follows:

A(x) =

√
ln q

q − q−1

exp
[
−1

2x
2 + 2i(s+ t)x− ia0

]
√

cos
[

2st
(s−t)x

] D

(
1
i

d

dx

)
exp

(
1
2x

2
)

√
cos
[

2st
(s−t)x

] (3.6)

and

A†(x) = −
√

ln q
q − q−1

exp
(

1
2x

2
)

√
cos
[

2st
(s−t)x

]D
(

1
i

d

dx

)
exp

[
−1

2x
2 − 2i(s+ t)x+ ia0

]
√

cos
[

2st
(s−t)x

] . (3.7)

At this stage, we define an operator imparting a discrete translation by

T : x→ x+
π

s
. (3.8)

Equations (3.1) and (3.2) prove that the ladder operators are invariant under T 2:

T 2A(x) = A

(
x+

2π
s

)
= A(x), T 2A†(x) = A†

(
x+

2π
s

)
= A†(x). (3.9)

Therefore, the Hamiltonians of the M- and D-oscillators are both invariant under
translations by 2π/s:∗)

T 2Hq(x) = Hq

(
x+

2π
s

)
= Hq(x). (3.10)

§4. Contraction of q-deformed oscillators

For the sake of mathematical simplicity, all variables and parameters were treated
as dimensionless quantities for both the M- and D-oscillators in the preceding sec-
tions. Here, we restore the physical dimensions to all such quantities. With the
natural units l and �ω, we rewrite the coordinate and Hamiltonian of the q-deformed
oscillator as

y = lx, H(y) = �ωHq

(y
l

)
(4.1)

in dimensional forms. We mainly use the dimensional variable y in this section.
Following Shabanov,4) we introduce a new dimensional scale lq = κ−1

q to relate
the dimensionless parameter q with the unit of length l. By using the two scales l

∗) An additional symmetry is hidden in the D-oscillator. In §5, the ladder operators of the

D-oscillator are proved to be invariant under a single operation of T . This additional symmetry,

which was not found in the previous investigation,7) was discovered only after the analysis of the

c-deformed oscillator was carried out.
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and lq, we express s and t appearing in the definition of the deformation parameter
q as

s =
l

lq
s� = lκqs�, t =

l

lq
t� = lκqt�, (4.2)

in terms of the new dimensionless real parameters s� and t�. The limiting pro-
cedure q → 1 has two physical meanings, viz, the classical limit l → 0 and the
non-deformation limit κq → 0.

It is essential to recognize that the factors sl/� = s�l
2κq/� and tl/� = t�l

2κq/�
in the difference operator (2.7) and sx = sy/l = s�κqy in the lattice factor cos(sx)
are independent of �, because s, t and l are proportional to

√
�. These factors

survive in the classical limit � → 0 if κq is kept finite. Therefore, the deformation
persists in classical systems, and the parameter κq = l−1

q in q represents the degree
of deformation.

4.1. Contraction to non-deformed quantum oscillators: κq → 0 with � fixed

To reduce the Hamiltonians of q-deformed oscillators to those of ordinary oscilla-
tors at the quantum level, we express the ladder operators in terms of the dimensional
variable y and then take the limit κq = l−1

q → 0, keeping � finite.
• M-oscillator

The product of the raising and lowering operators is explicitly given by

A†(y)A(y) =
1

es2 − e−s2

{
e−s2

exp
(
−2isl

d

dy

)
−
[
exp

(
is

l
y +

1
2
s2
)

+exp
(
− is
l
y − 1

2
s2
)]

exp
(
−isl d

dy

)
+ 1
}
. (4.3)

A coordinate representation of the Hamiltonian H(y) is obtained by using the
q-mutator defined in Eq. (2.1) and substituting Eq. (4.3) into Eq. (2.3). Ex-
panding it around κq = 0, we obtain

H(y) =
p̂2

2m
+

1
2
mω2y2

+
1
2

(√
1

m3�ω
p̂3 − 2

√
�ω

m
p̂+

1
2

√
mω3

�
{p̂, y2}

)
ls�κq +O(κ2

q), (4.4)

where p̂ = −i� d
dy . The lowest terms on the right-hand side of this equation

reproduce the Hamiltonian of the ordinary harmonic oscillator. The first-order
terms that are not invariant under the parity transformation represent a non-
trivial anharmonic interaction.

• D-oscillator
The product of the raising and lowering operators takes the form

A†(y)A(y) =
1
4

1
es2 − e−s2

1√
cos
(

s
l y
)
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×


 e−s2

cos
(

s
l y − is2

)√
cos
(

s
l y − is2

) exp
(
−2isl

d

dy

)

−
exp

(
s2 + 2is

l y
)

cos
(

s
l y − is2

)√
cos
(

s
l y
) − exp

(
s2 − 2is

l y
)

cos
(

s
l y + is2

)√
cos
(

s
l y
)

+
e−s2

cos
(

s
l y + is2

)√
cos
(

s
l y + 2is2

) exp
(

2isl
d

dy

) . (4.5)

Expansion of the coordinate representation of the Hamiltonian around κq = 0,
which is obtained using the q-mutator in Eq. (2.1) and substituting Eq. (4.5)
into Eq. (2.3), results in

H(y) =
p̂2

2m
+

1
2
mω2y2

+
(

p̂4

6m2�ω
− p̂2

m
+
ω

4�
{p̂2, y2} +

m2ω3

3�
y4 +

3
4

�ω

)
(ls�κq)2

+ O(κ4
q). (4.6)

The lowest-order terms on the right-hand side of this equation are identical to
the Hamiltonian of an ordinary harmonic oscillator. The terms second order
in κq are invariant under the parity transformation and represent anharmonic
effects.

4.2. Contraction to deformed classical oscillators: � → 0 with κq fixed

In the WKB method,11), 14) the normalized wave function ψ(y) is expressed as

ψ(y) = exp
[
i

�
S(y)

]
, (4.7)

where S(y) reduces to Hamilton’s principle function in the limit � → 0. Hence, the
classical momentum p is derived from S(y) as follows:

p =
d

dy
lim
�→0

S(y). (4.8)

Operating with −i� d
dy on the wave function ψ(y) and taking the limit � → 0, we

obtain the formulas

lim
�→0

[
�

i

d

dy

]
ψ(y) = lim

�→0

{
dS(y)
dy

}
lim
�→0

ψ(y) = p lim
�→0

ψ(y), (4.9)

lim
�→0

[
�

i

d

dy

]2

ψ(y) = lim
�→0

{[
dS(y)
dy

]2

+
�

i

d2S(y)
dy2

}
lim
�→0

ψ(y) = p2 lim
�→0

ψ(y), (4.10)
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q-Deformed Harmonic Oscillators 827

Fig. 2. Orbits of constant energy for the M-oscillator in phase space (s� > 0). The arrows represent

the direction of flow of the vector field. The period of an orbit with respect to κqs�y is 2π. The

threshold energy Ec distinguishing closed orbits for libration from open orbits for circulation is

Ec = mω2/(2κ2
qs

2
�).

and so on. These results imply that the operator −i� d
dy in front of the wave function

can be replaced by the ordinary momentum p in the limit � → 0.
Substituting Eqs. (4.3) and (4.5) into the Hamiltonian (2.8) and keeping κq

finite, we take the limit � → 0 to obtain new Hamilton functions of the c-deformed
harmonic oscillators Hc(y, p).

• M-oscillator
The above procedure of the WKB method readily leads to the Hamilton function
of the c-deformed oscillator

Hc(y, p) =
mω2

2(κqs�)2

[
exp

(
2κqs�p

mω

)
− 2 cos(κqs�y) exp

(κqs�p

mω

)
+ 1
]
. (4.11)

This Hamilton function is identical to that obtained by Shabanov in the path
integral formalism.4) It has no singularity, except in the limit p → ∞, and
it tends to infinity in the limit ω → 0. It is not invariant under the parity
transformation. From Hamilton’s equation of motion, we have the relation

p =
mω

κqs�
ln

{
cos(κqs�y)

2
+

√[
cos(κqs�y)

2

]2

+
κqs�ẏ

ω

}
. (4.12)

The condition that the momentum is real restricts the motion to the region in
which s�ẏ ≥ −ω cos2(κqs�y)/(4κq). Evidently, the Hamilton function and the
momentum have periodic structure of period 2πlq/s� = 2πl/s:

T 2Hc(y, p) = Hc

(
y +

2πlq
s�

, p

)
= Hc(y, p) (4.13)

and

T 2p(ẏ, y) = p

(
ẏ, y +

2πlq
s�

)
= p(ẏ, y). (4.14)

As shown in Fig. 2, there are closed and open orbits representing libration
and circulation, respectively, in the phase space. This is, to our knowledge, the
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first time that this interesting phenomenon has been observed. It is possible
for open orbits to appear in a region characterized by large energy, because the
height of the potential barrier of the Hamilton function is finite. The threshold
energy discriminating closed and open orbits, Ec = mω2/(2κ2

qs
2
�), is identical

to the maximum value of the energy eigenvalues in Eq. (2.4) in the limit � → 0:

lim
�→0

�ω
q + q−1

2(q − q−1)
=

mω2

2κ2
qs

2
�

. (4.15)

Applying the inverse Legendre transformation, we obtain the c-deformed La-
grange function

L(y, ẏ) =
mω2

2(κqs�)2

{
cos(κqs�y)

√[
cos(κqs�y)

2

]2

+
κqs�ẏ

ω

−κqs�ẏ

ω
+

cos2(κqs�y)
2

− 1

}

+
mω

κqs�
ẏ ln

{
cos(κqs�y)

2
+

√[
cos(κqs�y)

2

]2

+
κqs�ẏ

ω

}
. (4.16)

• D-oscillator
The Hamilton function of the c-deformed harmonic oscillator is found to be

Hc(y, p) =
mω2

2(κqs�)2

[
1

cos2(κqs�y)
sinh2

(κqs�

mω
p
)

+ tan2(κqs�y)
]
. (4.17)

It is invariant under the parity transformation and has singularities at all points
satisfying the relation cos(κqs�y) = 0, which are related to zero points of the
eigenfunction of the D-oscillator given in Eq. (2.14). In the limit ω → 0, the
Hamilton function diverges. From Hamilton’s equation of motion, the momen-
tum is given by

p =
mω

κqs�
sinh−1

[
κqs�ẏ

ω
cos2(κqs�y)

]
. (4.18)

Evidently, the Hamilton function and the momentum have periodic structures
of period πlq/s� = πl/s:

T Hc(y, p) = Hc

(
y +

πlq
s�
, p

)
= Hc(y, p) (4.19)

and

T p(ẏ, y) = p

(
ẏ, y +

πlq
s�

)
= p(ẏ, y). (4.20)

As shown in Fig. 3, all the orbits in the phase space are closed and periodic
with respect to the coordinate y. No classical motion is allowed in the regions
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q-Deformed Harmonic Oscillators 829

Fig. 3. Orbits of constant energy for the D-oscillator in phase space (s� > 0). The arrows represent

the direction of flow of the vector field. The orbits centered at κqs�y = π×(even integers) and

κqs�y = π×(odd integers) are represented, respectively, by solid and dotted curves.

around y = (πlq/2s�)×(odd integers), at which the Hamilton function is diver-
gent. Accordingly, all orbits become isolated and closed for the D-oscillator, in
contrast to the M-oscillator whose Hamilton function has no potential singu-
larity. The c-deformed Lagrange function is found to be

L(y, ẏ) = − mω2

2(κqs�)2 cos2(κqs�y)

√
1 +

[
κqs�ẏ

ω
cos2(κqs�y)

]2

+
mωẏ

2κqs�
sinh−1

[
κqs�ẏ

ω
cos2(κqs�y)

]
− mω2

2(κqs�)2
tan2(κqs�y). (4.21)

The orbits plotted in Figs. 2 and 3 show explicitly that the deformation has
the effects of creating infinite duplications in the coordinate space. The M- and D-
oscillators have closed orbits centered at y = (πlq/s�)×(even integers). In addition,
there exists another sequence of closed orbits centered at y = (πlq/s�)×(odd integers)
for the D-oscillator, which is represented by dotted curves in Fig. 3. Henceforth, we
call the former an even sequence and the latter an odd sequence.

We obtain an ordinary harmonic oscillator in the limit κq → 0 of a c-deformed
oscillator. In the κq → 0 limit, all orbits, except for the closed orbits centered at the
origin and depicted by thick solid curves move off to infinity.

§5. Additional symmetry of the q-deformed D-oscillator

For classical oscillators, the effect of deformation causes the appearance of in-
finite repetitions of orbits in the phase space. In Figs. 2 and 3, the closed orbit
centered at the origin y = 0 is accompanied by infinitely many duplications. The
c-deformed M- and D-oscillators both have an even sequence of closed orbits, and
the D-oscillator has an additional odd sequence.

It is natural to interpret even sequences of orbits of the M- and D-oscillators
as classical manifestations of the invariance of the q-deformed Hamiltonian Hq in
Eq. (3.10) under the group action generated by the operator T 2. Then, what sort of
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830 I. S. Sogami, K. Koizumi and R. M. Mir-Kasimov

symmetry for the q-deformed oscillator is that which appears as the additional odd
sequence only for the c-deformed oscillator of the Dubna type?

Using the formula in Eq. (3.2) with n = 1 and accounting for the sign change of
the factor cos(sx), we find the relation

T A(x) = A
(
x+

π

s

)
= A(x), (5.1)

which results in
T Hq(x) = Hq

(
x+

π

s

)
= Hq(x) (5.2)

for the D-oscillator. In contrast, considering the formula in Eq. (3.1) with n = 1, we
see that a similar relation does not hold for the M-oscillator. Therefore, while the
D-oscillator is invariant under the group action generated by T , the M-oscillator is
invariant under T 2 only. These results enable us to interpret the odd sequence in
the c-deformed D-oscillator as a reflection of the higher symmetry represented by T
of the q-deformed D-oscillator.

Now, we must examine effects of the discrete translation T on the wave function.
An increase in symmetry leads inevitably to an increase in the degeneracy of quantum
states. Here we look for eigenfunctions that are independent of ψn(x) in Eq. (2.14).
Invariance under the translation T in Eq. (5.1) requires introduction of a new series
of Gaussian functions,

fk+1/2(x) ≡ fk

(
x− π

s

)
= exp

{
−1

2

[
x− (2k + 1)π

s

]2
}
. (5.3)

In parallel to the arguments made in §§2 and 3, here we introduce the part-function
consisting of fk+1/2(x) as

f ′(x) ≡ fk+1/2(x) = exp
(
−1

2
x2

)
f ′∗(x), (5.4)

where the Gaussian factor centered at the origin is separated, and

f ′∗(x) = exp
[
(2k + 1)π

s
x− (2k + 1)2π2

2s2

]
. (5.5)

The formula in Eq. (3.2) allows us to prove that the factor f ′∗(x) anti-commutes with
the difference operator of the D-oscillator, i.e.,{

D

(
1
i

d

dx

)
, f ′∗(x)

}
= 0. (5.6)

Replacing the part-function f(x) by the new part-function f ′(x) in Eqs. (2.5)
and (2.6), we define new ladder operators. Then, as seen from the anti-commutation
relation in Eq. (5.6), the factor f ′∗(x) is eliminated in these ladder operators. In
fact, we obtain the expressions in Eqs. (3.6) and (3.7), with reversed signs for the
operators A(x) and A†(x). The sign of the ladder operators can be adjusted by
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q-Deformed Harmonic Oscillators 831

appropriately choosing the constant a0 in the part-function h(x). The q-mutator
and the Hamiltonian Hq(x) in Eq. (2.8) take exactly the same forms for both of the
part-functions f(x) and f ′(x). Therefore, all results in §4 hold for the D-oscillators
whether f(x) or f ′(x) is used as the part-function.

With the new part-function f ′(x), we obtain the additional eigenfunctions

ψ′
n(x) = K ′

0s
nf ′(x)g(x) exp{in[h(x)]}

×
n−1∏
j=0

[
1 − e−2s2(j+1)

]−1/2
Hn(x; e−s2

), (5.7)

where K ′
0 is a normalization constant. The eigenfunctions ψ′

n(x) and ψn(x) have
the same eigenvalue En and are orthogonal with each other. To clarify this unique
characteristic of the D-oscillator, let us examine the effect of the factor exp(πx/s)
that results from the translation fk(x) → fk(x+ π/s).

Application of the relation in Eq. (3.2) to the Hamiltonian Hq(x) shows that the
factor exp(πx/s) commutes with Hq(x):[

exp
(πx
s

)
, Hq(x)

]
= 0. (5.8)

This implies that eigenstates of the Hamiltonian are necessarily degenerate for the
D-oscillator, since an eigenfunction multiplied by the factor exp(πx/s) is also an
eigenfunction of Hq(x).

To examine this degeneracy further, it is effectual to introduce the operator8)

T =
1

g(x)
cosh

(
is
d

dx

)
1

g(x)
(5.9)

which can be expressed by a linear combination of ladder operators as

T =
s

2 sin sx

{
1
√
q

exp[ih(x)]A+
√
q exp [−ih(x)]A†

}
. (5.10)

The operator T 2 and the Hamiltonian satisfy the linear relation

T 2 = s2
(
Hq +

1
2

1 + q2

1 − q2

)
. (5.11)

Therefore, the operator T 2 and the Hamiltonian have the same eigenfunctions, with

T 2ψn(x) = s2
q−2n

1 − q2
ψn(x), T 2ψ′

n(x) = s2
q−2n

1 − q2
ψ′

n(x). (5.12)

As can be shown using the relation in Eq. (3.2), the operator T anti-commutes
with the factor exp(πx/s): {

exp
(πx
s

)
, T
}

= 0. (5.13)

Equation (5.3) shows that the two functions fk+1/2(x) and exp(πx/s)fk(x) are lin-
early dependent. Therefore, the wave function ψ′

n(x) can be obtained by multiplying
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ψn(x) by the factor exp(πx/s) and adjusting a multiplicative constant. Therefore,
the eigenvalue problem for the operator T is solved as follows:

Tψn(x) = s

(
q−2n

1 − q2

) 1
2

ψn(x) (5.14)

and

Tψ′
n(x) = −s

(
q−2n

1 − q2

) 1
2

ψ′
n(x). (5.15)

The wave functions ψn(x) and ψ′
n(x), which possess the same energy eigenvalue En

and different eigenvalues of T , are orthogonal with each other.
For the M-oscillator, whose Hamiltonian is not invariant under the translation

T , no localized states appear other than the eigenfunctions ψn. Note that the part-
function f ′(x) with the Gaussian factor fk+1/2(x) fails to reproduce the representa-
tions in Eqs. (3.6) and (3.7) for the ladder operators.

§6. Propagating wave functions of the Bloch type

Discovery of the open orbits for the M-oscillator, which is one of important
outcomes of our numerical investigation of the c-deformed oscillator, implies the ex-
istence of propagating wave functions of the Bloch type15) in the q-deformed system.
We use the Fourier series analysis to find such solutions of the energy eigenvalue
problem that correspond to classical motion of the open orbits.

6.1. q-Deformed M-oscillator (q = es2
> 1)

Let us consider the stationary state solution ψΩ(x, t) of the Schrödinger equation
with energy E = �Ω. Because the Hamiltonian of the q-deformed M-oscillator is
invariant under the translations generated by T 2, the Bloch theorem15) tells us that
the wave function satisfies the relation

T 2ψΩ(x, t) = ψΩ

(
x+

2π
s

)
= e2kπ/sψΩ(x, t). (6.1)

Therefore, it is possible to represent the stationary wave function using a modulatory
plane wave as

ψΩ(x, t) = uΩ(x)ei(kx−Ωt), (6.2)

with the T 2-invariant amplitude

uΩ(x) =
∞∑

n=−∞
ane

insx. (6.3)

The energy eigenvalue E and the Fourier coefficients cn are determined by solving
the stationary state Schrödinger equation

HquΩ(x)eikx = EuΩ(x)eikx, (6.4)
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which is reduced to the recursion formula

q2n−2e2ksan − qn− 1
2 eksan+1 − qn− 3

2 eksan−1 +
1
2
(q + q−1)an = (q − q−1)Ean (6.5)

for three successive coefficients an±1 and an. By setting

an = q−
1
2
nbn (6.6)

and
λ =

1
2
(q + q−1) − (q − q−1)E = cosh s2 − 2E sinh s2, (6.7)

we can simplify the above recursion formula into the form

bn+1 + bn−1 = −dnbn, (6.8)

where
dn = −eskqn−1 − λe−skq−n+1. (6.9)

An investigation of the recursive relation in Eq. (6.8) is carried out in Appendix
A. The condition that Eq. (6.8) has a non-trivial solution leads to the following
secular equation in continued fraction form:

d0 −
1

d1 −
1

d2 −
1

d3 − · · ·

− 1

d−1 −
1

d−2 −
1

d−3 − · · ·

= 0. (6.10)

Solutions of this equation determine dispersion relations that relate the wave number
k and the energy E = �Ω. For each energy eigenvalue, the Bloch wave function is
determined by solving the recursion relations in Eq. (6.8) for the Fourier coefficients
bn.

In general, it is not simple to solve the secular equation analytically. Here we
describe only the solution of Eqs. (6.10) in the region of sufficiently large q, where
|dn| 	 1 for n ≥ 2 and n ≤ −1. In such a case the secular equation can be
approximated as

d0 ≈ 1
d1
, (6.11)

which yields the physically admissible solution

λ ≈ −e2sk − 1
4q
e−2sk. (6.12)

Then, we obtain the dispersion relation (energy band) of one of the Bloch waves for
the M-oscillator as

Ω ≈ 1
2
ω

(
coth s2 +

1
sinh s2

e2sk +
1

4 sinh s2
e−s2−2sk

)
. (6.13)

The corresponding energy eigenvalue, E = �Ω, is larger than the maximal value
of the spectrum given Eq. (2.4) for a localized state with eigenfunction given in
Eq. (2.14).
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6.2. q-Deformed D-oscillator (q = e−s2
< 1)

In contrast to the M-oscillator, the Hamilton function of the c-deformed D-
oscillator is infinite at x = (π/2s)×(odd integers). These singularities cause all
classical orbits to be closed and forbid the existence of open orbits. In quantum
theory, however, there is the possibility for the D-oscillator to have propagating or
stationary waves of the Bloch type as a result of tunneling effects.

The Schrödinger equation is assumed to have a stationary state solution of the
form given in Eq. (6.2). In place of Eq. (6.4), it is sufficient to solve the eigenvalue
problem of the T operator in Eq. (5.10) as follows:

TuΩ(x)eikx = τuΩ(x)eikx. (6.14)

The eigenvalue τ here is related to the energy eigenvalue E = �Ω as

τ2 = s2
(
E +

1
2

1 + q2

1 − q2

)
. (6.15)

Here, it is natural to postulate that the modulatory amplitude of the Bloch wave
function has the form

uΩ(x) =
√

cos(sx)
∞∑

n=−∞
cne

insx. (6.16)

Then, the eigenvalue problem in Eq. (6.14) is reduced to

1
2

√
s2

q−1 − q
(qne−sk+q−nesk)

∞∑
n=−∞

cne
insxeikx = τ cos(sx)

∞∑
n=−∞

cne
insxeikx, (6.17)

which results directly in the recursion formula

cn+1 + cn−1 = −dncn, (6.18)

where

dn = −1
τ

√
s2

q−1 − q
(qne−sk + q−nesk). (6.19)

This recursion formula for the coefficients cn is the same as Eq. (6.8). Therefore,
the condition that this formula has a non-trivial solution implies a secular equation
identical to Eq. (6.10). The Bloch wave functions ψ±

Ω(x, t) = u±Ω(x) exp(kx−Ωt) are
determined by solving the recursion formula in Eq. (6.18), into which the eigenvalues
±τ obtained from the secular equation are substituted.

In the case of sufficiently large q, for which |dn| 	 1 for n ≥ 2 and n ≤ −2, we
approximate the secular equation as

d0 ≈ 1
d1

+
1
d−1

(6.20)

which leads to

τ2 ≈ s2
(
q−2 + q2

q−2 − q2
+
e2sk + e−2sk

q−2 − q2

)
. (6.21)
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Then, substituting this result into Eq. (6.15), we obtain the dispersion relation

Ω ≈ 1
2
ω

(
tanh s2 +

2
sinh 2s2

cosh 2sk
)

(6.22)

for the Bloch wave of the D-oscillator. Note that by substituting the eigenvalues ±τ
into the recursion formula in Eq. (6.18), we obtain two independent eigenstates of
the Bloch type.

§7. Discussion

It is natural and appropriate in physics to formulate one-dimensional harmonic
oscillators, with or without deformation, on the straight x-axis. It turns out that
such a deformation creates rich structure of discrete translational symmetry both in
the quantum and classical systems for the M- and D-oscillators. In the following, we
summarize the results of our analyses of the c- and q-deformed oscillators.

∗ c-Deformed oscillators
Each of the infinitely repeated closed orbits in Figs. 2 and 3 is isolated and equivalent.
Note that there is no principle to select one specific orbit among them.

• M-oscillator
The Hamilton function and the momentum are periodic functions with period
2πlq/s� = 2πl/s. In Fig. 2, which depicts orbits of constant energy of the
oscillator, localized oscillation is represented by one of the isolated closed orbits
in the even sequence selected spontaneously in the low energy region (E < Ec)
and non-localized motion of circulation is represented by one of the open orbits
in the high energy region (E > Ec).

• D-oscillator
The Hamilton function and the momentum is periodic functions with period
πlq/s�. All classical states are oscillatory and described by one of the closed
orbits in the even and odd sequences selected spontaneously for all energies.

∗ q-Deformed oscillators
The Hamiltonians and Hamilton functions for the M- and D-oscillators have the
same discrete translational symmetries. Owing to these symmetries, the q-deformed
systems have propagating waves of the Bloch type in addition to localized states.

• M-oscillator
In this case, the Hamiltonian is invariant under the discrete group generated
by the translation operator T 2. The localized eigenstate and the propagating
state are given, respectively, by ψn and the Bloch wave function ψΩ(x, t).

• D-oscillator
Here, the Hamiltonian possesses the discrete symmetry group generated by
the operator T . Both the localized eigenstates and the propagating states are
doubly degenerate and given, respectively, by ψn and ψ′

n and the Bloch wave
functions ψ±

Ω(x, t).

Mathematically it is appealing to consider the mapping from the entire interval
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I∞ = (−∞,∞) onto the unit circle S1 = R/(2πZ). Description of the q- and c-
deformed oscillators on the unit circle is economical in the sense that the duplicated
states appearing along the coordinate axis are all represented by a single state.
However, we must be careful to formulate such a mapping consistently even in the
case that there is no deformation, because a fictitious force must be included in order
to constrain the motion of oscillators on this curved space.

The limit of zero deformation, κq → 0, reduces the ladder operators A(x) and
A(x)† of the q-deformed oscillators in Eqs. (3.6) and (3.7) to

A(x) → ±e−ia0
1√
2

(
d

dx
+ x

)
(7.1)

and

A†(x) → ∓eia0
1√
2

(
d

dx
− x

)
, (7.2)

where the upper and lower signs, respectively, correspond to the part-functions f(x)
and f ′(x). Accordingly, we are able to obtain Dirac-Hall-Infeld representations for
both of the ladder operators by choosing a0 = 1 and a0 = π, respectively, for the
part-functions f(x) and f ′(x).

Finally, we point out that the Dubna group carried out a dimensional analysis
with the unit of length defined by

κq = l−1
q =

ω

c
, (7.3)

which was derived through analysis of a q-deformed oscillator in one-dimensional
momentum space with constant curvature.10) With this choice of the unit lq, it is
possible to take the limit ω → 0, i.e., the free particle limit, of Eqs. (4.11) and (4.17).

We have found that the q- and c-deformations lead naturally to the appearance
of periodic structures and cause peculiar energy spectra in oscillator systems. An
interesting application of the q-deformation is presented in a recent work by Naka et
al.,12) in which the mass structure of a particle in a 5-dimensional spacetime of the
Randall-Sundrum type17) with a q-deformed extra dimension is investigated, and the
propagator of particle are shown to acquire a natural ultraviolet-cutoff effect.
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Appendix A
Secular Equation for Propagating Wave Functions of Bloch Type

The recursion formulas in Eqs. (6.8) and (6.18) for the Fourier coefficients of
the Bloch wave functions correspond to continued fractions of the same form. Ac-
cordingly, the condition16) that each of these recursion formulas has a non-trivial
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solution leads to a secular equation of the following form

∆(E) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . . . . .
...

...
...

...
...

...
. . . dn 1 0 0 0 0 0 · · ·
· · · 1 dn−1 1 0 0 0 0 · · ·
...

...
. . . . . . . . .

...
...

...
...

· · · 0 0 1 d0 1 0 0 · · ·
...

...
...

...
. . . . . . . . .

...
...

· · · 0 0 0 0 1 d−n+1 1 · · ·
· · · 0 0 0 0 0 1 d−n

. . .
...

...
...

...
...

...
. . . . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (A.1)

where the quantities dn in the diagonal entries are the functions given in Eqs. (6.9)
and (6.19).

To solve this equation without ambiguity, we introduce the following three kinds
of finite determinants:

∆n(E)=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dn 1 0 · · · 0 0 0 · · · 0 0 0
1 dn−1 1 · · · 0 0 0 · · · 0 0 0
...

. . . . . . . . . . . . . . .
...

...
...

...
...

0 0 0 · · · 1 d0 1 · · · 0 0 0
...

...
...

...
...

. . . . . . . . . . . . . . . 0
0 0 0 · · · 0 0 0 · · · 1 d−n+1 1
0 0 0 · · · 0 0 0 · · · 0 1 d−n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (A.2)

∆n
ν (E) =

∣∣∣∣∣∣∣∣∣∣∣

dn 1 0 0 0
1 dn−1 1 0 0
...

. . . . . . . . .
...

0 0 1 dν+1 1
0 0 0 1 dν

∣∣∣∣∣∣∣∣∣∣∣
(A.3)

and

∆n
−ν(E) =

∣∣∣∣∣∣∣∣∣∣∣

d−ν 1 0 0 0
1 d−ν−1 1 0 0
...

. . . . . . . . . 0
0 0 1 d−n+1 1
0 0 0 1 d−n

∣∣∣∣∣∣∣∣∣∣∣
, (A.4)

where n and ν are non-negative integers with n ≥ ν.
The Laplace expansion of the (2n+1)×(2n+1) determinant ∆n(E) with respect

to the row including d0 gives rise to the identity

∆n(E) = d0(E) − ∆n
2 (E)

∆n
1 (E)

−
∆n−2(E)
∆n−1(E)

. (A.5)
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Using similar expansions, the determinants ∆n
ν (E) and ∆n−ν(E) are proved to satisfy

the recursion formulas

∆n
ν (E) = dν(E)∆n

ν+1(E) −∆n
ν+2(E) (A.6)

and
∆n

−ν(E) = d−ν(E)∆n
−ν−1(E) −∆n

−ν−2(E). (A.7)

Here, we postulate that the limit n → ∞ of the finite determinant is equal to
the infinite-dimensional determinant ∆(E),

lim
n→∞∆n(E) = ∆(E), (A.8)

and that the finite determinants ∆n±ν(E) have the limits

lim
n→∞∆n

±ν(E) = ∆±ν(E), (A.9)

where

∆ν(E) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . . . . .
...

...
...

...
. . . dn 1 0 0 0
· · · 1 dn−1 1 0 0
...

...
. . . . . . . . .

...
· · · 0 0 1 dν+1 1
· · · 0 0 0 1 dν

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(A.10)

and

∆−ν(E) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d−ν 1 0 0 0 · · ·
1 d−ν−1 1 0 0 · · ·
...

. . . . . . . . . 0 · · ·
0 0 1 d−n+1 1 · · ·
0 0 0 1 d−n

. . .
...

...
...

...
. . . . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (A.11)

Then, the secular equation is cast in the form

d0(E) − ∆2(E)
∆1(E)

− ∆−2(E)
∆−1(E)

= 0. (A.12)

Therefore, using the limiting forms of the recursion formulas

∆ν(E) = dν(E)∆ν+1(E) −∆ν+2(E) (A.13)

and
∆−ν(E) = d−ν(E)∆−ν−1(E) −∆−ν−2(E), (A.14)

we finally obtain the secular equation given in Eq. (6.10).
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Appendix B
General Forms of the Part-Function f(x)

The compact representations of the ladder operators given in Eqs. (3.6) and
(3.7) were derived using the part-function f(x) consisting solely of either fk(x) or
fk+1/2(x). It is possible to obtain the same representations from more general forms
of the part-function f(x).

Let us construct the part-functions f(x) and f ′(x) by superposing fk(x) and
fk+1/2(x), respectively, as

f(x) =
∞∑

k=−∞
ckfk(x) (B.1)

and

f ′(x) =
∞∑

k=−∞
c′kfk+1/2(x), (B.2)

with arbitrary coefficients ck and c′k. We separate the Gaussian factor centered at
the origin from f(x) and f ′(x) as

f(x) = exp
(
−1

2
x2

)
f∗(x) (B.3)

and

f ′(x) = exp
(
−1

2
x2

)
f ′∗(x), (B.4)

where

f∗(y) =
∞∑

k=−∞
ck exp

[
(2k)π
s

x− (2k)2π2

2s2

]
(B.5)

and

f ′∗(y) =
∞∑

k=−∞
c′k exp

[
(2k + 1)π

s
x− (2k + 1)2π2

2s2

]
. (B.6)

The formulas in Eqs. (3.1) and (3.2) with n = 2k prove that the function f∗(x)
commutes with the difference operator D for both the M- and D-oscillators. Simi-
larly, the formula in Eq. (3.2) with n = 2k + 1 enables us to prove that the factor
f ′∗(y) anti-commutes with the difference operator of the D-oscillator. Hence, the
commutation relation in Eq. (3.5) and the anticommutation relation in Eq. (5.6)
hold, respectively, for the general functions f∗(x) and f ′∗(x) in this section.

Here, it should be noted that the part-functions f(x) and f ′(x) consist exclu-
sively of either fk(x) or fk+1/2(x). It can be shown that any mixed superposition
including both fk(x) and fk+1/2(x) cannot be decomposed into a product of a Gaus-
sian function centered at the origin and a factor that commutes or anti-commutes
with the difference operator D.

The energy eigenstates ψn given in Eq. (2.14) [ψ′
n in Eq. (5.7)] were assumed to

have only one non-vanishing Gaussian factor centered at the point 2kπ/s [(2k+1)π/s]
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for a certain fixed integer k. It is natural to interpret such a state as corresponding
to the closed orbit of the c-oscillator centered at 2kπ/s [(2k + 1)π/s].

In quantum theory, general eigenstates of the ψn and ψ′
n types, including the

general part-functions in Eqs. (B.1) and (B.2), are not forbidden. Note, however,
that there is no principle that determines the coefficients of superpositions other
than the normalization condition of the eigenfunctions. Therefore, the coefficients
ck and c′k must be interpreted as being spontaneously selected.

The arguments made here are also applicable to a system with globally periodic
structure,7) where the functions fk(x) defined and normalized on the finite interval
Ik = [(2k − 1)π/s, (2k + 1)π/s] are smoothly connected over the entire interval
∪∞

k=−∞Ik. The expressions for the ladder operators given in Eqs. (3.6) and (3.7) are
valid also in such a system.
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